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ABSTRACT The cone error compensation algorithm and the sculling error compensation algorithm are
two important components of the inertial navigation algorithm. At present, scholars have done a lot of
research on cone error compensation, and have proposed many cone error compensation algorithms, but
there are few studies on the compensation of the sculling error. So for this problem, this paper proposes a
new operation method, which can convert the cone error compensation algorithm into the corresponding
sculling error compensation algorithm with simple calculation. Taking four classical cone error algorithms
as examples, we give the conversion process and conversion results. The conversion results are exactly the
same as the derivation error compensation algorithms given by the derivation, which proves the effectiveness
of the proposed method. The method avoids the complicated derivation process of the traditional sculling
error compensation algorithm, significantly reduces the amount of calculation, and has strong engineering
practical significance.

INDEX TERMS Cone algorithm, sculling algorithm, transformation method, strapdown inertial navigation
system.

I. INTRODUCTION
Attitude solving and velocity solving are two important pro-
cesses of inertial navigation algorithm. However, due to the
noncommuttativity of rigid body limited rotation, cone effect
and sculling effect will be caused, and the corresponding
attitude and velocity are introduced. Reducing navigation
errors is an important issue in the field of strapdown inertial
navigation.

The accuracy of the attitude algorithm will directly affect
the accuracy of the force integral transformation, which will
affect the velocity and position resolution accuracy. Since
the concept of strapdown inertial navigation has been pro-
posed, researchers in the navigation field have focused more
on the research of attitude algorithms [1]–[5]. Miller first
proposed the concept of optimizing the coefficient of the cone
algorithm in a pure conical environment [6]. Ignagni then
gave nine conic correction algorithms and derived two impor-
tant properties about cone integration and angular increment
under pure cone conditions [7]. Jiang and Lin introduced the
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sum of the angular increments of the previous cone compen-
sation period as a correction term into the cone compensation
algorithm in the current period to improve the performance
of the cone algorithm [8], [9]. Musoff and Murphy proposed
a method to improve the performance of the algorithm by
using data interpolation techniques [10]. Panov derived the
optimized attitude solving algorithm according to the Miller
method under certain generalized angular precession [11].
Inspired by Miller, Gusinsky et al. gave a new derivation
method for the attitude solving algorithm, which only needs
to know the analytical expression of the angular velocity
of the carrier [12], [13]. Savage gave a classic two-speed
attitude update algorithm, the medium speed algorithm uses
the direction cosine matrix update method, and the high
speed algorithm is a simplified equivalent rotation vector
algorithm [5], [14]. Song proposed an extended cone error
compensation algorithm, which can effectively suppress the
algorithm error in high dynamic environment [15]. On the
basis of Song, Wang first considered the third order of Picard
in cone error compensation [16]. Theoretical analysis shows
that the algorithm has higher precision in high dynamic
environment.

140430 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0001-6434-6412
https://orcid.org/0000-0002-4811-6024
https://orcid.org/0000-0001-9074-0894
https://orcid.org/0000-0002-4845-9369


P. Jiang et al.: Method Converting Cone into Sculling Algorithm for Strapdown Inertial Navigation System

In contrast, there are very few scholars who study the
sculling error compensation algorithm. Only a few people
such as Ignagni, Savage, Song, and WANG have studied
the sculling error compensation algorithm [15]–[19]. Roscoe
gave a simple mathematical formula in 2000 to convert the
cone algorithm into a corresponding sculling algorithm [20].
This idea is great and can significantly simplify the design of
the sculling algorithm. And it is no problem to verify with the
existing algorithm at that time. However, with the deepening
of research, more accurate cone compensation algorithms
have been proposed. Theoretical studies have shown that the
mathematical formula proposed by Roscoe is not suitable for
the cone error compensation algorithm considering the third-
order term of the Picard series.

