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ABSTRACT The remaining useful life estimation has been widely studied for engineering systems.
A system commonly works under varying operating conditions, which may affect the system degradation
trajectory differently and consequently reduce the accuracy of remaining useful life estimation. In this paper,
we propose CNN-XGB with extended time window to tackle this issue. Firstly, the extended time window is
created by feature extension and timewindow processing in data preprocessing. In feature extension,multiple
degradation features are extracted by an improved differential method, and these features are appended to
the raw data as additional features. To make the time window cover more information for better prognostic
accuracy, a time window padding method is used considering the problem of missing data in some samples.
Secondly, a convolutional neural network architecture with multichannel 1 ∗ 1 filter kernel is proposed
considering the effect of varying operating conditions. Furthermore, to improve the prognostic robustness
and avoid the sensitivity to the abnormal data, convolutional neural network and extreme gradient boosting
are fused bymodel averaging (CNN-XGB). The validity of the proposedmethod is verified using aero-engine
datasets from NASA.

INDEX TERMS Neural networks, lifetime estimation, time series analysis, prognostics and health
management.

I. INTRODUCTION
Prognostic and healthmanagement (PHM) has become one of
the focuses of preventive maintenance in the systems or com-
ponents [1], [2]. Anomaly detection and a timely early warn-
ing of failure plays an important role in traditional preventive
maintenance [3], [4]. The PHM aims to monitor the reliability
and security of an engineering system, which improves the
maximum operating availability and reduces maintenance
cost [5]. The prognostics provide an estimation of the remain-
ing useful life (RUL) of a degradation system or component
based upon knowledge of operating history, current state and
future operating conditions [6].

The RUL describes the time remaining of an equipment
before one or more fault modes occurs [7]. However, many
systems usually work under varying operational conditions
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due to multiple factors such as the ambient environments,
operational profiles or workloads [8]. Since different oper-
ating conditions may affect the degradation trajectory of a
system differently [8], it is difficult that the monitoring data
of the system with varying operational conditions (e.g. aero-
engines [9] and avionics system [10]) are used to estimate
RUL. Thus, it is still a challenge to develop an accurate
RUL estimation method for a system with varying operating
conditions.

For the RUL estimation of a system, the model-based
methods describe the fault mechanism and failure process of
the system [11]. The commonly used model-based methods
include weibull distribution [12] and particle filtering [13].
However, the model-based methods require the online unit
to work under the same conditions as the offline units, and
require a lot of prior knowledge [14]. Data-driven methods
build estimation models based on historical data, which suc-
cessfully avoid the limitations of getting prior knowledge.
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Data-driven methods can be classified into direct and indirect
approaches [7], [15]. Indirect methods build health indicator
and then maps the health indicator to RUL value through
degradation model, where similarity measurement is used to
match the most similarity degradation model. Direct methods
is able to build the RUL estimation model directly from raw
data without building health indicator [7].

Indirect approaches have been widely studied for the RUL
estimation of system [16]. Wang et al. [17] constructed dif-
ferent estimation models for aero-engines under six operat-
ing conditions, where the health indicator is constructed by
linear regression for each operating condition. But the health
indicator constructed by linear regression is not robustness.
In recent years, many scholars attempted different methods
to improve the quality of health indicator. Yan et al. [18]
proposed a data fusion methodology, which integrates the
information from multiple sensors to construct a health indi-
cator. Gugulothu and Gugulothu [19] proposed Embed-RUL,
which uses a sequence-to-sequence model based on recur-
rent neural networks (RNN) to generate embeddings for
sub-sequences. Ramasso [20] proposed remaining useful life
estimation based on imprecise health indicator modeled by
planar polygons and similarity-based reasoning. Hu et al. [21]
proposed an ensemble model which combines multiple mem-
ber algorithms with a weighted-sum formulation.

Overall, indirect methods have strong interpretability
because it analyzes the degradation processes of differ-
ent units, and construct the candidate sets of models for
different units. However, the prognostic accuracy heavily
depends on the construction of health indicator and degra-
dation model, and the high model complexity results in the
longer training time consumption. Considering the limita-
tions of indirect approaches, direct approaches are used in this
paper.

Direct approaches focus on the effect of time series infor-
mation. Khelif et al. [7] used support vector regression to
estimate RUL directly, where the trend coefficient and the
average value are extracted from the time window to cre-
ate sample sets. Compared with the time window dataset,
the training time consumption of [7] is greatly reduced while
the certain performance is guaranteed. However, the analysis
of time series in [7] is imperfect because it may cause the loss
of degradation information.

