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ABSTRACT Dual-energy computed tomography (DECT) has attracted the attention of clinical researchers
because of its outstanding capabilities to identify and decompose materials. Considering that material
decomposition is unstable, reconstructed material images experience severe noise magnification resulting
from the measurement data. To alleviate this problem, we propose a direct material reconstruction method
by establishing a novel constrained reconstruction model based on total variation (TV) and block matching
3D (BM3D) frame regularization. TV regularization preserves the sparsity in the gradient domain of material
maps and helps to preserve the image edges. BM3D frame is applied to depict the similarities among various
patches in reconstructed images by grouping similar 2D image blocks into 3D data arrays combined with
sparse transforms. To solve the program efficiently, a practical algorithm based on alternating direction
method is developed. A modified strategy of block matching denoising is designed by incorporating the
polychromatic reconstructed image into the problem solution. Digital and real data phantom studies are
performed to validate the performance of the proposed method. The proposed method reduces the standard
deviation on the selected region of interests by an average of 95.02% and 89.03% for the digital phantom
and 95.21% and 84.19% for the real data compared with the extended simultaneous algebraic reconstruction
technique and TV-based method, respectively. The reconstruction results demonstrate that the proposed
method has promising capabilities in direct material reconstruction and superiority over its counterparts.

INDEX TERMS Dual-energy CT, direct material reconstruction BM3D frame, total variation.

I. INTRODUCTION
Dual-energy computed tomography (DECT) has attracted
the attention of clinical researchers in recent years [1]–[3].
Comparing to the conventional CT which only uses one x-ray
spectrum, DECT scans objects with high- and low-energy
x-ray spectra, which enables it to characterize different tis-
sues [4], [5]. Dual-energy measurement data can be collected
by the advanced DECT imaging systems [6] such as dual-
source, dual-detector, and fast kVp switching CT systems.
With the development of hardware and techniques, DECT has
been widely used in medical imaging [7], [8]

Three types of methods, i.e., projection domain-based,
image domain-based, and direct reconstruction methods, are
always used to reconstruct basis materials from dual-energy
measurement data [9]. For the projection domain-based

The associate editor coordinating the review of this manuscript and

approving it for publication was Hengyong Yu .

method [10], [11], the independent sinograms of the basis
materials are initially decomposed from dual-energy pro-
jections, and then material maps are reconstructed by the
conventional filtered backprojection (FBP) method [12]. This
method can achieve good reconstruction results in theory, but
it requires geometrically consistent projections, which is a
challenge for some DECT systems, such as dual-source [13]
and fast kVp switching CTs [14]. For the image domain-
based method [15], [16], high- and low-energy CT images
are initially reconstructed from dual-energy spectra mea-
surements, and then material decomposition is performed
on dual-energy CT images. This method does not require
the geometry consistency of dual-energy projections, but
it fails to elaborate the nonlinear relationship between the
polychromatic projections and basic materials. Comparing
to the former two methods, the direct reconstruction method
allows accurately modeling the DECT imaging and can
directly reconstruct basis material maps from dual-energy

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 138579

https://orcid.org/0000-0003-4720-2593
https://orcid.org/0000-0002-9470-6770
https://orcid.org/0000-0003-1087-5911
https://orcid.org/0000-0002-5852-0813


W. Zhang et al.: Direct Material Reconstruction Method for DECT Based on TV and BM3D Frame

projections [17], [18]. The direct reconstruction method (also
called one-step method) can accommodate different CT scan-
ners. However, the computational complexity to get the
solution of themodelmakes the decomposition process unsta-
ble and the decomposition results are sensitive to image
noises [19], leading to the decline of image quality on the
reconstructed material maps.

Various regularization-based methods have been devel-
oped to optimize the solution of direct reconstruction
model [20]. Total variation (TV) regularization-based
methods have demonstrated their success in conventional
CT [21]–[23] and other restoration issues such as phase
retrieval [24]. Inspired by the potential performance of
TV in noise suppression, Barber et al. developed a direct
reconstruction algorithm for TV-constrained data discrep-
ancy minimization and employed the constrained direct
reconstruction algorithm for spectral CT data [25]. On this
basis, Chen et al. designed a nonconvex optimization pro-
gram incorporated with TV regularization term to recon-
struct images directly from dual-energy data [26]. This
direct reconstruction method can effectively compensate the
nonlinear spectral response of DECT. However, for DECT,
TV regularization-based methods encounter the same chal-
lenges as conventional CT in which oversmoothing and
staircase effects are observed on the final results due to their
assumption that the image is piecewise constant [27], [28].
To alleviate this problem, low-rank regularization is used to
determine the correlation of interchannel images [29], [30].
Chu et al. combined low-rank and TV regularizations with
a Split Bregman method for multienergy CT reconstruc-
tion [31]. Kim et al. used a patch-based low-rank penalty
on reconstructed images for sparse view reconstruction in
spectral CT [32]. Zhang et al. developed a tensor-based
dictionary learning (TDL) method with the assumption of
low-rank characteristic along the spectral dimension [33].
To overcome the weakness of TDL on preserving edge
information, Wu et al. then emphasized the spatial sparsity
by proposing an improved TDL method with a constraint
of image gradient L0-norm [34] and obtained improved
reconstruction performance in low-dose spectral CT. In the
aforementioned studies, multichannel CT images are neces-
sary for low-rank regularization-based methods. However,
material reconstruction in DECT is performed on only two
channels of CT images (high- and low-energy spectra CT
images) and the correlation of interchannel images cannot
be sufficiently explored through low-rank regularization.

