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ABSTRACT Spectral clustering is one of the most popular clustering approaches and has been applied in
Hyperspectral Image (HSI) clustering well. However, most of these methods are not suitable for large scale
HSI. In this paper, based on anchor graph and spatial information, we propose a novel method, called fast
spectral clustering based on spatial information (FSCS), which could deal with large scale HSI and have
better performance in user’s accuracy, average accuracy, overall accuracy and so on. Firstly, based on the
physical characteristic of HSI, FSCS algorithm combines the spatial information with spectral information,
and uses the spatial nearest points to reconstructs the center point and reveal the local spatial structure.
As a result, the correlation of pixels is strengthened and the clustering accuracy is improved. Secondly,
the new adjacencymatrix is constructed based on anchor graph and thus computational complexity is reduced
significantly. Finally, in order to avoid tuning the heat-kernel parameter, the parameter-free strategy is
adopted in FSCS. Experiments demonstrate the efficiency and effectiveness of the proposed FSCS algorithm.

INDEX TERMS Hyperspectral images, spatial information, fast spectral clustering, anchor-based methods.

I. INTRODUCTION
Hyperspectral image (HSI) is remotely sensed image cap-
tured by Imaging spectrometer. Hyperspectral remote sens-
ing technology collects a large number of narrow spectral
image data in the range from visible light to thermal infrared
band [1]–[3]. HSI combines spatial information with spectral
information together. Now HSI is widely used in military
detection, environmental monitoring, geological exploration,
precision agriculture, atmospheric remote sensing, hydrology
and other fields [4], [5].

In recent years, HSI clustering has attracted more andmore
attention [6], [7], which aims to partition a given image into
groups so that pixels in the same group are as similar to each
other as possible. So far, there are many clustering methods
proposed for HSI, such as k-means [5], fuzzy c-means (FCM)
[8], density based methods [9], and automatic fuzzy cluster-
ing method. In recent years, spectral clustering has become
one of themost popular clustering algorithms for HSI, such as
spectral curvature clustering [10], sparse subspace clustering
(SSC) [11], [12], fast spectral clustering [4] and so on.

However, HSI data is enormous which will cost too
much time to obtain useful information [13]. The clustering
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methods are not applicable to deal with large-scale HSI [13].
Its computational complexity is O(N 2c + N 2D), where N , c
andD are the number of samples, classes and features, respec-
tively. Furthermore, the clustering methods have to tune the
heat-kernel parameter [11] these algorithms do not use the
the spatial information of HSI, which can strengthen the
correlation of pixels and increase the accuracy [14]. Because
neighboring pixels in image are more likely to be contained
in the same features, an improved nonnegative matrix under
approximation (NMU) has been put forward [15]. This vari-
ant of NMU is particularly well suited for image analysis as
it incorporates the spatial information.

To tackle these problems, inspired by latest progress on
fast spectral clustering, large-scale spectral clustering [16],
[17] and large-scale spectral based on the dimensionality
reduction [18], [19], a new approach is proposed, called
fast spectral clustering based on spatial information (FSCS)
for large-scale HSI. This algorithm constructs a new model.
Experiments on HSI data sets demonstrate the efficiency and
effectiveness of the proposed FSCS algorithm such as the
quantitative and visual evaluations, less time and so on. The
main contributions of our work are as follows:

(i) Combining spatial information with spectral informa-
tion of HSI, the center point is reconstructed by using
the spatial nearest points. As a result, the redundant
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information in the image is effectively reduced and the
better quantitative and visual evaluations are obtained;

(ii) Constructing anchor-basedmethod in order to deal with
large-scale HSI, therefore the computational complex-
ity can be greatly reduced;

(iii) Applying parameter-free effective neighbor assign-
ment strategy to construct the similarity matrix. As a
result, the new algorithm avoids tuning the heat-kernel
parameter.

II. THE SPECTRAL CLUSTERING ALGORITHM
The objective function of the spectral clustering [20] is
defined as:

min
FTF=I

Tr
(
FTLF

)
(1)

where F ∈ Rn×c is the class indicator matrix of all data.
The optimal solution of F in Eq. (1) is the first c smallest
eigenvectors of L.

The method of generaly graph-based spectral clustering
has achieved excellent performance in discovering novel
classes. However, it has limitations in the neighborhood
weighted graph construction. Specially, the adjacency matrix
can be designed by using all data points, thus the complexity
of the algorithm is O(n2(d + c)), which puts forward higher
requirements on the performance of the computer. With the
rapid increasement in data size, the method can not handle
large data, which is faced in HSI clustering.