Therefore, in view of the above problems, this paper
proposes a new operation method, which can convert the
cone error compensation algorithm into the corresponding
sculling error compensation algorithm with simple operation.
We prove the general equivalence between the sculling algo-
rithm and the cone algorithm, and theoretically prove the
effectiveness of the conversion method. In addition, we take
the existing cone error compensation algorithms as examples,
and give its conversion process and conversion results. The
conversion results are exactly the same as the derivation
error compensation algorithms given by the derivation, which
proves the effectiveness of the method. This manuscript is
organized as follows: Section 2 demonstrates the general
equivalence between the sculling algorithm and the cone
algorithm; Section 3 proposes a new method for converting
the cone error compensation algorithm into sculling error
compensation algorithm; Section 4 uses the existing cone
compensation algorithm and the sculling compensation algo-
rithm to verify the transformation method proposed in this
paper; Section 5 carries out simulation experiment verifi-
cation; Section 6 summarizes some conclusions and major
contributions.

II. CONING AND SCULLING ERROR COMPENSATION
ALGORITHMS
A. CONING ALGORITHMS
The differential equation of the equivalent rotation vector can
be expressed as:

φ̇=ω+
1
2
φ × ω+

1
φ2

[
1−

φ sinφ
2 (1−cosφ)

]
φ×(φ × ω) (1)

where, φ denotes the equivalent rotation vector and its ampli-
tude is φ = (φ · φ)1/2; ω is the angular rate vector obtained
by the gyro measurement; operator × represents the cross
product between the vectors.

Performing series expansion on the trigonometric function
in the equation, there are:
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Since that the noncommutativity error is 1
2φ × ω +

1
φ2

[
1− φ sinφ

2(1−cosφ)

]
φ × (φ × ω), the noncommutativity error

is at least 5 orders, if we take the 4th order approximation
φ sinφ

2(1−cosφ) = 1 − φ2

12 −
φ4

720 . For the three sample attitude
compensation algorithm, theoretical derivation shows that 5th
order error has little effect. Therefore, this article only take
the approximation φ sinφ

2(1−cosφ) = 1− φ2

12 . And the approximate
equation commonly used in engineering is obtained:

φ̇ = ω +
1
2
φ × ω +

1
12
φ × (φ × ω) (3)

1
2φ×ω+

1
12φ× (φ × ω) represents the noncommutativity

error. The core of the cone error compensation algorithm is
to improve the accuracy of the cone compensation algorithm
in various environments by designing a numerical integration
algorithm that realizes the noncommutativity error.

If only the third order term of the Picard series is consid-
ered, the above formula can be simplified to:

φ̇ = ω +
1
2

[
1θ+

1
2

∫ τ

0
(1θ × ω) dt

]
× ω

+
1
12

[1θ×] (1θ × ω) (4)

where, 1θ is the angular increment that can be expressed as
1θ =

∫ τ
0 ωdτ .

B. SCULLING ALGORITHMS
The velocity differential equation in the body coordinate
system is:

1v̇Bm−1SF (t) = CBm−1
B(t) aSF (5)

where, Bm−1is the body coordinate system at the end of the
m − 1 attitude update period; B(t) is the body coordinate
system at time t in the attitude update period from tm−1 to
tm; aSF is specific force acceleration vector.
CBm−1
B(t) represents the direction cosine matrix from Bt to

Bm−1 transformation, which can be expressed as:

CBm−1
B(t) = I +

sinφ
φ

[φ×]+
(1− cosφ)

φ2
[φ×]2 (6)

The velocity increment introduced by substituting Eq.6
into Eq.5 and introducing the specific force acceleration over
time tm−1 to tm interval is:

1v
Bm−1

SF (t) =
∫ t

tm−1
CBm−1
B(t) aSFdτ = v (t)

+

∫ t

tm−1

sinφ
φ

[φ×] aSFdτ

+

∫ t

tm−1

(1− cosφ)
φ2

[φ×]2aSFdτ (7)
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The algorithm input is replaced by the angular rate integral
and the specific force acceleration integral into the equivalent
rotation vector and the velocity translation vector, the follow-
ing is obtained:

1vBm−1SF (t) = η (t)+
(1− cosφ)

φ2
[φ×] η (t)

+
1
φ2

(
1−

sinφ
φ

)
[φ×]2η (t) = Fη (t) (8)

wherein, F = I + (1−cosφ)
φ2

[φ×]+ 1
φ2

(
1− sinφ

φ

)
[φ×]2.