Recently, similarities have been observed among various
patches in medical images [35]–[37]. A direct method of uti-
lizing these similarities is to express the images by grouping
similar 2D image blocks into 3D data arrays combined with
sparse transforms. The frame of block matching 3D (BM3D)
was initially proposed for natural image denoising [38] and
then this framewas extended to image deblurring and inpaint-
ing [39]. BM3D frame consists of two steps. The first step
generates a basic estimate of the denoised image through a
hard threshold filtration. In the second step the basic estimate

is used as the pilot signal for the index set of similar image
blocks and empirical parameters to generate the final estimate
of denoised image. The basic estimate with high quality in
the first step helps to generate the final estimated image
with low noise level. In 2017, Harrison et al. introduced the
BM3D frame into spectral CT [40] in which a multichannel
block matching denoising algorithm was proposed by uti-
lizing the correlation and alignment between energy bins.
In 2018, Wu et al. incorporated the BM3D frame into the
material reconstruction of spectral CT and demonstrated that
block matching regularization outperformed other nonlocal
means [19]. Morteza et al. initially reconstructed a material
image by using a low-rank regularization model and then
performed block matching denoising on the decomposed
results of spectral CT [41]. Shi et al. incorporated BM3D
into an constrained phase retrieval framework as a regular-
ization term [42] and then modified it as a plug-and-play
form to recover an image from non-linear measured data [43],
leading the improvement of imaging results. Inspired by the
promising performance of BM3D frame on image denoising,
we incorporate the BM3D frame into the TV-regularization
reconstruction model of DECT to explore and utilize the
similarities among the image patches of basis materials.

We propose a direct reconstruction method based on TV
and BM3D frame for the direct material reconstruction of
DECT. TV regularization term can preserve the sparsity in
gradient domain of material images and can maintain the
edge information BM3D frame can provide a promising
depiction for the similarity of image patches. A novel recon-
struction model of DECT is established by simultaneously
incorporating the TV and BM3D frame as regularization
terms. Alternating direction method is used to solve the
optimization problem by splitting it into three sub-problems.
One thing should be noted that when we perform the block
matching-based denoising the material image is replaced
by the polychromatic CT image as the prior image in the
first step to generate the pilot image for the final estimate.
Experiments on digital and real data phantoms validate the
performance of the proposed method in direct material recon-
struction of DECT. The paper is organized as follows. Sec II
presents the proposed methodology and Sec III illustrates the
experiment evaluation. The explanation of the experimental
results of digital and real data is described in Sec IV Sec. V
provides the discussion and conclusion of this study

II. METHODOLOGY
A. RECONSTRUCTION MODEL BASED
ON TV AND BM3D FRAME
In DECT imaging, we consider the two-basis decomposition
case and the discrete projection model for spectrum S can be
represented as follows:

pj (b1,b2)

= − ln
∑
m

Sjm exp (−A (µ1mb1 + µ2mb2)) , j = H ,L, (1)
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where j represents the spectrum index for low (j = L)
and high (j = H ) energy spectra, Sjm is the normalized
x-ray spectrum at energy m for j energy spectra and sat-
isfies

∑
m Sjm = 1 and pj (b1,b2) denotes the projection

data at j energy spectra for the two basis material images
b1 and b2µ1m and µ2m is the linear attenuation coefficients
of materials 1 and 2 in mm−1 at energy m, respectively.
A represents the system matrix in RM×N where N represents
the total number of material pixels and M is the number of
total x-ray paths.A is a forward projection operator calculated
via the intersection length between x-rays and image pixels.
The data model of Eq. (1) is a nonlinear function of basis
materials b1 and b2. Let Aj represent the nonlinear operator
of polychromatic projection and Eq. (1) can be rewritten as

pj = Aj (b1,b2) , j = H ,L (2)

In this study, we aim to explore the local and nonlocal
sparsity characteristics of material image on the basis of
TV and BM3D frame to generate a stable solution with
low noise level. Similar to the optimization framework of
other regularization-based iterative algorithms, the proposed
method is formulated as the following constrained minimiza-
tion problem:

min
bi,vi

∑
i=1,2

(‖vi‖1 + ‖8(bi)‖0)

s.t ∇bi = vi, i = 1, 2

pj = Aj (b1,b2) , j = H ,L (3)

where ∇ denotes the discrete directional gradient operators.
The summation of horizontal and vertical operators which
can be simply represented by ∇ are calculated in this work.
Subscript i represents the index of basis material and j is the
index of high- or low-energy spectra in DECT Since we focus
on the case of two basis materials in this work, we can define
that i = 1, 2. ‖·‖0 denotes the -norm (it is a semi-norm) and
8 represents the operator of BM3D analysis operation [39],
which includes block matching and discrete cosine transform
(DCT).

B. SOLVING MODEL BASED ON THE ALTERNATING
DIRECTION METHOD
For Eq (3), an efficient class of methods seeks for the mini-
mizer by approaching the original constrained problemwith a
sequence of unconstrained sub-problems. An iterative solver
is constantly considered in the design of the practical algo-
rithm. In our work, considering the number of the unsolved
variables and the nonlinearities of the optimization problem,
we apply an augmented Lagrange function to convert the
above constrained problem into an unconstrained form. In the
procedure of iterative solution, since the iteration solution at
one spectra is independent to another spectra, the high- and
low-energy measurement projections are alternatively used
to update the variables Thus Eq. (3) can be rewritten as two

problems corresponding to the high- and low-energy spectra:

LAH = min
bi,vi

∑
i=1,2

(
‖vi‖1+‖8(bi)‖0+ρ

T
i

× (vi−∇bi)+
β

2
‖vi−∇bi‖22

)
+λTH (AH (b1,b2)−pH )+

θ

2
‖AH (b1,b2)−pH‖22 , (4)

LAL = min
bi,vi

∑
i=1,2

(
‖vi‖1+‖8(bi)‖0+ρ

T
i

× (vi−∇bi)+
β

2
‖vi−∇bi‖22

)
+λTL (AL (b1,b2)−pL)+

θ

2
‖AL (b1,b2)−pL‖22 . (5)

where ρi and λj are the Lagrange multipliers and β and θ are
the penalty coefficients. Eq. (4) and Eq. (5) can be solved in
the same way in DECT Thus we take one spectra j = H ,L as
an example to derive the complete process of model solution,
which is written as

LA = min
bi,vi

∑
i=1,2

(
‖vi‖1 + ‖8(bi)‖0 + ρ

T
i

× (vi −∇bi)+
β

2
‖vi −∇bi‖22

)
+λTj

(
Aj (b1,b2)−pj

)
+
θ

2

∥∥Aj (b1,b2)−pj
∥∥2
2 . (6)

Then, the unconstrained optimization problem of Eq. (6) can
be divided into two sub-problems, LA (vi) and LA (bi)

The first sub-problem LA (vi) can be written as follows
with fixed bki , ρ

k
i :

LA (vi) = min
vi

(
‖vi‖1+

(
ρki

)T(
vi−∇bki

)
+
β

2

∥∥∥vi−∇bki ∥∥∥22
)
,

i= 1, 2, (7)

Eq. (7) can be efficiently solved using a shrinkage operator
and the solution of sub-problem LA (vi) in the k+1th iteration
can be computed by

vk+1i = max

(∣∣∣∣∣∇bki − ρkiβ
∣∣∣∣∣− 1

β
, 0

)

·sgn

(
∇bki −

ρki
β

)
, i = 1, 2. (8)

where operator sgn (·) is an odd mathematical function that
extracts the sign of a real number.