To ensure the integrity of degradation information, the dif-
ferent direct approaches capable of processing time series are
used. Zheng et al. [22] applied deep long short-term memory
neural network (LSTM) to estimate RUL, which used sen-
sor sequence information to reveal hidden characteristic of
the data with multiple operating conditions to some extent.
In order to better learn sequence information, Wu et al. [23]
proposed an improved LSTM, where the dynamic differen-
tial features are appended to the raw data to improve the
expression ability of data with multiple operating conditions.
However, the dynamic differential method did not consider
the cycle interval between sensor data in the same operating
condition, so it is difficult to enough describe the degradation

characteristic of sensor data under varying operating con-
ditions. In this paper, we improve the dynamic differential
method to fully dig the degradation information of data with
multiple operating conditions.

To make use of sequence information more convenient,
the convolution neural network (CNN) based on time win-
dow is used for RUL estimation. The deep CNN archi-
tecture is designed to learn the features of time window,
which established a good mapping between the raw data and
RUL value [5], [24]. But they did not consider the impacts
of differences in data distributions under varying operating
conditions. Besides, the training time consumptions of deep
architectures is serious, and their hyper-parameter selection
is difficult. Considering the complexity of model and the
degradation characteristics of data with varying operating
conditions, we develop a CNN based on multichannel 1 ∗ 1
filter kernel with extended time window, where the extended
time window contains sensor data and additional features.
However, the multichannel 1∗1 filter kernel is focused on the
features of one moment, it may be sensitive to the abnormal
data.

To improve the prognostic accuracy and robustness,
ensemble learning is used for RUL estimation [25]. The
fusing of multiple models can effectively reduce noise impact
and improve prognostic accuracy [26], [27], which is promis-
ing for RUL estimation [28]. In recent years, extreme gradient
boosting (XGBoost) has been widely used by data scien-
tists [29], [30] and has achieved promising results in many
machine learning challenges [31].

Comparing with the current ensemble of decision trees
algorithm, such as AdaBoost, Gradient Boosting Decision
Tree, Random Forest, etc., XGBoost is an improved boosting
decision tree [32], which adopts the second-order Taylor
expansion to improve the computing speed and generalization
ability. Then it has the advantages of both boost and RF by
boosting multiple trees and subsampling, which can reduce
over-fitting and noise interference effectively. But its param-
eter selection is difficult.

To reduce high dependence on the parameters of sin-
gle model and combine the advantages of multiple models,
we fuse the CNN with XGBoost through model averaging.
The proposed method is validated on C-MAPSS turbofan
aero-engine datasets from NASA in this paper. Nonetheless,
the proposed method can be adapted for other industrial
applications.

In summary, the existing data-driven methods for RUL
estimation have the problems of high training time consump-
tion or poor accuracy. In this paper, we propose CNN-XGB
with extended time window to estimate the remaining useful
life of system with varying operating conditions. The contri-
butions of this paper are the three-fold:
• Multiple additional features extracted by improved dif-
ferential method are appended to the raw data to improve
the expression ability of degradation information for
sample data. Moreover, a time window padding method
is used for the trade-off between prognostic accuracy
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FIGURE 1. The proposed remaining useful life estimation method, where the blue arrow describes the process of modeling, and the
orange arrow indicates the prognostic procedure of testing data.

and the problem of missing data, which considers the
degradation characteristics of different unit;

• A convolutional neural network based on multichannel
1∗1 filter kernel with extended time window is proposed
to estimate RUL, which reduces the impact of varying
operating conditions;

• Since the multichannel 1 ∗ 1 filter kernel is mainly
focused on the features of one moment, it may be sen-
sitive to the abnormal data. To improve the prognostic
accuracy and robustness, an ensemble model (CNN-
XGB) is designed to combine XGBoost with CNN,
where the extended time window serves as the input.

The remainder of the paper is organized as follows.
Section II describes the remaining useful life estimation
method. Section III uses the C-MAPSS aero-engine dataset
from NASA to carry out experimental verification of the
proposed method. Finally, conclusions are described in
Section IV.

II. RUL ESTIMATION METHOD
The proposed remaining useful life estimation method is
schematically represented in Fig. 1. The testing data have
two types, type A and type B. For the type A, all features
corresponding to the real sensing data. While for some test
engines, the data recorded before the collection point is less
than the length of the slide windows, it is necessary to add
the padding data when the sensing data is not sufficient for a
slide window, forming the type B. Then, an ensemble model
(CNN-XGB) is designed to combine XGBoost with CNN.