Furthermore, the spectral clustering methods have good
performance, but they don’t take advantage from the spatial
information of HSI, which can strengthen the correlation of
pixels and improve the clustering accuracy by using physical
characteristics of HSI.
Remark 1: the complexity of the graph-based spectral clus-

tering algorithm is O(n2(d + c)), which is not suitable to
handle large-scale HSI clustering problem.

III. THE FAST SPECTRAL CLUSTERING BASED ON
SPATIAL INFORMATION FOR LARGE SCALE HSI
In this section, in order to deal with the large-scale HSI,
we introduce the fast spectral clustering algorithm. Firstly,
we use weighted joint spatial-spectral reconstruction method
to smooth the HSI and reduce the interference of singular
points. Secondly, we use anchor-based graph to construct
adjacency matrix which can reduce time consumption quite
a lot. Thirdly, in order to avoid tuning extra parameters in
spectral clustering, the parameter-free strategy is adopted.
Finally, the fast spectral clustering method is proposed to
obtain the label of HSI.

A. WEIGHTED SPATIAL-SPECTRAL RECONSTRUCTION
METHOD
Weighted spatial-spectral reconstruction method can smooth
the HSI and reduce the interference of singular points. The
principal is: the coordinate of sample point xij in HSI is (i, j),

while the neighbor space of xij is

N(xij) = {xpq|p ∈ [i− a, i+ a], q ∈ [j− a, j+ a]}, (2)

where a = (ω − 1)/2, ω means the width (or scale) of the
nearest neighbor window, which is usually odd.

We use the following rule to reconstruct the pixel point xij,
and get reconstructed pixels.

The reconstructed pixels can be defined as:

x̂ij =

∑
xpq∈N (xij) wpqxpq∑
xpq∈N (xij) wpq

(3)

where the weight of each pixel wpq in the space of neighbor
N(xpq) to the central pixel xij is wpq = exp(−γ0||xij−xpq||22).
γ0 is spectral factor. By assigning a small weight to the points
which are quite different from the central pixel in the space
of the nearest neighbor, we reduce the interference of the
singular points, and then achieve smoothly HSI.

The scale of neighbor window ω adjusts the size of neigh-
bor space, while the spectral factor γ0 adjusts the degree of
mutual influence between pixels. Therefore, the selection of
parameters ω and γ0 will directly affect the results of image
processing. Neighbor space of pixels in different cases is
shown in Fig. 1, from which we can see each pixel in a HSI
is represented by a square grid; a light gray grid as the central
pixel and a dark gray grid as the filled mode.

For the normal position, the pixels don’t need to be filled in
the nearN(xij). But for the pixels located at the edge or corner
of the image they are preprocessed by the method in Fig. 1.
When the pixels are in normal positions as shown in Fig.1(a),
its neighbor space N(xij) don’t need to be filled. When they
are in the edge area or in the corner as at Fig.1(b) and Fig.1(c),
the vacant pixels in the space of neighbor need to be filled
with the nearest pixels; or filled with xij directly if there are
no nearest pixels in the corner positions.

In this subsection, based on the physical characteristics of
HSI, we use the spatially nearest points to reconstruct the
center point and to reveal the local spatial structure. By effec-
tively reducing the redundant information in the image, HSI
method increases the consistency of the same kinds of pixels
as well as enhancing the difference of the different kinds of
pixels. As a result, the correlation of pixels is strengthened
and the clustering accuracy is improved.

The computational complexity of Eq. (3) is O(2ω2D −
2D + 2). Thus, for the N pixels in the HSI, the computa-
tional complexity of weighted spatial-spectral reconstruction
algorithm is O(DNω2), where D is the number of spectral
bands,N is the number of pixels andω is the scale of neighbor
window.
Remark 2: the correlation of pixels is strengthened and

the clustering accuracy is improved by reconstructing the
spatial-spectral information. Furthermore, the complexity of
the method is O(DNω2), where N is the number of pixels,
D is spectral bands and and ω is the scale of the neighbor
window.
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FIGURE 1. The nearest neighbor space of central pixel in different situation.

FIGURE 2. The construction of Z (the blue points are the original data and
the green points are the anchor points). For convenience, only a tiny
fraction of the inter-layer edges, which present the weights between the
original data and the anchors, are shown.