The second sub-problem LA (bi) can be written as follows
with fixed vk+1i , ρki , λ

k
ij:

LA (bi) = min
bi

(
‖8(bi)‖0 +

(
ρki

)T(
vk+1i −∇bi

)
+
β

2

∥∥∥vk+1i −∇bi
∥∥∥2
2

(
λkij

)T(
Aj (b1,b2)−pj

)
+
θ

2

∥∥Aj (b1,b2)−pj
∥∥2
2

)
, i = 1, 2. (9)
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Directly solving the above sub-problem is a challenging
work. Method in [19] solved this problem by introducing
an auxiliary variable. Inspired by this idea, we continually
separate the variables in Eq. (9) by introducing gi = bi.
Then, the initial sub-problem can be written as constrained
optimization problem:

min
bi,gi

(‖8(bi)‖0 + ϒ (gi)) , i = 1, 2,

s.t. gi = bi, (10)

where ϒ represents the operator of the initial sub-problem
exclude the term of ‖8(bi)‖0. Augmented Lagrange function
is applied to convert Eq. (3) into an unconstrained form:

min
bi,gi

(
‖8(bi)‖0+ϒ (gi)+

σ

2

∥∥∥gi−bi+ γ i
σ

∥∥∥2
G

)
, i = 1, 2.

(11)

where γ i and σ is the Lagrange multiplier and penalty
parameter, respectively. ‖‖G represents the elliptic norm and
G = 8T8 is a diagonal matrix. 8T is the transposition
of the matrix representation of BM3D analysis operation.
(The detailed definition and relative proof of G can be found
in [39]) Then, sub-problem LA (bi) can be split into two new
sub-problems:

LA,sub (gi)

= min
gi

(
ϒ (gi)+

σ

2

∥∥∥gi − bi +
γ i

σ

∥∥∥2
G

)
= min

gi

((
ρki

)T (
vk+1i −∇gi

)
+
β

2

∥∥∥vk+1i −∇gi
∥∥∥2
2

+

(
λkij

)T (
Aj (g1, g2)− pj

)
+
θ

2

∥∥Aj (g1, g2)− pj
∥∥2
2

+
σ

2

∥∥∥gi − bi +
γ i

σ

∥∥∥2
G

)
, i = 1, 2 (12)

LA,sub (bi)

= min
bi

(
‖8(bi)‖0 +

σ

2

∥∥∥gi − bi +
γ i

σ

∥∥∥2
G

)
, i = 1, 2,

(13)

In our work, we aim to solve the above sub-problems to
directly reconstruct material maps from the dual-energy mea-
surement projections.

C. SOLVING THE NONLINEAR SUB-PROBLEM
One difficulty that should be considered in the solution of
sub-problem LA,sub (gi) is that the nonlinear operator of Aj
caused by the summation of Eq. (1) is located inside the log-
arithm operation. Inspired by the extended algebraic recon-
struction technique [44], we unfold the data model of Eq. (1)
with the first-order Taylor expansion at current point

(
bk1,b

k
2

)
to the linear operator of Aj. Let Fj denote the linearization
of nonlinear operator Aj via the first-order Taylor operation.
We can obtain the approximated expression of projection
difference of basis materials, represented by P̃k

1j and P̃k
2j in

our work, at the representation of linear operator A [45]. The
detailed derivation can be found in the Appendix.

The sub-problem LA,sub (gi) based on the linearization of
the data model with fixed vk+1i , bki , ρ

k
i , γ

k
i , λ

k
ij can be

rewritten as

LA,sub (gi)

= min
gi

((
ρki

)T (
vk+1i −∇gi

)
+
β

2

∥∥∥vk+1i −∇gi
∥∥∥2
2

+

(
λkij

)T (
Fjgi − pj

)
+
θ

2

∥∥Fjgi − pj
∥∥2
2

+
σ

2

∥∥∥gi − bki + γ
k
i /σ

∥∥∥2
G

)
, i = 1, 2. (14)

To reduce the computational costs of pseudo inverse,
we adopt an inexact alternative direction method (ADM) that
utilizes linearization and proximal points [46]. This method
can linearize fidelity terms at current point gki and add prox-
imal terms. In mathematical expression, the elliptic norm
of x = gi − bki + γ ki

/
σ can be calculated by ‖x‖2G =

xTGx and we obtain xTGx = xT8T8x = ‖8(x)‖22.
Thus, the quadratic terms of Eq. (14) can be rewritten
as:∥∥Fjgi−pj

∥∥2
2

≈

∥∥∥Fjgki −pj
∥∥∥2
2
+2hTij

(
gi−gki

)
+
1
τ

∥∥∥gi−gki ∥∥∥22 (15)∥∥∥8 (gi−bki +γ ki σ)∥∥∥22
≈

∥∥∥8 (gki −bki +γ ki /σ)∥∥∥22+2rTi (gi−gki )+ 1
τ ′

∥∥∥gi−gki ∥∥∥22
(16)

where hij = FT
j

(
Fjgki − pj

)
ri = 8T8

(
gki − bki + γ

k
i /σ

)
.

Then Eq. (14) can be written as follows:

min
gi

((
ρki

)T (
vk+1i −∇gi

)
+
β

2

∥∥∥vk+1i −∇gi
∥∥∥2
2

+

(
λkij

)T (
Fjgi − pj

)
+
θ

2

∥∥∥Fjgki − pj
∥∥∥2
2
+ θhTij

(
gi − gki

)
+
θ

2τ

∥∥∥gi − gki
∥∥∥2
2
+
σ

2

∥∥∥8 (gki − bki + γ
k
i /σ

)∥∥∥2
2

+σrTi
(
gi − gki

)
+

σ

2τ ′

∥∥∥gi − gki
∥∥∥2
2

)
, i = 1, 2. (17)

Let the derivative of Eq. (17) with respect to gi and force the
results to be zero, we obtain the following:

gk+1i =

(
β∇T∇ +

(
θ

τ
+
σ

τ ′

)
I
)+ (
∇
Tρki + β∇

T vk+1i

−FT
j λ

k
ij −θhij +

θ

τ
gki − σri +

σ

τ ′
gki

)
, i = 1, 2.