A. DATA PREPROCESSING
In this paper, the diagram of data preprocessing is illustrated
in Fig. 2. The blue arrow describes the treatment of data pre-
processing for training data, and the orange arrow indicates
testing data. The rectangle with purple board is the raw sensor
data within one slide window. Then the original sensing data
is extended by feature extensions, presenting by the red one
dimension vector, which are consisted of raw sensor data
and extended features. The blue square on the top right of
the figure is corresponding to the constructed vector as the

FIGURE 2. The process of data preprocessing, where the training data
uses the sliding window to create training set, and the testing data uses
the sliding window or padding window to get the testing instance.

training data of learning model. For type B, The red one
dimension vector is copied to pad the slide window as the
input features of the learning model.

The training data contains the full lifetime data of multiple
units, and the lifespan of each unit is different. The testing
data contains the recorded cycle data of multiple units, which
have two types (see Fig. 1). Firstly, the sensors with the
obvious monotonous trends along time are selected as the
basic features, which can reflect the aggravation tendency.
Secondly, feature extension is used to extract the degradation
features for the operation switching. Thirdly, the data are
normalized. Finally, sliding window and padding window are
used to construct extended time window datasets.

1) FEATURE EXTENSION
Monitoring data usually contains operational history and sen-
sor data [23]. These features may can build RUL estima-
tion model when a system only works in single operating
condition. However, it is difficult to build an effective RUL
estimation model for the system with multiple operating con-
ditions [23]. To tackle this problem, we extract the effective
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features by analyzing the characteristics of sensors data, and
the extracted features are appended to the raw data.

In [23], Wu et al. proposed a dynamic differential method
to extract the inter-frame information from the raw data,
where the extracted feature is defined as dynamic differential
features. The dynamic differential features can solve the chal-
lenge of multiple operating conditions reasonably. However,
during the lifespan of a system, the operating conditions are
varying, that is, the cycle intervals between sampling data
under the same operating condition are varying, which are
continuous or discrete. Due to the uncertainty of cycle interval
and noise interference, it is imperfect that the differential
values of inter-frame data under the same operating condition
are used to describe the degradation information of samples.

In this paper, to amplify degeneration trends among sensor
data, the step differential method is utilized to extend the fea-
ture of the raw sensor data. The step differential method is an
improvement on conventional dynamic differential method.
In the feature extension part, the differential values is not
the current sample data minus last sample data, but the data
before nstep cycles, and nstep > 1, which is a constant. The
differential values between the sensor values at the current
time and the sensor values of past nstep cycles have better
degradation characteristic. The diagram of step differential
method is shown in Fig. 3. In the figure, the condition 1, 2,
3 . . . 6 meaning the different operational modes, which are
automatically classified by utilizing clustering algorithm on
raw sensing data.

FIGURE 3. The process of step differential method, where the difference
step threshold nstep is assumed to be 20.

During the lifespan of a system, the operational conditions
of system are switched frequently. We extract the differential
features of data under different operational conditions sepa-
rately. In a specific operating condition, if the cycle of sam-
pling data is less than nstep at the current time, the differential
values between the current sampling data and first sensor data
are taken. Otherwise, if the cycle interval between current
sampling data and previous is greater than nstep, the differen-
tial values of them are taken. By contrary, the earlier sensor
data is considered, until the cycle interval between the current
data and the past data is greater than nstep.

The steps of feature extraction are as follows. Firstly,
sub-datasets of different operational conditions are clustered

by K-means algorithm. Secondly, the cumulative number
features of different operating conditions of each unit are
extracted, and these features are appended to the raw data
as additional features. Thirdly, the step differential values
of each cycle data are obtained under the same operational
condition, and the step differential value of each sensor data is
attached successively behind the cumulative number features
as additional feature. Finally, the sub-datasets of different
operating conditions are merged by the order of recorded
cycle. Given the number of sensors Ns, and the number of
operational conditions m. Using the above process of feature
extension, the dimension of feature vector for one cycle data
becomes 1×(2Ns+m). When the system only works in single
operating condition, the dimension of feature vector is 1×2Ns
because the cumulative number features is useless.

2) DATA NORMALIZATION
The range of the each feature is normalized to [−1,1] by using
min-max normalization,

x i,jnorm =
2
(
x i,j − x jmin

)
x jmax − x

j
min

− 1, ∀i, j, (1)

where x i,j is the j-th feature of the i-th measuring point, x i,jnorm
is the x i,j standardized result, and x jmax and x

j
min are the max-

imum and minimum values of the j-th feature respectively.