For Eq.8, the derivative of time t is:

1v̇Bm−1SF (t) = Ḟη (t)+ Fη̇ (t) = CBm−1
B(t) aSF (9)

Then we can get:

η̇ (t) = F−1
[
CBm−1
B(t) aSF − Ḟη (t)

]
(10)

Expanded and organized, the differential equation of veloc-
ity translation vector is:
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Similar to the approximation principle in Eq.3, take the
first-order Taylor expansion approximation of f , that is
f1 ≈ 1

12 ,f2 ≈
1
6 ,f3 ≈

1
24 ,f4 ≈

1
8 . Then the fourth-order Picard

solution components of the velocity translation vector can be
expressed as:

η̇ (t) = ˙1η1 + ˙1η2 + ˙1η3 + ˙1η4 · · ·

˙1η1 = aSF, 1η1 = 1v
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1
2
(1θ × aSF − ω ×1v)
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1
4
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)
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4
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(12)

where, v is the velocity increment that can be expressed as
v =

∫ τ
0 aSFdτ . ˙1η2 is to consider the sculling error of

the second order term of the Picard series, ˙1η3 is the sculling
error considering the third order term of the Picard series, and
the corresponding ˙1η4 is the sculling error considering the
fourth order term of the Picard series.

III. A METHOD FOR TRANSFORMING CONING ERROR
COMPENSATION INTO SCULLING ERROR
COMPENSATION
Through theoretical research and analysis, we propose a new
operation method ξ , which means to convert the cone error
compensation algorithm into the sculling error compensation
algorithm. Its operational theorems are as follows:

ξ (ω) = aSF, ξ (1θ) = 1v

ξ (ax) = aξ (x)

ξ (x± y) = ξ (x)± ξ (y)

ξ (x× y) = ξ (x)× y+ x× ξ (y) (13)

where, a is constant, x, y are polynomials associated with ω
and 1θ .

Next we theoretically prove the effectiveness of the con-
version algorithm. Take the equivalent differential equation
based on the Picard series expansion proposed by Savage
as an example. The Picard series solution of Eq.3 can be
expressed as follows:

˙1φ1 = ω, 1φ1 = 1θ

˙1φ2 =
1
2
1θ × ω

˙1φ3 =
1
2
1φ2 × ω +

1
6
1θ × ˙1φ2

˙1φ4=
1
2

(
1φ3×ω+

1
3
1θ× ˙1φ3

)
+
1
6
1φ2× ˙1φ2 (14)

wherein, 1φi =
∫ τ
0
˙1φidτ .

Applying the transformationmethod proposed in this paper
to Eq.14, we can get

ξ
(
˙1φ1
)
= ξ (ω) = aSF = ˙1η1

ξ
(
˙1φ2
)
=

1
2
ξ (1θ)× ω +

1
2
1θ × ξ (ω)
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)
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1
6

(
1η2 × ˙1φ2 +1φ2 ×
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= ˙1η4 (15)

where, 1ηi =
∫ τ
0 1̇ηidτ .

The Picard series expansion of the velocity translation
vector obtained by the transformation method proposed in
this paper is exactly the same as that derived by the deriva-
tion [21], which proves the general equivalence between the
sculling algorithm and the cone algorithm. That is to say,
as long as we know a cone error compensation algorithm,
we can get the corresponding sculling error compensation
algorithm by utilizing the transformation method proposed in
this paper. This greatly simplifies the design of the sculling
algorithm.

IV. EFFECTIVENESS VERIFICATION OF THE CONVERSION
METHOD
In the previous section, the general equivalence between the
sculling algorithm and the cone algorithm is proved, and a
new conversion method is given. The validity of the conver-
sionmethod is theoretically proved. In this section, we use the
four most representative cone error compensation algorithms
as examples to give the conversion process and the conver-
sion results and compare them with the theoretically derived
sculling error compensation algorithm to further verify the
conversion method effectiveness.