(18)

Matrix
(
β∇T∇ +

(
θ
τ
+

σ
τ ′

)
I
)
can be diagonalized through

fast Fourier transform [47], which can simultaneously
accelerate iterations and maintain accuracy. Let M =

F
(
β∇T∇ +

(
θ
τ
+

σ
τ ′

)
I
)
F−1 and the solution of Eq. (18) can
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be obtained by

gk+1i = F−1
(
M−1F

(
∇
Tρki + β∇

T vk+1i − FT
j λ

k
ij

−θhij +
θ

τ
gki − σri +

σ

τ ′
gki

))
, i = 1, 2. (19)

The residual term in hij = FT
j

(
Fjgki − pj

)
can be approxi-

mated by P̃ki , which takes the basis of the linear expression of
projection operator A Thus Eq. (19) can be approximated as

gk+1i = F−1
(
M−1F

(
∇
Tρki + β∇

T vk+1i −A
T
(
λkij+θP̃

k
ij

)
+
θ

τ
gki − σri+

σ

τ ′
gki

)
) , i = 1, 2. (20)

D. SOLVING THE SUB-PROBLEM OF BLOCK MATCHING
For the sub-problem LA,sub (bi), we update bi with respect
to fixed gk+1i . A hard thresholding method can be used to
solve LA,sub (bi) with the L0-norm of 3D transform domain
coefficients. Then, the update of bi can be calculated by

bk+1i = 9

⌊
8

(
gk+1i +

γ ki
σ

)⌋
κi

, i = 1, 2, (21)

where 9 represents the inverse 3D sparse transform of oper-
ator8 Operator b·cκi represents the hard thresholding opera-
tion, which can be calculated by

b8(·)cκi =

{
0,8 (·) <

√
κi,

8 (·) ,8 (·) ≥
√
κi.

(22)

Inspired by the idea in [19], this problem can be converted
into the operation of BM3D denoising. At the basis of the
BM3D method, we design a new image denoising strat-
egy for the material reconstruction of DECT in this work.
Considering that the coordinates of similar image blocks on
the reconstructed CT image are almost consistent with the
material maps, we substitute the initial denoised images, i.e.,
decomposed material maps, with a polychromatic CT image
which is reconstructed from the collected projection via the
FBPmethod as the input image in the first step In comparison
with the material images, the reconstructed CT image has
a low noise level, which can help improve the accuracy of
block grouping and generate a high quality of basic estimate.
As the decomposed material images are seriously blurred
and anamorphic at the beginning of the iteration, utilizing
the reconstructed CT image to generate the pilot image for
the second step of BM3D is more promising than the initial
decomposed material images. In our work, the low-energy
CT image is used to generate the basic estimate because
it has better gray contrast for different materials than the
high-energy CT image (the selection of prior image is dis-
cussed in Section V). Fig. 1 shows the entire workflow of the
modified denoising strategy The complete formulas includ-
ing the operation of block matching, collaborative filtering,
and block aggregation can be found in [38]. To streamline
the derivation of the whole manuscript, we only illustrate

FIGURE 1. Workflow of the designed denoising method based on BM3D.
The input images of BM3D denoising are the reconstructed polychromatic
CT image f and basis material image gi . In step 1, f is used to generate the
basic estimate f̂ basic for the index set of similar blocks in step 2.
In step 2, the basic estimate f̂ basic and basis material image gi are used
to generate the final estimate bi .

the main difference between the proposed method and the
conventional BM3D method.

As shown in Fig. 1, the entire workflow includes two
steps. The reconstructed low-energy polychromatic CT image
f is firstly inputted into the first step, and the basic estimate
f̂ basic can be generated after the blockmatching, collaborative
hard thresholding, and block aggregation. We use the basic
estimate f̂ basic to calculate the block distance and generate
the coordinates of similar blocks for the reconstructed basis
material map gi. In the second step, let F̂basic

x and F̂basic
xR

represent the slide and reference blocks of f̂basic with the size
ofN1×N1, where x and xR denotes their 2D spatial coordinate
that belongs to image domain X . The distance and coordinate
set of similar blocks can be calculated by

d
(
F̂basic
xR , F̂basic

x

)
=

∥∥∥T2D (F̂basic
xR

)
− T2D

(
F̂basic
x

)∥∥∥2
2

(N1)
2 (23)

SwiexR =

{
x ∈ X : d

(
F̂basic
xR , F̂basic

x

)
≤ ηwiematch

}
(24)

where T2D denotes the normalized 2D linear transform, such
as DCT, and ηwiematch is the maximum distance of two sim-
ilar blocks. On the basis of the coordinate set of similar
patches SwieXR , the block groups of noisy material maps gi can
be obtained as GSwieXR

by grouping the similar image blocks
Then, the collaborativewiener filtering and block aggregation
are performed on the block groupsGSwieXR

to generate the final

estimate of material image bk+1i

E. METHOD WORKFLOW AND PARAMETER SELECTION
The proposed method includes the solution of three sub-
problems. Three variables are first updated using the mea-
surement projection data at low-energy spectra and then
updated using the projection data at high-energy spectra. The
scheme of the proposed method can be illustrated as follows:

In the above method, β, θ , and σ are the weights of the
three regularization terms. They are determined in accor-
dance with the sparsity feature of the underlying image and
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1. Initialization β, θ , σ , δ, k = 0, K

2. j = L
3. Solving sub-problem 1:

vk+1i = max

(∥∥∥∥∥∇bki − ρkiβ
∥∥∥∥∥
1

−
1
β
, 0

)

·sgn

(
∇bki −

ρki
β

)
, i = 1, 2

4. Solving sub-problem 2:

gk+1i

= F−1
(
M−1 · F

(
∇
Tρki + β∇

T vk+1i − AT
(
λkij + θP̃

k
ij

)
+
θ

τ
gki − σri +

σ

τ ′
gki

)
) , i = 1, 2

5. Solving sub-problem 3:

bk+1i = argmin
bi

∥∥∥8 (bki )∥∥∥0 + σ2
∥∥∥∥∥gk+1i − bki +

γ ki
σ

∥∥∥∥∥
2

G

,
i = 1, 2

6. Updating Lagrange multipliers:
ρk+1i = ρki + β

(
vk+1i −∇bk+1i

)
γ k+1i = γ ki + σ

(
gk+1i − bk+1i

)
λk+1ij = λ

k
ij − θP̃

k
ij ,

i = 1, 2

7. j = H and updating variables on the basis of programs 3 to
6

8. End if the algorithm reaches maximal iteration K

noise level in the observation. β should be large when the
underlying image contains high-level noises. θ has posi-
tive correlation with the speed of convergence, but it may
decrease the effects of regularization and introduce noises
when the measurement data contains large inconsistencies.
For σ , it should be smaller than β and θ . A simple method to
determine their values is by using different values from 23 up
to 29 and comparing the decomposed material maps.