3) SLIDING WINDOW AND PADDING WINDOW
Sliding window is used to create sample containing infor-
mation of time series [5], [24], [33]. Suppose the i-th time
window is denoted as

x(i) =

 x
i−Nw+1,1 · · · x i−Nw+1,2Ns+m
...

. . .
...

x i,1 · · · x i,2Ns+m


(Nw×(2Ns+m))

=

[
x i−Nw+1,:, x i−Nw+2,:, · · · , x i,:

]T
. (2)

where Nw is the size of time window. A new window
is generated by shifting one cycle continuously. Thus, the
(i+ 1)-th sliding window is represented as

x(i+ 1) =
[
x i−Nw+2,:, x i−Nw+3,:, · · · , x i+1,:

]T
(3)

Suppose the size of time sequence in testing instance is Ñw,
where Ñw < Nw. Since the degradation of system is low in the
early stage, the degradation path of sensor data is impercepti-
ble. The strategy of repeatedly sampling the feature vector of
first cycle (Nw − Ñw) times is used to pad the time window.
Therefore, the padding window is represented as

x̂ = [x1,:, · · · , x1,:︸ ︷︷ ︸
Nw−Ñw+1

, x2,:, · · · , xÑw,:]T . (4)
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FIGURE 4. The architecture of CNN-XGB using extended time window, where the top part displays the CNN architecture, and the
bottom part displays the XGBoost architecture.

B. PROPOSED CNN-XGB
1) CONVOLUTIONAL NEURAL NETWORK
In this paper, each sample is an extended time window,
where the vertical is the time series (length Nw), the hor-
izontal is the feature points (width 2Ns + m). In [5],
a one-dimensional convolutional kernel is chosen because
the correlation between different sensors are not significant.
However, in data preprocessing, we have enriched the feature
points of each moment in time window, thus enhancing the
correlation between features. Considering the difference and
relevance of the representations of different features, a time
window can be converted to a multichannel time series [34],
where the number of channel is 2Ns + m. Each channel
denotes a time series of one feature. Multichannel convolu-
tional can fuse the multiple features into one feature map,
thus reducing the training time consumption. The time series
of the q-th channel is represented as

xq = [x1,q, · · · , xNw,q]T , ∀q = 1, · · · , (2Ns + m). (5)

The convolutional neural network provides multiple filter
kernels in convolutional to better learn features. Filtering
in the convolutional layer can be expressed as the inner
product between a filter kernel w and a concatenation vec-
tor [5]. In this paper, the convolutional kernel w is a three-
dimensional tensor, which is successively expressed as the
length, width and channel. Suppose the p-th filter kernel is
wp(wp ∈ <FL×1×(2Ns+m)), and the i-th subsequence of the
q-th channel is x i:i+FL−1,q, which can be represent as

x i:i+FL−1,q = x i,q ⊕ x i+1,q ⊕ · · · ⊕ x i+FL−1,q, (6)

where FL is the length of the filter kernel, and⊕ is a concate-
nation operation on data points. The output zi,p represents the
i-th feature of the multichannel time series through the p-th
filter kernel, which is given by

zi,p = ϕ
(
bp +

∑2Ns+m

q=1
wpT x i:i+FL−1,q

)
, (7)

where wpT (wpT ∈ <1×FL×(2Ns+m)) is the matrix transpose
of the p-th filter kernel, ϕ is the activation function, and
bp is the bias term of the p-th filter. Through sliding of
the filter kernel from the first point to the last point in the
multichannel time series, the feature map of the p-th filter is
expressed as

zp =
[
z1,p, z2,p, · · · , zNw−FL+1,p

]T
. (8)

In this paper, compared with convolutional kernel of long
sequence, the advantages of FL = 1 are the two-fold:
• The time consumption of convolutional operation is sig-
nificantly reduced, because each filter kernel has only
one parameter in a channel;

• The multichannel 1 ∗ 1 filter kernel used for time
series can reduce the impact of varying operational
conditions, because the convolution of each feature
points in time series is irrelevant to the previous
cycle.