A. SAVAGE’S ALGORITHMS
The coning algorithm derived in Savage is [14]:

φc =

L∑
l=1

1
2

(
θl−1 +

1
6
1θl−1

)
×1θl (16)

where, l is the computer period index within a computer m
period, defined to be zero at time tm−1; L is the number

of l periods within an m period; 1θl is 1θ in Eq.4 with
integral limits from tl−1 to tl that can be expressed as 1θl =∫ l
tl−1

ωdτ ; and θl can be expressed as θl = θl−1 +1θl .
We transformed this algorithm by the method ξ proposed

in this paper, and the conversion process is as follows:

ξ (φc) =

L∑
l=1


1
2
ξ

(
θl−1 +

1
6
1θl−1

)
×1θl

+
1
2

(
θl−1 +

1
6
1θl−1

)
× ξ(1θl)



=

L∑
l=1


1
2

(
vl−1 +

1
6
1vl−1

)
×1θl

+
1
2

(
θl−1 +

1
6
1θl−1

)
×1vl

 (17)

where,1vl is 1v in Eq.12 with integrallimits from tl−1 to tl
that can be expressed as 1vl =

∫ l
tl−1

aSFdτ ; and vl can be
expressed as vl = vl−1 +1vl .
The sculling error compensation algorithm given in [18] is

exactly the same as that obtained by Eq.17.

B. IGNAGNI’S ALGORITHMS
Ignagni’s coning algorithm is [7]:

φc =
1
2

L∑
l=2

θl−1 × 1θl

+

L∑
l=1

[
9
20
1θl (1)+

27
20
1θl (2)

]
×1θl (3) (18)

where, 1θl (i) is the angular increments vector over the ith
interval within the l period; what’s more, the sum of1θl (1),
1θl (2) and 1θl (3) equals 1θl in Eq.4 integral limits from
tl−1 to tl ; L, l, m, θl are the same defined in Eq.16
This algorithm can be transformed by the method ξ pro-

posed in this paper, and the conversion process is as follows:

ξ (φc) =
1
2

L∑
l=2

ξ
(
θl−1 × 1θl

)
+

L∑
l=1

ξ

[
9
20
1θl (1)+

27
20
1θl (2)

]
×1θl (3)

+

L∑
l=1

[
9
20
1θl (1)+

27
20
1θl (2)

]
× ξ (1θl (3))

=
1
2

L∑
l=2

(
vl−1 × 1θl C θl−1 × 1vl

)
+

L∑
l=1

[
9
20
1vl (1)+

27
20
1vl (2)

]
×1θl (3)

+

L∑
l=1

[
9
20
1θl (1)+

27
20
1θl (2)

]
×1vl (3) (19)

where, 1vl (i) is the angular increments vector over the ith
interval within the l period; what’s more, the sum of1vl (1),
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1vl (2) and 1vl (3) equals 1vl in Eq.12 integral limits from
tl−1 to tl ; vl are the same defined in Eq.17.
The sculling error compensation algorithm given in [17] is

exactly the same as that obtained by Eq.19.

C. MILLER AND SONG’S ALGORITHMS
We use the three sub-sample algorithm as an example to
verify, and the three sub-sample algorithm is expressed as
follows [6]:

φc3 = 1θ1 +1θ2 +1θ3 +
27
40
1θ1 ×1θ2

+
9
20
1θ1 ×1θ3 +

27
40
1θ2 ×1θ3 (20)

where, 1θ1, 1θ2, 1θ3 are the angular increments in the[
tk , tk + h

3

]
,
[
tk + h

3 , tk +
2h
3

]
,
[
tk + 2h

3 , tk+1
]
, respectively;

the sum of1θ1,1θ2 and1θ3 is equal to1θ ; h is the attitude
update period.

This algorithm is transformed by the method ξ proposed in
this paper. The conversion process is as follows:

ξ (φc3)= ξ (1θ1)+ξ (1θ2)+ξ (1θ3)+
27
40
ξ (1θ1 × 1θ2)

+
9
20
ξ (1θ1 × 1θ3)+

27
40
ξ (1θ2 × 1θ3)

=1v1+1v2+1v3+
27
40
(1v1×1θ2+1θ1×1v2)

+
9
20
(1v1 ×1θ3 +1θ1 ×1v3)

+
27
40
(1v2 ×1θ3 +1θ2 ×1v3) (21)

where, 1v1, 1v2, 1v3 are the velocity increments in the[
tk , tk + h

3

]
,
[
tk + h

3 , tk +
2h
3

]
,
[
tk + 2h

3 , tk+1
]
, respectively;

the sum of1v1,1v2 and1v3 is equal to1v; h is the attitude
update period.