During block matching, parameter δ plays an important
role in image denoising. The larger δ is, the stronger block
matching filter has. In general, δ ranging from 0.2 to 5 is
acceptable for most denoising tasks. According to our expe-
rience δ is set to 0.4 for the digital simulation and 1.5 for
the real data in our work. Considering that block matching is
included in the scheme of ADM, other parameters of block
matching may show relatively small influence on the final
results and their settings refer to the parameters of [48]. Image
patch size N1 is set to 8 for both filtering steps. Distance
thresholds ηwiematch are set 400. In the implementation of the

FIGURE 2. (a) Normalized tissue material map; (b) normalized bone
material map. The display window of both figures is [0.8 1.2].

proposed method, variable bi updates every five iterations to
reduce the running time occupied by block matching denois-
ing. The running time of each iteration will be discussed in
Section V.

III. EVALUATION
The performance of the proposed method is tested using both
digital phantom and real data. We compare the proposed
method with the extended simultaneous algebraic reconstruc-
tion technique (ESART) [49] as well as its TV minimization
algorithm, which minimizes the TV of the material maps by
steepest descent The algorithm that solely utilizes BM3D
is also provided by incorporating BM3D into the scheme
of ESART method. Besides, we compare the difference of
L1 and L norm of BM3D frame for the proposed method
in the experiments. The parameters are the same for the
proposed methods with L1 and L0 norm in our experi-
ments. The proposed method with L1 norm combines the
L1 norm of BM3D frame and TV regularization term, which
is different with the TV-based method that solely contains
the TV regularization term. Maximal iteration K is set to
100. The initial guess of all methods is generated based on
the reconstructed low-energy CT image using a threshold
segmentation method. The threshold is selected based on the
attenuation coefficients of different material on the CT image.
The image pixels whose gray values are greater than the
threshold constitute the initial map of one material, the others
consist of the initial map of another material. Value nor-
malization is performed on two initial maps before they are
inputted into the iteration of the direct reconstructionmethods
All of the experiments are performed on a HP Z820 worksta-
tion with Intel Xeon E5-2650 CPU 2.6 GHz and a Nvidia
TITAN V GPU.

The digital phantom is constructed on the basis of the
Forbild phantom with a size of 512×512 pixels. Fig. 2(a)
shows the map of the tissue material with seven gray levels,
including the background in which the value is zero. Fig. 2(b)
presents the map of the pure bone material with one gray
value. They are used to generate the high- and low-energy
projections of the digital phantom. Fig. 3(a) displays the high-
and low-energy spectra at the tube voltage of 140 and 80 kVp,
which are generated by SpekCalc software. The energy
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FIGURE 3. (a) High- (red solid line) and low-energy (blue dashed line)
spectra with an energy increment interval of 1 keV. (b) Attenuation
coefficients of bone (red dashed line) and tissue (blue solid line)
materials at 140 kVp.

spectra is sampled with an interval of 10 keV in our exper-
iment. Fig. 3(b) shows the attenuation coefficients of the
bone and tissue, which are retrieved from the National Insti-
tute of Standards and Technology database. The source-to-
object and source-to-detector distances is 500 and 1000 mm,
respectively. Projection samples in each view are collected
using a linear detector that consists of 1024 bins with a size
of 0.35mm× 0.35mm. Dual-energy projections are acquired
at 360◦ rotation with a scanning interval of 1◦. Noises are
added to dual-energy projections, which are generated by the
Poisson model as follows:

Np = Poisson
(
Np0 exp (−p)

)
(25)

where Np0 is the number of incident x-ray photons and p rep-
resents themeasured number of photons in the projection.Np0
is set as 1 × 105. The decomposed images have a dimension
of 512 × 512 and the pixel size is 0.25 mm × 0.25 mm.
We compare the decomposition results and their difference
maps with the ground truth image for different methods. The
recovered details of decomposition results can be evaluated
by an enlarged region including two circle areas with low con-
trast. The line profiles of decomposition results are provided
to compare the decomposition accuracy. To quantitatively
evaluate the performance of all reconstruction methods, the
root mean square error (RMSE), peak-signal-to-noise ratio
(PSNR), and structural similarity (SSIM) are calculated on
the decomposed maps of tissue and bone materials. In addi-
tion, the robustness of the proposed method can be evaluated
by the mean values and noise standard derivation (STD) of
five uniform regions of interest (ROIs) (as show in Fig. 2(a)),
which is defined as

STD =

√√√√ 1
NROI

NROI∑
l=1

(xl − x̄), (26)

where l is the pixel index of ROI and xl represents the value
of the lth pixel. x̄ denotes the mean value of all NROI image
pixels belonging to the objective ROI. We also use the curves
of RMSE and the curves of the L1 norm of image gradients
to compare the convergence of different methods. Further-
more, the pseudo-monochromatic CT images at 60 keV are
provided by linearly forming the material maps of digital
phantom to evaluate the material reconstruction quality.

FIGURE 4. (a) QRM phantom used in real data experiments.
(b) Illustration of five compositions of QRM phantom, i.e., cortical
mandible bone, spongious bone, muscle, CT water, and adipose.