In this paper, the proposed convolutional neural network
architecture is schematically described in the top part of
Fig. 4. Compared with [5], the architecture of this paper
only contains input layer, one convolutional layer, one flatten
layer, one full connection layer and output layer. Flatten
layer is used for the transition from convolutional layer to
full-connection layer, which completes the flattening con-
nection of the feature maps of multiple filter kernels. The
full-connected layer performs regression operation using the
features learned by convolutional layer. The tanh activation
function is used for convolutional layer, full connection layer
and output layer, and Xavier normal initializer is used to the
weight initializations [5]. The Adam optimizer is used for
parameter optimization, and mean squared error is used for
the loss function. The number of multichannel 1 ∗ 1 filter
kernel is set as fifteen, and the number of neuron in the full
connection layer is set as five.
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2) EXTREME GRADIENT BOOSTING
In this paper, the input of XGBoost is a feature vector created
by flattening a extended time window. Given the dataset
D = {(xi, yi)}(xi ∈ <(Nw∗(2Ns+m)), yi ∈ <, i ≤ n), where n is
the number of samples. XGBoost uses K additive functions
to predict the output, which is defined as

ŷi = ϕ(xi) =
K∑
k=1

fk (xi), fk ∈ F, (9)

where F =
{
f (x) = ωq(x)

} (
q : <m→ T , ω ∈ <T

)
is a set

of regression tree, ŷi is the predicted value, q represents the
structure of each tree, whichmaps a sample to the correspond-
ing leaf index, T is the number of leaves, and fk corresponds
to a separate tree structure q andweightw. The target function
is defined as,

L (ϕ) =
∑
i

l
(
yi, ŷi

)
+

∑
k

�(fk). (10)

where l is a differentiable convex loss function and � is the
regularization term.

In the additive model, the incremental ft is designed to
minimize the prediction error. To quickly optimize the tar-
get function in the general case, the second order Taylor
expansion is applied. According to reference [31], by using
the second-order Taylor expansion of the square loss func-
tion to approximate the loss function derivation of the least
square method, the solving of the least square method can
be removed and the performance of optimization speed and
generalization are improved.

L(t) =
n∑
i=1

l(yi, ŷ
(t−1)
i + ft (xi))+�(ft )

'

n∑
i=1

[l(yi, ŷ
(t−1)
i )+gift (xi)+

1
2
hif 2t (xi)]+�(ft ), (11)

where ŷ(t)i indicates the prediction of the i-th sample at the
t-th iteration, gi and hi are first and second order statistics
of loss functions respectively. More detailed description of
the XGBoost is given in [31]. The XGBoost architecture is
schematically described in the bottom part of Fig. 4.

3) MODEL FUSION
The accuracy of fusion model depends on the performance of
single model and the diversity of multiple models. In gen-
eral, the correlations between the different models should
be as small as possible, and their performance should not
vary much. The commonly used model fusion methods of
data-driven are averaging, bagging, boosting and stacking.
However, the training time consumptions of bagging, boost-
ing and stacking are all high [35]. In this paper, model
averaging is used for model fusion considering the train-
ing time consumption. Firstly, the CNN model and the
XGBoost model are used for RUL prediction respectively.
Then, model averaging is applied to obtain the final RUL

value, that is, coefficients α and β are 0.5. The detailed pro-
cess of the proposed ensemble model (CNN-XGB) is shown
in Fig. 4.

III. EXPERIMENTAL STUDY
A. TURBOFAN AERO-ENGINE DATASET
The C-MAPSS turbofan aero-engine datasets from
NASA [36] are widely used in prognostic studies, which con-
tains four cases, FD001, FD002, FD003 and FD004 dataset.
Each case contains training set, testing set and testing RUL
values, and the monitoring data of each case is consist
of 21 sensors and 3 operation settings [9].

Training set contains data from normal to failure under the
varying operational conditions and fault modes. Each engine
unit has varying degrees of initial wear and manufacturing
differences. Over time, the engine units degrade until they
reach the system failure, that is, the cycle of last data recorded
is described as the failure cycle of engine unit. Each recorded
cycle is used as the training sample, and is associated with
a RUL label. In the testing set, the sensor data for each
engine unit is terminated at some cycles before system failure.
The last recorded cycle data for each engine unit is used as the
testing instance. The goal of the experiment is to estimate the
remaining useful life value of each engine unit in the testing
set [5]. The detailed information of the C-MAPSS datasets is
described in Table 1.

TABLE 1. The detail information of the C-MAPSS dataset.