We can find that the sculling error compensation algorithm
given in [15] is exactly the same as the result of the conversion
of Eq.21.

D. WANG’S ALGORITHMS
WANG first considered the third order of Picard in cone error
compensation. Theoretical analysis shows that the algorithm
has higher precision in high dynamic environment. We use
the three-subsample third-order cone algorithm proposed as
an example to verify it. The algorithm can be expressed as
follows [16], [19], (22), as shown at the bottom of this page,
where, 1θ1, 1θ2 and 1θ3 are the same defined in Eq.20.

It is transformed by the transformation method ξ proposed
in this paper. The conversion process is as (23), as shown at
the top of the next page.

The above formula can be used to obtain the three-
subsampled error compensation algorithm considering the
Picard third-order term (24), as shown at the top of the next
page, where, 1v1, 1v2, 1v3 are the same defined in Eq.21.

We can find that the sculling error compensation algorithm
obtained by the conversion method ξ is exactly the same as
the derived result.

V. EXPERIMENT
In order to further verify the effectiveness of the proposed
transformation method, we carry out simulation experiments
under pure sculling conditions and high dynamic environ-
ment. In the simulation experiment, we select three sculling
error compensation algorithms obtained in the previous
section through the transformation method proposed in this
paper. They are Eq.19, Eq.21, and Eq.24, respectively. The
corresponding algorithms are Ignagni’s algorithm, Song’s
extension algorithm, and Wang’s algorithm.

A. SIMULATION IN PURE SCULLING ENVIRONMENT
The pure sculling simulation experimental conditions used
in this paper are as follows: angular amplitude 5◦; linear
amplitude 0.3m; cone and scull period 2s; sampling period
0.01s; simulation time 6s.
In Fig.1, Fig.1(a)-(e) depict the typical sculling motion

state, Fig.1(f) is the comparison of sculling drift error.
In Fig.1(f) the red line is the Ignagni’s sculling error com-
pensation algorithm; the blue line is the extended sculling
error compensation algorithm proposed by Song; the black
line is the high-precision sculling error compensation algo-
rithm obtained by transforming the cone algorithm of
Wang.

From Figure 1, we can see that the Ignagni’s sculling
error compensation algorithm has the same accuracy as the
extended sculling error compensation algorithm proposed by
SONG, and its Z-axis velocity error at 6s is 1.8 × 10−3m/s.
Simulation results are consistent with theoretical conclusions.
This is because it only considers the second-order term of
the velocity translation vector, and the cross product of the
angular increment and the velocity increment depends only
on the spacing of the two increments in the purely swept state
regardless of its absolute time position. The high-precision

φc3 = 1θ1 +1θ2 +1θ3 +
57
80
1θ1 ×1θ2 +

33
80
1θ1 ×1θ3 +

57
80
1θ2 ×1θ3

−
261
2240

(1θ1 ×1θ2)×1θ1 +
207
1120

(1θ1 ×1θ2)×1θ2 +
981
2240

(1θ1 ×1θ2)×1θ3

−
27
448

(1θ1 × 1θ3)×1θ1 −
27
160

(1θ1 ×1θ3)×1θ2 +
27
448

(1θ1 ×1θ3)×1θ3

−
45
448

(1θ2 ×1θ3)×1θ1 −
207
1120

(1θ2 ×1θ3)×1θ2 +
261
2240

(1θ2 × 1θ3)×1θ3 (22)
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ξ (φc3) = ξ (1θ1)+ ξ (1θ2)+ ξ (1θ3)+
57
80
ξ (1θ1 ×1θ2)+

33
80
ξ (1θ1 ×1θ3)+

57
80
ξ (1θ2 ×1θ3)