The experiments on real data are performed using an
industrial CT system in our laboratory. The cone-beam CT
system ismainly composed of an x-ray source (Hawkeye 130,
Thales, France), orthogonally rotary stage with object holder,
and flat panel detector (4030E, Varian, USA). We use an
QRM phantom to perform the experiments on real data
(Fig. 4(a)). As shown in Fig. 4(b), the QRM phantom has
five different tissue equivalent materials including cortical
mandible bone, spongious bone, muscle, CT water, and adi-
pose. The five cylinders are surrounded by CT water. The
diameters of phantom is 100 mm and each cylinder is 20 mm.
The cortical mandible bone and CT water are used as two
basis materials for direct material decomposition. The QRM
phantom is scanned twice at tube voltages of 80 and 120 kVp
along a circular line. The x-ray tube current is set to 220 µ A
for twice scanning. The spectra of the two scans are estimated
by a transmission-based method [50] where a cylindrical
phantom with uniform known material is scanned under two
energy spectra The high- and low-energy projections are
sampled at 360◦ with a scanning interval of 0.5◦. The source-
to-object and source-to-detector distances is 309.450 and
969.725 mm, respectively. The central slice of each 2D pro-
jection is extracted and down-sampled as 1438 bins for the
material reconstruction in the experiment. The decomposed
images have a dimension of 512 × 512 with a pixel size
of 0.2653 mm× 0.2653 mm.We compare the decomposition
results of different methods, and the ROIs that includes the
spongious bone on the bone and water basis material maps
are magnified to compare the noise suppression and edge
preservation. The mean values and STDs of basis materials,
i.e., cortical mandible bone and CT water, are calculated
on two material maps to quantitatively evaluate the noise
level of decomposition results. We further generate the CT
images at a tube voltage of 60 keV by linearly forming the
decomposed material maps to evaluate the performance of
different methods on monochromatic CT image formation.

IV. RESULTS
A. SIMULATION EXPERIMENT
Fig. 5 shows the decomposition results of ESART, TV-based,
BM3D-based and proposed methods with L1 and L0 norm
from the left to right columns. The tissue and bone material
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FIGURE 5. Decomposition results of different methods. Left to right columns represent the results of ESART, TV-based, BM3D-based, and the
proposed methods with L1 and L0 norm. (a) and (b) represents the tissue and bone material maps, respectively. The blue dashed rectangle denotes
the enlarged ROI with low contrast. The display window of all figures is [0.8 1.2].

maps are shown in (a) and (b). An ROI denoted by blue
dashed rectangle on the tissue material map (Fig. 5(a1))
is magnified for the comparison of the recoverability of
detailed information. This ROI contains two circle areas and
they are filled with different materials with low contrast.
As shown in Fig. 5 two circle areas in the decomposition
results of ESART are flooded by noises and artifacts because
the projection noise is magnified during material recon-
struction. The TV-based method reduces the decomposition
noises to some extent and achieves higher image quality
than ESART, but it still fails to recover the two circle areas.
The BM3D-based method shows good performance in noise
suppression because the reconstruction noises are almost
invisible in the material maps. However, the enlarged area
of (a3) indicates that it cannot recover the low contrast ROI
and the strip false artifacts are introduced into the material
map. By contrast, decomposition results of the two proposed
methods have better quality. They efficiently suppress the
reconstruction noises and remove the false artifacts from the
material maps. Although the gray contrast of the enlarged
ROI is low, the proposed methods recover them with rela-
tively higher quality than other methods. We also find that
the results of the proposed methods with L1 and L0 norm
(column 4 and 5) are very close to each other, which indicates
that the scheme of the proposed method is insensitive to the
form of norms and promising for material reconstruction of
DECT.

Fig. 6 shows the difference images of decomposition
results with the ground truth. ESART is seriously disturbed
by noise. The TV-based method reduces the artifacts to some
extent, but shows large difference of gray level with the

ground truth for tissue materials. The BM3D-based method
contains less noises, but the edge cannot be well preserved.
In comparison with the former methods, the proposed meth-
ods can efficiently reduce the decomposition noises and
obtains better results.

Fig. 7 presents the profiles of decomposition results along
the gray dotted line in Fig. 5. The line profile of ESART is
sharply fluctuated around the ground truth. The TV-based
method is closer to the ground truth than ESART, but it
contains many errors on one uniform material and has a
large difference with the ground truth in the edge area. The
BM3D-based method shows large difference with the ground
truth in the adjacent region. The profiles obtained by the pro-
posed methods are the best comparing to the ground truth and
generate the steepest profiles in the adjacent region of basis
materials, which shows the capability of noise suppression
and edge preservation for direct material decomposition.

Table 1 lists the RMSE, SSIM, and PSNR of the decom-
posed results. We can see that RMSE of the decomposed
results by the proposed method is the smallest in both bone
and tissue material maps. For example, the proposed method
with L0 norm reduces the RMSE by 86.27% and 58.29% on
the tissue and bone material maps, respectively, comparing
to ESART, while the number is 70.08% and 29.13%, respec-
tively, comparing to the TV-based method. For the metric
of SSIM which measures the similarity between maps, the
decomposed images of the proposed methods have higher
similarity to the ground truths than the results of the other
threemethods. Regarding to the PSNR, the proposedmethods
obtain higher values than other methods, which indicates the
robustness of the proposed methods.
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FIGURE 6. Difference images of decomposition results with the ground truth. Left to right columns represent the results of ESART, TV-based,
BM3D-based, and proposed methods with L1 and L0 norm. (a) and (b) represents the tissue and bone material maps, respectively. The display
window of all figures is [−0.15 0.15].

FIGURE 7. Line profiles of decomposition results for different methods.
Black, gray, blue, crimson, green and red lines denotes the line profiles of
the ground truth, ESART, TV-based, BM3D-based, and proposed methods
with L1 and L0 norm, respectively.

Table 2 shows the mean and STD values of ROI 1 to 5
indicated in Fig. 2(a) for different methods. The STD values
of ROI 1 to 5 are 0 for the ground truth image because
they are filled with uniform material, thus only the mean
values are listed in Table 2. Regarding the mean values
which evaluate the accuracy of the reconstruction method,
the mean value of ESART is the largest, which shows the
largest difference with the ground truth. The TV-based and
BM3D-based methods can reduce the decomposition error
and noise STD to some extent, while the proposed method
obtains better quantitative results on ROI 1 to 5 than the
formermethods.More specifically, the proposedmethodwith
L0 norm obtains the minimum difference with the ground
truth regarding the comparison of mean values. For the noise
suppression, the proposed method with L1 norm shows the

best performance because it has the smallest STDs. It reduces
the STDs of ROI 1 to 5 by 94.60%, 96.21%, 92.26%, 95.48%,
and 96.54% comparing to ESART, while the reductions are
87.52%, 92.32%, 83.81%, 89.22%, and 92.28%, for the
TV-based method.