B. THE CONSTRUCTION OF ANCHOR GRAPH
In order to reduce the computational cost, especially for
large-scale HSI, the anchor-based strategy has been applied
in recent years and has achieved good results [16], [17], [21].
In general, the anchor-based approaches seekm anchor points
from the original data points, where m � n. A designed
matrix Z ∈ Rn×m, which can measure the adjacency between
data points and anchor points. The illustrative example of
constructing Z is shown in Fig. 2. The construction is
built on three-ring synthetic data, which consists of 10000
data points. We select 500 anchors from the original data
randomly.

Let U = [u1, . . . ,um]T ∈ Rm×d denotes the generated
anchors. zij is the (i, j)-th element of Z representing the adja-
cency between the i-th data point and j-th anchor point, which
can be defined as follows [16], [22]:

zij =
K (xi, uj)∑

s∈8i

K (xi, uj)
, ∀j ∈ 8i, (4)

where 8i ⊂ {1, . . . ,m} denotes the indexes of the k nearest
neighbors of xi in U . K () represents a kernel function and
Gaussian kernelK (xi,uj) = exp(−‖xi−uj‖22/2σ

2) is usually
adopted, where σ is the heat-kernel parameter. In order to
obtain excellent classification results, many experiments are
needed to select a suitable heat-kernel parameter.
Remark 3: Compared with the spectral clustering method,

anchor-based methods have less computational costs and the

complexity of the algorithm is O(ndm); however, most meth-
ods require tuning the heat-kernel parameter.

C. THE CONSTRUCTION OF ADAPTIVE SIMILARITY
MATRIX
In order to avoid tuning extra parameters in Section 2.2,
by adopting the parameter-free strategy [23], we can obtain
the i-th row of Z in Eq. (4) by solving the following problem:

min
zTi 1=1,zij≥0

m∑
j=1

‖xi − uj‖22zij + γ z
2
ij, (5)

where zTi denotes the i-th row of Z. Eq.(12) is parameter-free
which has been proved in Reference [23].

According to Reference [23], zi is sparse, which has exactly
k nonzero values; the learned Z is also sparse, therefore
the computational burden of subsequent processing can be
largely alleviated. The square of Euclidean distance between
xi and uj can be defined as d(xi,uj) = ‖xi − uj‖22. The
parameter γ can be set as γ = k

2d(i, k + 1)− 1
2

∑k
j=1 d(i, j).

The solution to Eq. (5) is

zij =
di,k+1 − di,j

kdi,k+1 −
∑k

j=1 d(i, j)
. (6)

For more detailed derivation, see reference [23]. Further-
more, the affinity matrixW can be obtained [16] as follows:

W = Z3−1ZT , (7)

where 3 ∈ Rm×m is the diagonal matrix and 3jj =
n∑
i=1

zij.

D. THE FAST SPECTRAL CLUSTERING BASED ON SPATIAL
INFORMATION FOR LARGE-SCALE HSI
The objective function of fast clustering for HSI can be
defined as:

min
FTF=I

Tr
(
FTLF

)
(8)

and the Laplacian matrix L can therefore be written as:

L = D−W . (9)

where D is a diagonal matrix whose diagonal elements are
row sums of W , According to the graph-based learning,
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FIGURE 3. The Indian pines hyperspectral image.

the cost function associated with F in the Eq. (1) can be
written as:

J(F) = Tr(FTLF)− λTr(FTF− I) (10)

where λ is a regular parameter.
The optimal solution for the Eq. (10) can thus be computed

as follows:

∂J
∂F
|F=F∗ = 2LF∗

− 2λF∗
= 0 (11)

The optimal solution can be derived from Eq. (11) as
follows:

LF∗
= λF∗ (12)

This means that the optimal solution is the eigenvalue
decomposition on L whose computational complexity is
O(n2c). In order to reduce the computational complexity,
we try several methods.

The similarity matrix W is automatically normalized and
the degree matrix D = I , the problem (8) can be written as
follows:

min
FTF=I

Tr
(
FTWF

)
(13)

According to Eq. (7), we can obtainW = ATA, whereA =
Z3−

1
2 . So,it is easy to know that the solution of Eq.(13) can

be obtained by the SVD (singular value decomposition) of A.
As a result, the computational complexity can be reduced to
O(m2c+ nmc).

By means of the SVD on B, the solution of relaxed con-
tinuous can be obtained, which is composed of eigenvectors
corresponding to the smallest c eigenvalues. The k-means
clustering method can be used to calculate the discrete solu-
tion.