−
261
2240

ξ [(1θ1 ×1θ2)×1θ1]+
207
1120

ξ [(1θ1 ×1θ2)×1θ2]+
981
2240

ξ [(1θ1 ×1θ2)×1θ3]

−
27
448

ξ [(1θ1 ×1θ3)×1θ1]−
27
160

ξ [(1θ1 ×1θ3)×1θ2]+
27
448

ξ [(1θ1 ×1θ3)×1θ3]

−
45
448

ξ [(1θ2 ×1θ3)×1θ1]−
207
1120

ξ [(1θ2 ×1θ3)×1θ2]+
261
2240

ξ [(1θ2 ×1θ3)×1θ3]

= 1v1 +1v2 +1v3 +
57
80
(1θ1 ×1v2 +1v1 ×1θ2)+

33
80
(1θ1 ×1v3 +1v1 ×1θ3)

+
57
80
(1θ2 ×1v3 +1v2 ×1θ3)−

261
2240

[ξ (1θ1 ×1θ2)×1θ1 + (1θ1 ×1θ2)× ξ (1θ1)]

+
207
1120

[ξ (1θ1 ×1θ2)×1θ2+(1θ1×1θ2)×ξ (1θ2)]+
981
2240

[ξ (1θ1 ×1θ2)×1θ3+(1θ1×1θ2)×ξ (1θ3)]

−
27
448

[ξ (1θ1×1θ3)×1θ1+(1θ1×1θ3)×ξ (1θ1)]−
27
160

[ξ (1θ1×1θ3)×1θ2+(1θ1×1θ3)×ξ (1θ2)]

+
27
448

[ξ (1θ1×1θ3)×1θ3+(1θ1 × 1θ3)×ξ (1θ3)]−
45
448

[ξ (1θ2×1θ3)×1θ1+(1θ2×1θ3)× ξ (1θ1)]

−
207
1120

[ξ (1θ2×1θ3)×1θ2+(1θ2×1θ3)×ξ (1θ2)]+
261
2240

[ξ (1θ2×1θ3)×1θ3+(1θ2 ×1θ3)×ξ (1θ3)]

(23)

ξ (φc3) = 1v1 +1v2 +1v3 +
57
80
(1θ1 ×1v2 +1v1 ×1θ2)+

33
80
(1θ1 ×1v3 +1v1 ×1θ3)

+
57
80
(1θ2 ×1v3 +1v2 ×1θ3)−

261
2240

(1θ1 ×1θ2)×1v1 +
207
1120

(1θ1 ×1θ2)×1v2

+
981
2240

(1θ1 ×1θ2)×1v3

−
27
448

(1θ1 ×1θ3)×1v1 −
27
160

(1θ1 ×1θ3)×1v2 +
27
448

(1θ1 ×1θ3)×1v3 −
45
448

(1θ2×1θ3)×1v1

−
207
1120

(1θ2 ×1θ3)×1v2 +
261
2240

(1θ2 ×1θ3)×1v3 +
261
2240

1θ1 × (1θ1 ×1v2 −1θ2 ×1v1)

+
27
448

1θ1 × (1θ1 ×1v3 −1θ3 ×1v1)+
45
448

1θ1 × (1θ2 ×1v3 −1θ3 ×1v2)

−
207
1120

1θ2 × (1θ1 ×1v2 −1θ2 ×1v1)+
27
160

1θ2 × (1θ1 ×1v3 −1θ3 ×1v1)

+
207
1120

1θ2 × (1θ2 ×1v3 −1θ3 ×1v2)−
981
2240

1θ3 × (1θ1 ×1v2 −1θ2 ×1v1)

−
27
448

1θ3 × (1θ1 ×1v3 −1θ3 ×1v1)−
261
2240

1θ3 × (1θ2 ×1v3 −1θ3 ×1v2) (24)

sculling error compensation algorithm obtained by trans-
forming the cone algorithm of Wang has a Z-axis velocity
of 6 s error of 1.1×10−3m/s. It has higher precision in purely
sculling state.