Fig. 8 shows the RMSEs curves of different methods to
investigate the convergence. We can find that all the recon-
struction methods can converge to a stable solution with
a given RMSE. The largest one is obtained by ESART.
The TV-based and BM3D-based methods decrease rapidly,
but their final values are also unpromising. Compared with
the former methods, the RMSE curves of the two pro-
posed methods decrease rapidly and convergent to a smaller
RMSE value, which illustrates the convergence of the pro-
posed method. More specifically, the proposed method with
L0 norm reaches the minimum RMSE among all com-
pared methods, which is consistent with the evaluation of
Table 1 and 2.

Fig. 9 shows the curves of L1 norm of image gradients
for different methods. The ground truth of basis materials is
known, so the ground truth of the L1 norm of image gradients
can be calculated in advance It is 7150.46 and is shown as
the red dotted line in Fig. 9. It can be seen that the curves of
ESART is far from the ground truth. The TV-based method is
very close to the ground truth but it still has a certain distance.
The BM3D-method shows strong ability in minimizing the
L1 norm of image gradients, but its curve has reached below
the truth line. The two proposed methods exhibit better per-
formance than the former methods and both of them converge
to the truth value. The comparison of the gradient curves also
indicates the convergence of the proposed methods.

Fig. 10 shows the pseudo-monochromatic CT image at
60 keV by linearly forming the material maps in Fig. 5.
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TABLE 1. RMSE, SSIM, and PSNR of the decomposed results for different methods.

TABLE 2. Mean and STD values of ROI 1 to 5 in Fig. 2(a) for different methods. For the ground truth, the STD values of these uniform ROIs are 0. Thus,
only the mean values are listed.

FIGURE 8. RMSEs curves of basis materials for different methods. The
blue, crimson, gray, green, and black lines represents the RMSE curve of
ESART, TV-based, BM3D-based, and the proposed methods with L1 and L0
norm, respectively.

We can intuitively find that the pseudo-monochromatic image
generated by the proposed methods has lower noise level than
those generated by other methods. Thus, we can conclude
that the proposed methods can sufficiently suppress decom-
position noises while maintaining the material reconstruction
accuracy.

FIGURE 9. The curves of L1 norm of image gradients for different
methods. The red line represents the ground truth. The blue, crimson,
gray, green, and black lines represents the curves of ESART, TV-based,
BM3D-based, and the proposed methods with L1 and L0 norm,
respectively.

B. REAL DATA EXPERIMENT
In the real data experiment, the QRM phantom is scanned at
tube voltages of 80 and 120 kVp. Fig. 11 shows the decom-
position results of QRM phantom based on the dual-energy
measurement projections at tube voltages of 80 and 120 kVp.
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FIGURE 10. Pseudo-monochromatic CT image at 60 keV by linearly
forming the material maps in Fig. 5. (a) to (f) represents the results of
ground truth, ESART, TV-based, BM3D-based, and proposed methods with
L1 and L0 norm, respectively. The display window of all figures is [0.01
0.03].

The figures in the columns from left to right represent the
decomposition results of ESART, TV-based, BM3D-based,
and proposed methods with L1 and L0 norm. The decom-
position maps of CT water and cortical mandible bone are
represented as (a) and (b), respectively. As shown in Fig. 11,
the results of ESART contain serious noises, and the adipose
and muscle area indicated by the red arrow are totally flooded
by noises. The TV-based method achieves higher image qual-
ity than ESART because the adipose and muscle materials on
the water material map are relatively more evident than those
of ESART. However noises still clearly exist on the water and
bone material maps. The BM3D-based method shows strong
ability in noise suppression, but it cannot preserve the edges.
And again, the two proposed methods can efficiently reduce

the decomposition noises and intuitively provide results with
clear edge.

Fig. 12 shows the ROIs of spongious bone indicated by
the dotted rectangle in Fig. 11 for further evaluation. We can
see that the image noises are seriously magnified on the
decomposition results for ESART and TV-based method. The
BM3D-based method can efficiently suppress reconstruction
noises from the material maps, but it cannot keep the shape
of spongious bone. By contrast, the proposed methods show
promising performance in noise suppression and both of them
recover the image edge with higher accuracy at the same
time. We further quantitatively evaluate the noise level of
reconstruction results in ROIs 1 and 2 indicated by blue
dashed circles in Figs. 11(a1) and (b1).

Table 3 lists the mean values and STDs of ROIs 1 and 2.
The results of the proposed method with L1 norm have
the smallest STDs for both basis materials among the three
methods, which is consistent with the quantitative evaluation
of digital phantom in Table 2. In comparison with ESART,
the proposed method with L1 norm reduces the STDs on
CT water (ROI 1) and cortical mandible bone (ROI 2)
by 97.90% and 92.51%, respectively. When it comes to
TV-based method, the number reaches 86.08% and 82.29%.

Fig. 13 shows the pseudo-monochromatic CT image of
QRM phantom at 60 keV based on the decomposition results
in Fig. 11. The pseudo-monochromatic CT images pro-
vided by the two proposed methods have higher quality than
the results of other three methods. The ROIs of spongious
bone and adipose on the pseudo-monochromatic CT images
are selected for the comparison of zoom-in view. In the
zoom-in view of ROI 1, the results of ESART and TV-based
method are seriously disturbed by decomposition noises,
and the BM3D method shows worse performance in edge
preservation. For the ROI 2, the adipose edge is seriously
degraded because it looks blurred for the ESART, TV-based,

FIGURE 11. Decomposition results of QRM phantom for different methods. Left to right columns represent the results of ESART, TV-based,
BM3D-based, and proposed methods with L1 and L0 norm. (a) and (b) denotes the material maps of the cortical mandible bone and CT water,
respectively. The display windows of (a) and (b) is [0 1.2] and [0.15 0.8], respectively.
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FIGURE 12. Enlarged ROIs of decomposition results indicated by dotted rectangle in Fig. 11. Left to right columns represent the results of ESART,
TV-based, BM3D-based, and proposed methods with L1 and L0 norm. (a) and (b) denotes the material maps of the cortical mandible bone and CT
water, respectively. The display windows of (a) and (b) is [0.2 1.0] and [0.2 0.6], respectively.

