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ABSTRACT The traditional cellular automata model cannot fully demonstrate the effect of buses on road
capacity due to the incapable of considering the difference in dynamic performance and driving behaviors
between buses and other vehicles. In this paper, a novel cellular automata model accounting for car-following
and lane-changing behaviors was developed to investigate the relationship between the multilane road
capacity and the proportion of buses. The parameters of the model were calibrated and verified using the
data collected from a real-word road with heterogeneous traffic flow. The calibration result indicates that
the proposed model can accurately describe the evolution of traffic dynamics on multilane roads. It is found
that drivers have a specific preference in determining the target lane in the lane-changing process. Under the
same conditions, bus drivers prefer to choose the side lane of the road, while drivers of other vehicles prefer
to select the middle lanes. Besides, the preference for the target lanes affects the lane-changing behaviors of
the drivers, resulting in a considerable difference in optimal traffic density and maximum traffic volume in
different lanes. Moreover, the simulation result suggests that the proportion of buses has a significant impact
on road capacity (e.g., the capacity is reduced by as much as 18%). To increase road capacity and improve
bus services, based on the proposed model, transit authorities can dynamically allocate the limited road space
to buses and other vehicles according to the proportion of buses.

INDEX TERMS Multilane road capacity, cellular automata model, car-following, lane-changing, bus.

I. INTRODUCTION
Road capacity can be derived from the correlations between
three key traffic variables, namely, flow, speed, and den-
sity [1]. However, there is no easy way to measure the road
capacity in the field or estimate the road capacity under dif-
ferent traffic conditions [2]. The previous studies have shown
that road capacity depends on traffic composition, varies
greatly from lane to lane, and falls by 8 ∼ 9% through traffic
breakdown [3]–[10]. The road capacity is often underutilized
due to the inefficiency of ramp metering control [11]. The
Highway Capacity Manual (HCM) provides an authoritative
source of static data on road capacity [12]. But road capacity
is a variable that changes with the local conditions [13].

The first step to quantify the variation in road capacity
is to understand the complex features of multilane traffic.
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Many scholars have attempted to identify these features. For
instance, Kerner et al. developed a simple cellular automaton
model for road capacity in two-lane roads [14], and explored
the effect of automatic vehicles on mixed traffic flow, using
the three-phase traffic theory [15]. Ameri et al. designed
neural networks (NNs) to evaluate the capacity of two-lane
roads in the suburbs [16]. Tang et al. created a macro traf-
fic flow model to disclose how road capacity affects traffic
flow [17]. Qian et al. improved the cellular automaton model
to investigate the effects of a multi-point tollbooth on traffic
flow [18]. Chen et al. estimated the capacity of urban express-
way through microscale simulation [19]. He and Jia et al.
combined the empirical data with traffic flow theory, and
successfully simulated road capacity [20]–[22]. However, the
above studies have not included speed and acceleration limits
of different vehicles in the simulation models.

The previous studies have also shown that road capacity
may be reduced by the lane-changing maneuvers of buses.
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Despite taking up a small fraction of the traffic flow, the buses
have a great impact on road capacity, especially under heavy
traffic. Unfortunately, previous simulation modeling always
translates buses into equivalent passenger car units, which
couldbuses inadequately depict the road capacity reduction
phenomenon caused by buses within the real traffic flow.
Therefore, it is necessary to develop a multilane simulation
model to consider the interactions between buses and other
vehicles when analysis the fluctuation of road capacity. With
the help of the model, we could effectively allocate limited
road space to buses and other vehicles, and provide reliable
public transit service while increasing the maximum traffic
volume.

The remainder of this paper is organized as follows:
Section 2 develops a multilane cell transmission model that
simulates the driving behaviors of various vehicles on mul-
tilane roads; Section 3 calibrates the variables of the estab-
lished model with field data; Section 4 carries out simulations
under different compositions of traffic flow; Section 5 puts
forward the research conclusions.

II. MODEL FORMULATION
On multilane roads, the driving behaviors of various vehicles
directly bear on the heterogeneity of the traffic flow. These
behaviors, e.g. car-following and lane-changing, must be
simulated before designing a model of the multilane traffic.
In fact, the decisions on car-following and lane-changing
are affected by the heterogeneous traffic flow, as well as
external factors like road geometry and traffic control plan.
Therefore, this section develops a multilane cell transmission
model to simulate the microscale traffic state in temporal,
longitudinal and lateral dimensions. The model consists of
a traffic flow module that governs the traffic flow propa-
gation in each lane, and an acceptance mechanism for car-
following and lane-changing based on gap assessment rules.
The flow chart of the established model is illustrated in
Fig 1 below.

The multilane cell transmission model can be implemented
in the following steps:

Step 1: Initializing the simulation variables: set the initial
and final positions, input the start and end times, and con-
figure the driver variables, road variables (land width, lane
length, the number of lanes, etc.), and vehicle variables (vehi-
cle sizes, speed limits, acceleration/deceleration limits, etc.).

Step 2: Determining the traffic state: design the traffic
management strategy of each lane, the vehicle speed, gap, and
driver status at time t .
Step 3: Selecting the suitable lane and driving behav-

iors: the driver of each vehicle selects a suitable lane based
on the traffic state, i.e. choose between car-following and
lane-changing, and then determines the suitable accelera-
tion or deceleration.