To summarize, we demonstrate the steps of FSCS in
Algorithm 1.

E. COMPUTATIONAL COMPLEXITY ANALYSIS
The computational complexity of FSCS can be divided into
the following parts:

Algorithm 1 The FSCS Algorithm

Input: data matrix X ∈ Rn×d , the number of classes c,
the number of anchors m, the number of neighbors k .
1) Generate m anchors by random selection.
2) Obtain the matrix Z according to Eq. (6).
3) Obtain the matrixW according to Eq. (7).
4) Calculate the matrix A, where A = Z3−

1
2 .

5) Obtain the relaxed continuous solution of F by
performing SVD on matrix A.

6) Obtain the class indicator of data points by the k-
means clustering method.

Output: the class indicators c.

1) O(DNω2) is needed in the weighted spatial-spectral
reconstruction method, where N , D and ω are the
number of pixels, spectral bands and the scale of the
neighbor window, respectively.

2) O(1) is needed to obtain m anchor points by random
selection.

3) O(NDm) is needed to obtain the matrix Z.
4) O(m2c + Nmc) is needed to obtain the relaxed contin-

uous solution of F by performing SVD on matrix B.
5) O(Nmct) is needed to perform k-means on the relaxed

discrete solution for final clustering results, where t is
the iterative number.

In summary, the computational complexity of our method
can be approximated as O(NDω2)+ O(NDm).

IV. EXPERIMENT
In this section, we introduce the experiment data used in
FSCS firstly, then, parameter setting has been studied. Over-
all accuracy (OA) is viewed as the evaluation standard to
select the best parameters. In order to confirm the result of
FSCS, we compare proposed method with classic cluster-
ing methods (named k-means, FCM, FCM_S1, SC). Finally,
clustering time of different methods is analysed.
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FIGURE 4. The Salinas hyperspectral image.

FIGURE 5. The Pavia centre hyperspectral image.

A. HSI DATA
Three famous HSI data (named Indian Pines, Salinas, and
Pavia Centre)1 are used in clustering experiments. Here we
explain some details of these three data sets.

Indian pines data set was collected by AVIRIS sensor in a
woodland. The dimension of data image is 145× 145. There
are 200 bands being used in experiment because some of the
bands are affected by noise. In addition, the number of this
data set is 21025 and the classes is 16. In figure 3, the false
color image composition of bands 50, 27, and 17, the ground
truth map and numbers of each class are shown in Fig3. (a),
Fig3. (b), and Fig3. (c), respectively.

Salinas data set was also collected by AVIRIS. The dimen-
sion of this data is 512× 217. There are 204 bands available

1http://www.ehu.eus/ccwintco/index.php

in our experiment. The number of this data set is 111104 and
classes are 16. In figure 4, the false color image composition
of bands 60, 30, and 2, the ground truth map and numbers
of each class are shown in Fig4. (a), Fig4. (b), and Fig4. (c),
respectively.

Pavia centre data set was collected by ROSIS sensor.
In original data, dimension is 1096 × 1096. Because some
of the pixels are image background which contains no infor-
mation, we use the data of dimension reduced in our exper-
iment. In new data, dimension is 1096 × 715. There are
102 bands available in the experiment. In addition, the num-
ber of this data set is 783640 and there are 9 classes.
In figure 5, the false color image composition of bands
40, 30, and 20, the ground truth map and numbers of
each class are shown in Fig5. (a), Fig5. (b), and Fig5. (c),
respectively.
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FIGURE 6. Parameters setting experiment result.

FIGURE 7. Clustering maps on different method of Indian pines data.

B. EXPERIMENTAL RESULTS
The main evaluation of clustering results includes four stan-
dards: user’s accuracy (UA), average accuracy (AA), overall
accuracy(OA) [24]–[26], and Kappa coefficient [27]. UA rep-
resents clustering accuracy of each class (labeled data) in
one image. It tells us the clustering accuracy of each labeled
category. AA is themean of class-specific accuracies which is
the mean accuracy of UA. It shows us the clustering effect of
labeled data in the statistical level. OA represents clustering
accuracy of all data (labeled data and background) in one
image. It shows us the clustering effect of all data in the
statistical level. The value of UA, AA, OA ranges from 0 to 1.
Here, values of higher accuracy are better than of lower one.
Moreover, Kappa coefficient is a consistency test method to
measure the consistency between original label and predicted
label. The value of Kappa ranges from 0 to 1. Large kappa
value means better consistency. In our experiments, we use
the same initialization and repeat 30 times independently.