The simulation results show that the sculling error com-
pensation algorithm obtained by the transformation method
proposed in this paper is completely consistent with the the-
oretical precision and the accuracy of the proposed algorithm
in the literature, which proves the effectiveness of the pro-
posed transformation method.

B. SIMULATION IN HIGH DYNAMIC ENVIRONMENT
In order to more fully verify the effectiveness of the pro-
posed transformation method, we performed a simulation
experiment under high dynamic conditions. The angular rate

and acceleration under high dynamic conditions used in the
simulation are [21]

ωx = 1.1+ 0.9 (t − tm−1)− 0.6
[
(t − tm−1)2/2!

]
+ 1.1

[
(t−tm−1)3/3!

]
− 0.1

[
(t − tm−1)4/4!

]
rad/s

ωy = −0.5+ 1.0 (t − tm−1)+ 0.3
[
(t − tm−1)2/2!

]
+ 0.7

[
(t−tm−1)3/3!

]
+ 0.2

[
(t − tm−1)4/4!

]
rad/s

ωz = 0.3− 1.2 (t − tm−1)+ 2
[
(t − tm−1)2/2!

]
− 0.9

[
(t−tm−1)3/3!

]
+ 0.4

[
(t − tm−1)4/4!

]
rad/s

aSFx = 3.5− 2.3 (t − tm−1)+ 1.5
[
(t − tm−1)2/2!

]
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FIGURE 1. Simulation in pure sculling environment (a) Y axial acceleration (b) Z axial acceleration (c) Y axial velocity (d) Z axial velocity(e) X
axial angular motion(f) Comparison of sculling drift error.

TABLE 1. Velocity error simulation in high dynamic environment.

+ 6.1
[
(t − tm−1)3/3!

]
− 2.7

[
(t − tm−1)4/4!

]
m/s2

aSFy = 7.3+ 1.5 (t − tm−1)− 2.7
[
(t − tm−1)2/2!

]
− 3.6

[
(t − tm−1)3/3!

]
+ 1.9

[
(t − tm−1)4/4!

]
m/s2

aSFz = −9− 5.6 (t − tm−1)+ 4.6
[
(t − tm−1)2/2!

]
+ 4.3

[
(t − tm−1)3/3!

]
− 3.5

[
(t − tm−1)4/4!

]
m/s2

(25)

In order to verify the validity of the proposed transfor-
mation algorithm,the navigation result of the 0.1s data of
sampling frequency 10MHZ is taken as the exact velocity
solution. The three sculling error compensation algorithms
obtained by the conversion method proposed in this paper are
used for verification. The Ignagni’s algorithm, Song’s algo-
rithm and Wang’s algorithm have the velocity error of 0.1s as
shown in Table 1.

The simulation results show that the accuracy of the
extended algorithm of Song is better than that of the
traditional algorithm; the high-precision sculling error

compensation algorithm obtained by transforming the cone
algorithm ofWang is better than the Song extended algorithm.
The results show that the sculling algorithm obtained by
the conversion method is exactly the same as the algorithm
derived from the corresponding literature, which proves the
feasibility of the proposed transformation method.

VI. CONCLUSION
In view of the research that the scholars mainly spend their
energy on the design of the cone error compensation algo-
rithm, and the research on the sculling error compensation
algorithm is less. This paper proposes a new conversion
method, which can convert the cone algorithm into the corre-
sponding sculling algorithm accurately by simple operation.
We theoretically prove the general equivalence between the
sculling algorithm and the cone algorithm, and prove the
effectiveness of the conversion method. In addition, we also
take the existing cone error compensation algorithm as exam-
ples, and give its conversion process and conversion results.
The conversion results are exactly the same as the derivation

140436 VOLUME 7, 2019



P. Jiang et al.: Method Converting Cone into Sculling Algorithm for Strapdown Inertial Navigation System

error compensation algorithms given by the derivation, prov-
ing the effectiveness of the proposed method. Since most of
the previous research work focused on the design of atti-
tude solving, a large number of cone algorithms have been
designed. The conversion method can directly obtain the
corresponding sculling error compensation algorithm, which
undoubtedly simplifies the design of the sculling algorithm.
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