TABLE 3. Mean and STD values of ROIs 1 and 2 indicated in Fig. 11(A1) and (B1) for different methods.

FIGURE 13. Pseudo-monochromatic CT images of QRM phantom at 60 keV by linearly forming the material maps in Fig. 11. Left to right columns
represents the results of ESART, TV-based, BM3D-based, and proposed methods with L1 and L0 norm, respectively. ROIs 1 and 2 indicated by
dashed rectangle are enlarged for detailed comparison. The display window of pseudo-monochromatic CT images is [0 0.05]. The display window of
enlarged views is [0.01 0.04].

and BM3D-based methods. However, both noise suppression
and edge preservation can achieve better performance in the
proposed methods. The ROIs of spongious bone and adipose
are recovered with high quality, especially for the ROI 2 of
adipose. Therefore, the evaluation of pseudo-monochromatic
CT image again indicates that the proposed methods show
better performance in direct material reconstruction.

V. DISCUSSIONS AND CONCLUSIONS
We proposed a one-step method for the material recon-
struction of DECT to reduce the amplified noises result-
ing from high- and low-energy projection data. A new
reconstruction model was established by incorporating TV
and BM3D frame. TV regularization term preserves the spar-
sity in the gradient domain of material maps and help to
maintain the image edge. BM3D frame aims to depict the

similarities of image patches combined with sparse trans-
form. Alternating direction method was applied to solve
the optimization problems by splitting them into three sub-
problems. For block matching-based denoising, we designed
a new denoising strategy by introducing the reconstructed
polychromatic CT images as the prior image to generate the
pilot signal for the block grouping in the following step.

For direct reconstruction methods of DECT, it is necessary
for the final decomposition results to accurately estimate the
high- and low-energy x-ray spectra. The estimation errors
of x-ray energy spectrum will compromise the accuracy of
the final decomposed material maps. In the experiments on
real data, image artifacts and quantitative errors caused by
the estimation error appear in the final results and thus more
accurate estimation methods are needed. But the compari-
son of these direct reconstruction methods is fair because
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the same estimated x-ray spectrum is used to evaluate their
performance in direct material reconstruction. For the image
denoising, the low-energy CT image is used to generate
the pilot image for the final estimates. However, if the
high-energyCT image had lower noise level and higher image
quality than the low-energy CT image at a certain scanning
setting, it is also feasible to use the high-energy CT image
to generate the basic estimate. For the enlarged ROI of the
digital and real data results (Figs. 5 and 10), edge distortions
can be still observed in the decomposition results although
the proposed method has shown better performance in edge
preservation than the compared methods. This problem will
be solved by incorporating the weights of TV regularization
terms, wherein the edge weights of intermediate reconstruc-
tion are incorporated into the TV objective function. The
proposed method solves the new direct reconstruction model
based on the frame of ADM, it is also a meaningful work to
apply different algorithms to solve the non-convex optimiza-
tion problem, such as fast iterative shrinkage-thresholding
algorithm, Bregman iterative algorithm, and proximal point
method.

For the iteration method of CT imaging, forward and back
forward projection are performed in each iteration, which is
timeconsuming. To accelerate the implementation, we pro-
gram forward and back forward projection at the platform of
C++ by encapsulating them as a mexw64 file for Matlab and
use graphic processing unit (GPU). In this way, the running
time of forward and back forward projection can be largely
reduced to approximately 0.01–0.03 s for the digital phantom
experiment, where each reconstruction image is 512 × 512
and the length of detector is 1024. Furthermore, since the
solution of the non-convex problem can be obtained by solv-
ing three sub-problems each of the sub-problems has some
tricks to be solved The first sub-problem can be directly
solved by the shrinkage operator. The second sub-problem
utilizes the fast Fourier transform to calculate the pseudo-
inverse term, which highly reduce the computational expen-
sive. The running time to compute the first and second
sub-problem is about 0.4–0.5 s. For the solution of the third
sub-problem, block matching is computationally demanding
due to the searching of similar patches. On the basis of [48],
GPU is also applied in our work to accelerate the implemen-
tation of BM3D-based denoising. The running time of per
round of blockmatching denoising is approximately 0.9–1.2 s
for a image with 512 × 512 pixels. Overall, the total time
of each iteration is approximately 1.45 s for the proposed
method in our environment.

In conclusion, we proposed an efficient one-step method
based on TV and block matching regularization for direct
material reconstruction from dual-energy projections. The
experiments on digital phantom and real data verified
the capability of the proposed method in direct mate-
rial reconstruction and demonstrated that the proposed
method outperformed its counterparts. The proposed method
can be further modified by changing the regularization
terms such as total p-variation, wavelet tight frame, and

Kullback–Leibler divergence, according to different imaging
tasks. The proposed method can also be further applied into
the area of low-dose CT reconstruction, incomplete data CT
reconstruction, and photon counting CT reconstruction

APPENDIX
The initial problem of Eq. (1) can be written as

pj (b1,b2)

= pkj +
Ok
j

qkj
A
(
b1 − bk1

)
+
2k
j

qkj
A
(
b2−bk2

)
, j = H ,L,

(27)

where

qkj =
∑
m

Sjm exp
(
−µ1mAbk1 − µ2mAbk2

)
,

pkj = − ln
∑
m

Sjm exp
(
−µ1mAbk1 − µ2mAbk2

)
,

Ok
j =

∑
m

Sjmµ1m exp
(
−µ1mAbk1 − µ2mAbk2

)
,

2k
j =

∑
m

Sjmµ2m exp
(
−µ1mAbk1 − µ2mAbk2

)
. (28)

Let P̃ki represent the projection difference of the ith basis
material with the ground truth. Then, the linearization of the
data model can be written as

pj (b1,b2) = pkj +
Ok
j

qkj
P̃k
1 +

2k
j

qkj
P̃k
2 , j = H ,L. (29)

P̃k
i can be obtained by solving the above model using the

projection method [51]:
P̃k
1j =
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j q

k
j(
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j

)2
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(
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)2 (pj − pkj
)

P̃k
2j =

2k
j q

k
j(
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j

)2
+

(
2k
j

)2 (pj − pkj
)
.

(30)

Thus, we obtain the approximated expression of the projec-
tion difference of b1 and b2 at the basis of linear operator A
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