B. PERFORMANCE METRICS
In this paper, two metrics are used to estimate prognostic
performance, i.e. scoring function and root mean square error
(RMSE) [5]. The scoring function is formulated as

s =
N∑
i=1

si,

si =

{
e−

di
13 − 1, for di < 0,

e
di
10 − 1, for di ≥ 0,

(12)

where s indicates the score, N indicates the number of testing
instances, di = RUL ′i−RULi indicates the prediction error of
the i-th instance, RUL ′i and RULi denote the predicted RUL
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and the actual RUL value of the i-th instance respectively.
Another metric is RMSE, which is given by

RMSE =

√√√√ 1
N

N∑
i=1

d2i . (13)

.

C. DATA PREPROCESSING
The data preprocessing description in Section II. Fourteen
sensors are selected, which retrieval is 2, 3, 4, 7, 8, 9, 11, 12,
13, 14, 15, 17, 20 and 21. Then, FD002 and FD004 datasets
are processed with the cumulative number features and the
step differential features, while FD001 and FD003 datasets
are only processed with the step differential features because
they only work in single operational condition. Besides, cut-
off point Tcut is used to capture valid samples. Compared with
maximum cycles recorded of testing engine units, the dis-
carded samples are manifested to its actual RUL value which
is too large in training set. The Tcut is slightly less than the
maximum cycles recorded of testing engine units.

The degradation trajectory of a system is usually expressed
as a nonlinear function. In the related research, piecewise
linear function have been shown to have excellent perfor-
mance [1], [5], [20], [22], which is expressed as

labelc =

{
labelreal, if labelreal ≤ Rearly
Rearly, if labelreal > Rearly,

(14)

where labelreal denotes the actual remaining useful life value
of training set sample, Rearly is the remaining useful life
threshold and labelc denotes the transformed label. The Rearly
is a key parameter in piecewise function processing, which
determines the starting time of linear degradation of a system
and the upper limit of remaining useful life values.

Furthermore, the label is scaled to [0,1],

labels =
labelc
Rearly

, (15)

where labels denotes the scaled label of training set sample.
To restore the actual remaining useful life value of testing set
instance, the estimated value should be multiplied by Rearly.

The generating condition of different datasets leads to
different parameter settings of data preprocessing. The main
parameters are difference step threshold nstep, window size
Nw, RUL thresholdRearly and cutoff point Tcut . The parameter
adjustment range is set by referring to [5, 17, 23]. Based on
their research works, the candidate set of each parameter is
determined, and the final setting of parameters is carried out
by using grid searching. Figure 5 presents the effect of differ-
ent parameters on experimental results. And the parameters
chosen for the datasets are shown in Table 2.

D. EXPERIMENTAL RESULT AND ANALYSIS
The experimental environment is Inter Core i5-4460
(3.20GHz) CPU, 8GB memory, Microsoft Windows 10 ulti-
mate operation system and anaconda3 with python3.6.

TABLE 2. The parameter selection of data preprocessing.

Besides, the deep learning library ‘‘Keras’’, the machine
learning library ‘‘scikit-learn’’ and library ‘‘xgboost’’ are
applied.

The experimental results are averaged by ten trials to
reduce the randomness. The parameters of proposed ensem-
ble model are determined by 10-fold cross validation. For the
CNN model, the learning rate of Adam optimizer is 0.0002,
batch size is 128 and the number of iterations is 150. For
the XGBoost model, the parameters are presented as follows:
subsample rate of data is 0.7, subsample rate of features is
0.7, minimum sum of leaf weight is 3, step size shrinkage is
0.1, the number of iterations is 600 and the other are default.

In this paper, a various of experiments have been designed
to verify the effectiveness of the proposed RUL estimation
method. Firstly, the effects of key parameters are studied
on FD004 dataset (six operational conditions and two fault
modes), including difference step threshold nstep, window
size Nw and RUL threshold Rearly. Secondly, the validity
of the step differential features is further analyzed by compar-
ing the dynamic differential features and raw timewindow for
the FD004 dataset. In addition, the performance of multiple
convolutional neural network architectures under different
strategies of feature extension are discussed. Thirdly, the per-
formance of the proposed method and other popular methods
are analyzed in four cases. Finally, the superiority of the
proposed method is proved by comparing with other state-
of-the-art results in recent years.

1) EFFECTS OF KEY PARAMETERS
The effects of key parameters of data preprocessing are ana-
lyzed with FD004 dataset, for instance. Table 1 describes the
detailed information of FD004 dataset, and Fig. 3 shows the
data distribution of a sensor in six operational conditions.