Because the total number of pixels in Indian Pines data set
is 21025, we consider it as small number data set. In the exper-
iment, we set parameter w = 9 and γ = 0.2, respectively.

TABLE 1. Experiment result of Indian pines data.

The experimental results (UA, AA, OA, and Kappa) are
reported in Table 1, in which the best results are shown
in bold. From Table 1, we can find that the AA, OA,
and Kappa of FSCS performs better than other methods.
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FIGURE 8. Clustering maps on different method of Salinas data.

TABLE 2. Experiment result of Salinas data.

However, the UA of FSCS cannot get the best result in some
classes. To analyse the clustering result more clearly, we list
the clustering maps in Figure 7. From figures 7, we can see
that FSCAG produces more homogenous areas and better
clustering maps than other algorithms, which clearly reflects
the importance of incorporating spatial information. There-
fore, FSCS can handle clustering work in the most block of
HSI.

To verify the performance of FSCS in large-scale data set,
we do the experiment on Salinas data set. In the experiment,
we set parameter w = 9 and γ = 0.2. The experimental
result (UA, AA, OA, and Kappa) is given on Table 2 and the
best results are shown in bold. From Table 2, the AA, OA,
and Kappa of FSCS are 0.6901, 0.6640, and 0.6328 which
are higher than other methods. Although the performance
of FSCS is inferior in each block clustering, the proposed
method has the best comprehensive clustering effect. From
Fig. 8, we see that FSCAG produces more homogenous areas
and better clustering maps than other algorithms.

TABLE 3. Experiment result of Pavia centre data.

Another large-scale HSI data is Pavia Centre. We do clus-
tering experiment on it. In the experiment, we set parameter
w = 3 and γ = 0.1. The experimental results (UA, AA, OA,
and Kappa) are reported on Table 3 and and the best results
are shown in bold. The AA of FSCS is almost 10 % higher
than k-means, FCM, and FCM_S1, which is greatly improved
than classic clustering methods. The clustering result map
is reported in Fig. 9. From Fig. 9, we see that FSCAG
produces more homogenous areas and better clustering maps
than other algorithms. The experimental results once again
confirm that the proposedmethod has a good clustering effect
in large-scale HSI clustering.

The Hyperspectral data is complex, and there are a large
difference between data as well as between classes, which
leads to a large difference in clustering accuracy between
different classes of the algorithm. All spectral clustering algo-
rithms will encounter this situation. For example in Salinas
data in Table. 2, K-means has poor results with classes as
Brocoli weeds 1, FCM and FCM_S1 has poor results with
classes as Fallow, FCM_S1 and FSCS has poor results with
classes as Lettuce_4wk. In a word, in these three data sets
experiments from table 1 to 3, the proposed method performs
better than other methods in AA, OA and Kappa. In UA
standards, although some class clustering are not the best
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FIGURE 9. Clustering maps on different method of Pavia centre data.

TABLE 4. Clustering time (s).

one, the comprehensive clustering effect is better than others.
Therefore, FSCS is a robust clustering method.

C. EXPERIMENTAL TIME ANALYSIS
Clustering time is paid close attention in this paper, for which
we make a record in Table 4. From Table 4, we can see
that FSCS can reach higher speed in clustering. For the two
spectrally based clustering methods, In Indian Pines exper-
iment, the proposed method only needs 2.9009(s), which is
10 times faster than the SC method and very close to the
fastest method which needs 2.6341(s). In Salinas and Pavia
Centre experiment, SC cannot work due to ‘‘out of memory
(OM)’’ problem. Fortunately, FSCS can reach the fastest
result than other methods which shows that it is suitable to
handle large-scale data. In additional, compared to traditional
clustering methods, the FSCS also has better performance.
For example, in Salinas data the clustering time reduces a lot
and in Pavia Centre the accuracy improves a lot (the AA of
FSCS is 0.5804, the AA of FCM is 0.4406).

D. PARAMETER ANALYSIS
In the proposed method, two parameters (window scale
neighbor w and spectral factor γ ) have an important effect
in clustering result. Parameter w acts as a denoising window
scare of weighted spatial-spectral reconstruction method.
Generally speaking, the size of homogeneous region deter-
mines the size of the parameters w. When the homogeneous
region is large, we set a large w. Similarly, we set a small
w when the homogeneous region is small. As we can see
in figure (3-b) and figure (4-b), Indian Pines and Salinas
dataset ground truth map show that each homogeneous region
are clear and large, so we set a large w in experiment. More-
over, in figure (5-b) Pavia Centre data groud truth map shows

that same homogeneous region are patchy in left so we set
a small w in experiment. This is because large homogeneous
region is slowly varying among different categories of pixels
while small homogeneous region is in a rapid change. Param-
eter γ acts as a is a regularization parameter. It can be set as
γ = k

2d(i, k + 1) − 1
2

∑k
j=1 d(i, j) [23]. However, the joint

action of these two parameters will be a future work to study.
To research the joint action of different parameter pairs,

we do experiment in three dataset. As in the reference [12],
OA is regarded as the evaluation of clustering result.
In figure 6, we show the experimental results of different
combinations of parameters. In Indian Pines and Salinas
dataset, large w can obtain best result. In Pavia center dataset,
small w can obtain good result. The result validates the above
analysis. Furthermore, parament γ in small value will obtain
better result in the joint action.

V. DISCUSSION
Hyperspectral image clustering is playing an important role in
HSI information analysis. In this paper, we proposed a novel
HSI fast clustering method based on spectral clustering. Our
aim is to improve the clustering effect and reduce clustering
time consumption in large-scale HSI data. As shown in exper-
imental results, better clustering results have been obtained
and clustering time has been shortened.

From Table 1, 2, and 3, we can find that FSCS adopts better
clustering model and achieves higher clustering accuracy.
In reality, HSI data may be polluted by noise which would
result in constructing wrong adjacency matrix. Therefore,
we reconstruct HSI data by using weighted spatial-spectral
method. The new image has taken advantage of both the
spatial and spectral information at the same time. As a result,
the redundant information in the image is effectively reduced
and better quantitative and visual evaluations are obtained.
Furthermore, most of the graph-based methods, including
SSC [11], SCC [10], AGR [17] and so on, usually adopt
the strategy of kernel-based neighbor assignment, therefore,
a lot of experiments are needed to select the appropriate
heat-kernel parameter, which will also consume a lot of
time. So as to solve this problem, we adopted parameter-free
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approach to construct the similarity matrix between origi-
nal points and anchor points. This approach avoids tuning
heat-kernel parameter.

Finally, we adopted anchor-based strategy to obtain the
adjacency matrix to reduce clustering time. with this strategy,
we only need to calculate bipartite graph matrix between
original data set and anchor data set. The adjacency matrix
can be gained in a simple way [17]. For having a quanti-
tative analysis of clustering time, we calculated time com-
plexity in principle. The computational complexity of our
algorithm can be approximately calculated as O(NDω2) +
O(NDm), while computational complexity of the spectral
clustering (SC) is O(N 2c + N 2D), where N , c, D and ω are
the number of samples, classes, features and the weight of
each pixel, respectively. After analysis, we found that the
clustering time increases with the increasing size of data.
As shows in Table 4, in Indian Pines experiments, FCSC
is 10 times faster than SC method. In Salinas and Pavia
Centre experiment, SC cannot work due to ‘‘out of memory
(OM)’’ problem. Meanwhile, FCSC has better result than
other unsupervised clustering methods in both of these two
large-scale data sets.

However, FSCS has limitation in anchor points selec-
tion. In some dataset, the number of different categories are
unequal. Since we use randomly selecting method to obtain
anchor points, large number categories has a higher probabil-
ity of being picked. In FSCS, adjacency matrix is obtaining
by Eq.(7). It is deeply effected by the bipartite graph matrix
between original data and anchor points data. Therefore, large
number categories clustering result will be better than smaller
one. How to analyze and select anchor points will be our next
research focus.

VI. CONCLUSION
In the paper, combining the anchor graph and spatial infor-
mation of HSI, we propose a novel method, called fast spec-
tral clustering based on spatial information (FSCS). Owing
to using the spatial information of HSI, FSCS has better
clustering result in UA, AA, OA, and Kappa. In order to
deal with lager-scale HSI, we construct the similarity matrix
based on the anchor graph. As a result, the computational
complexity of our FSCS algorithm can be reduced toO(nmd),
while computational complexity of the spectral clustering
is O(n2d). Furthermore, with the parameter-free strategy,
the FSCS avoids tuning the heat-kernel parameter. Exper-
iments demonstrate the efficiency and effectiveness of the
proposed FSCS algorithm for large-scale HSI.
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