The difference step threshold nstep is a key parameter
in feature extension. Fig. 5(a) shows the effect of the nstep
on prognostic accuracy. Since the degradation characteristic
is increased with cycle interval, the prognostic accuracy is
greatly improved when nstep increases from 5 to 45, and
nstep = 50 is the best. When the cycle interval is too short,
the degradation characteristic of sensor data is imperceptible.
However, overlong cycle interval is not practical for real
scenes due to the limitation of lifespan. Thus, an appropriate
difference step threshold can significantly improve expres-
sion ability of degradation information for sample data.

The effect of RUL threshold Rearly is shown in Fig. 5(b).
It is appropriate for Rearly = 160 when dealing with data
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FIGURE 5. The effects of the four key parameters for FD004 dataset.

with varying operational conditions. However, since theRearly
restricts the upper limit of estimated RUL value, the pre-
diction bias is large when the actual RUL of instance is
overlong. Note that the Rearly should be different for four
datasets because the generation condition of datasets. The
experimental results on four cases show that Rearly = 125
is suitable when the system only works in single operating
condition, and Rearly = 160 is more reasonable when the
system works in six operating conditions.

Fig. 5(c) and Fig. 5(d) show the effects of the time win-
dow size Nw on prognostic accuracy and training time con-
sumption respectively. More information can be covered by
larger time window, which can obtain better result. However,
the training time consumption increases linearly with window
size. When window size increases from 5 to 40, the prog-
nostic accuracy is significantly improved. The Nw = 40
is most appropriate for the trade-off between prognostic
accuracy and the training time consumption. It is obvious
that the padding method has a significant effect because
the minimum cycle recorded of the testing unit is 19 for
FD004 dataset. Besides, CNN-XGB is distinctly better than
the single-model. It is worth noting that when the system
requires real-time ability, the proposed convolutional neural
network architecture with a shorter time window is a good
choice.

In summary, these key parameters have significant effects
on prognostic accuracy. However, the parameters are usually
related to the generation conditions of datasets, such as the
lifespan of different units, the number of units, operational
conditions, the failure process of components and so on.

2) COMPARING WITH DIFFERENT STRATEGIES
OF FEATURE EXTENSION
In direct approaches, the performance of RUL estimation is
heavily determined by the quality of features. To manifest
the superiority of step differential features, a series of experi-
ments are designed. Firstly, we design three strategies of fea-
ture extension and four convolutional neural network archi-
tectures, where the three strategies are time window without
additional features, time window with dynamic differential
features and time window with step differential features. The
four convolutional neural network architectures are similar,
one of which is the proposed convolutional neural network
architecture in Section II. The convolutional kernels of other
architectures are expressed as
• Convolutional neural network architecture A: the convo-
lutional kernel is single channel with 10 ∗ 1 [5];

• Convolutional neural network architecture B: the convo-
lutional kernel is single channel with 1 ∗ 1;

• Convolutional neural network architecture C: the convo-
lutional kernel is multichannel with 10 ∗ 1.

It is worth noting that the inputs of architecture A and B are
not converted to a multichannel time series. Table 3 compares
the prognostic performance of multiple convolutional neural
network architectures under different strategies of feature
extension. On the one hand, the validity of the step differential
features is verified by comparing the dynamic differential
features and raw time window. On the other hand, the effec-
tiveness of the proposed convolutional neural network archi-
tecture is proved by comparing with other architectures. It can
be observed that the proposed convolutional neural network
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TABLE 3. The prognostic performance of multiple convolutional neural network architectures under different strategies of feature extension for
FD004 dataset.

architecture under the step differential strategy has better
performance.

In table 3, our proposed algorithm suffer a little higher
value on SCORE when achieving the lowest RMSE. As the
Scoring Function has a great punishment on large errors due
to its exponential form. While RMSE’s punishment increases
linearly with deviation, which makes the performance more
stable. The test set contains lifetimes of 248 engines. The
higher scoring may be caused by certain single deviation in
the prediction of individual engines, which may not reflect
the overall prediction performance actually.

3) COMPARING WITH OTHER POPULAR METHOD
The results are compared with other popular methods to
verify the superiority of proposedmethod. In four cases, RNN
and LSTM with the similar architecture and convolutional
neural network architecture C are used. Compared with the
CNN architecture, the RNN and LSTM replace one convo-
lutional layer with one corresponding recursive layer with
containing 15 neurons.

FIGURE 6. The prognostic accuracy and training time consumption by
different methods on four datasets. (a) RMSE. (b) Training time
consumption.

The accuracy and training time consumption of different
methods are shown in Fig. 6(a) and Fig. 6(b) respectively.

TABLE 4. The performance comparisons of the proposed method and the
latest papers on the C-MAPSS dataset.

On the one hand, the prognostic accuracy and training time
consumption of the proposed convolutional neural network
architecture is superior to the architecture C. There are two
reasons for this phenomenon. One reason is the number of
trainable parameters of proposed convolutional neural net-
work architecture is lower than the architecture C. Another
is the convolution of different operational conditions data
is not conducive to the expression of degradation informa-
tion. On the other hand, the prognostic accuracy of RNN
is significantly inferior to the proposed convolutional neural
network architecture. The prognostic accuracy of LSTM is
slightly inferior to the proposed convolutional neural network
architecture, but its training time consumption is serious.
Besides, the prognostic accuracy of CNN-XGB is obviously
superior to the single-model in the four cases, which indicates
that the proposed ensemble model is suited for prognostic
problem in complex environments. The CNN-XGB provides
reliable remaining useful life estimation while the training
time consumption is acceptable.

To better analyze prognostic characteristic, the actual
RULs and estimated RULs of testing units compared in
Fig. 7, in which the testing units are sorted by actual RUL in
ascending order. This figure shows the estimated RUL values
of proposed convolutional neural network architecture and
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FIGURE 7. The sorted prediction of the testing engine units for the four datasets.

FIGURE 8. The prediction of the selected test engines during lifetime in the four datasets.

CNN-XGB are close to the actual RUL, where CNN-XGB
is better than CNN in four cases.

It is worth noting that in Fig. 7, on the right of the figure,
the test units run from comparable health status. Then the
degradation characteristics are not obvious at that time, which

make RUL prediction performance weaker. Close to the left
of the figure, the test units aggravate gradually from the
start and the degradation characteristics gradually strengthen.
Thus all the methods can achieve more accuracy for test-
ing units with low RUL values and the RUL prediction

VOLUME 7, 2019 154395



X. Zhang et al.: Remaining Useful Life Estimation Using CNN-XGB With Extended Time Window

performance is significantly improved. Since the failure fea-
tures become more prominent when the working state of the
engine is closer to failure.

To illustrate the performance of the proposed algorithm,
Fig. 8 presents the relationship between the predicted life
RUL and the time of some selected sample test pieces. In the
figure, it is shown that similar to Fig. 7, the prediction per-
formance is comparable lower for large real RUL. However,
CNN-XGB achieves more accurate prediction performance
than CNN during the whole lifetime of test units. It is ver-
ified that combining the CNN having simple structure with
XGBoost can improve the prediction performance.

4) COMPARING WITH RELATED WORKS
Table 4 summaries the latest research results on the four
datasets of C-MAPSS. The proposed methods have obtained
prospective compared with the state-of-the-art results. It is
worth noting that the proposed convolutional neural network
architecture manifests highly competitive in both accuracy
and real-time ability. In real application, considering the com-
plexity ofmodel fusion and training time consumption,model
averaging of multiple models is practical.

In this paper, compared with the CNN, the accu-
racy of CNN-XGB is significantly improved. On the
other side, although the deep convolutional neural network
(DCNN) proposed in [5] has the similar performance to
our proposed method, it has more bulky scale and needs
more data compared to the ensemble of the CNN and
XGBoost. Moreover, compared with other recent advanced
works, the proposed CNN-XGB algorithm is competitive
on 4 C-MAPSS datasets. Especially on multiple condition
datasets, CNN-XGB achieves the best value on RMSE
index, which validates its effectiveness on complex industrial
applications.

IV. CONCLUSION
In this paper, we propose CNN-XGBwith extended timewin-
dow to estimate the remaining useful life of engineering sys-
tems with varying operating conditions. Firstly, the extended
time window is created by feature extension and time window
processing in data preprocessing. In feature extension, a step
differential method is used for extracting degradation fea-
tures from the raw data, and the step differential features are
appended to the raw data as additional features. To make the
timewindow covermore information, a timewindow padding
method is used considering the problem of missing data.
Secondly, considering the effect of varying operating condi-
tions, CNN-XGBwith extended time window is proposed for
accurate RUL estimation, where the CNN architecture is sim-
plified as much as possible while the accuracy is guaranteed.
Experimental analysis on the C-MAPSS aero-engine dataset
from NASA proves the effectiveness of the proposed method.
Compared with the latest advanced methods, the proposed
method has shown the excellent prognostic performance.
In the future, de-noising algorithm will be embedded in the
CNN-XGB.
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