Step 4: Updating vehicle positions and detection data:
Compute the actual speed of each vehicle, and update the time
and position of each vehicle and the traffic flow.

A. POSITION UPDATE UNDER CAR-FOLLOWING STATE
Let xn be the position of a vehicle at time tn. Since the time
step τ of is constant, time tn can be expressed as:

tn = nτ s.t. n = 1, 2, . . . ,
T
τ

(1)

where n is the time index of tn; T is the total simulation time.
In the subsequent time tn+1, the relationship between vehicle
speed and position can be described as:

f (v, x)
def
=


vn+1 = max(0, v(min))
xn+1 = xn + vn+1τ
v(min) = min(vfree,l, vm,n, vr,n, vc,n)

(2)

where vfree,l is the maximum free-flow speed of vehicles
depending on the vehicle performance and speed limit of each
lane l; vm,n is the maximum safe speed of vehicles depending
on vehicle position and the gap between the current vehicle
and the leading vehicle; vr,n is the vehicle speed under ran-
dom fluctuation state depending on the driver emotions:

vr,n = vn−1 + am,nτηn (3)

where vn−1 is the vehicle speed at time tn−1; am,n is the max-
imum acceleration/deceleration of vehicles at time tn; ηn are
normally distributed random variables; vc,n is the maximum
possible speed of vehicles in the car-following state:{

vc,n = vn−1 + ẍc,n × τ

ẍc,n = β0,cG
β1,c
l,n,c × ( ẋf ,nẋs,n

)β2,c × (ẍf ,n−1)β3,c
(4)

where ẍc,n is the possible acceleration/deceleration of the
current vehicle; Gl,n,c is the gap between the current vehicle
and the leading vehicle at time tn; ẋf ,n and ẋs,n are the speeds
of the front vehicle and the current vehicle at time tn, respec-
tively; ẍf ,n−1 is the acceleration/deceleration of the leading
vehicle at time tn−1; β0,c, β1,cβ2,c and β3,c are the correlation
coefficients, defined by Shen et al. [23], for the explanatory
variable of equation (4).

B. POSITION UPDATE UNDER LANE-CHANGING STATE
The lane-changing often leads to stop-and-go waves in the
upper lane. This maneuver must be well simulated by the
multilane traffic model. The previous studies have found that
fewer buses in traffic flow helps reduce the collision risk
induced by lane-changing behavior, and young female drivers
are more likely to cause collisions in lane-changing than male
drivers. The accurate modelling of lane-changing behavior is
critical to the safety of vehicles.

The utility of lane l perceived by driver n at time t can be
expressed as [24]:

Ultn = Vltn + εltn ∀l ∈ Ln (5)

where Vltn is the utility of lane l reflected by the traffic envi-
ronment; Ln is the set of adjacent lanes that can be selected by
driver n; εltn is an independent, normally-distributed, random
utility component of lane l perceived by driver n at time t .
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FIGURE 1. Flow chart of multilane cell transmission model.

According to Choudhury, the utility of the target lane is
affected by the features of the lane, the features of the adjacent
vehicles in the lane, and the driving plan. Therefore, the utility
of the target lane under the discretionary lane-changing can
be described as:

Vltn = β l0 + β
l
1Dltn + β

l
2V

avg
ltn

+β l31X
front
ltn + β

l
41V

front
lt + αlvn (6)

where β l0 (pcu/km) is a fixed term in the utility function of
lane l; Dltn is the density of lane l; V avg

ltn (m/s) is the average
speed in lane l;1X frontltn (m) and1V front

ltn (m/s) are the lead gap
and lead speed between the current vehicle and the leading
vehicle in lane l, respectively; β li is the correlation coefficient
vector of the explanatory variable of the utility function;
vn ∼ N (0, 1) is a random error term generated by the features
of the driver; αl is the correlation coefficient vector of vn.
Note that the lead gap refers to the distance between the front
of the current vehicle and the rear of the leading vehicle
in lane l and the lead speed refers to the speed difference
between the current vehicle and the leading vehicle in lane l.

It is assumed that the random error terms in the utility
functions of different lanes are independent in terms of dis-
tribution. Then, the probability that driver n selects lane l can
be expressed as:

Ptn(lt |vn) =
exp(Vltn|vn)∑

li∈Ln
exp(Vlitn|vn)

∀l, li ∈ Ln (7)

It is also assumed that the lane with the highest probability
is the target lane of lane-changing. Based on Choudhury’s
model, the utility function of our lane-changing model can be
derived from the gap and speed difference between the current
vehicle and the leading vehicle:

Vltn = β l0 + β
l
1Vn + β

l
2V

avg
ltn + β

l
3Dltn

+β l41X
front
ltn + β

l
51V

front
ltn + β l61X

lag
ltn

+β l71V
lag
ltn + α

lvn (8)

where Vn is the speed of the current vehicle n in the current
lane; V avg

ltn (m/s) is the average speed of lane l; 1X frontltn (m)

and1V front
ltn (m/s) are the lead gap and lead speed between the

current vehicle and the leading vehicle in lane l, respectively;
1X lagltn (m) and 1V lag

ltn (m/s) are the lag gap and lag speed
between the current vehicle and the lagging vehicle in lane l,
respectively; β li is the correlation coefficient vector of the
explanatory variable of the utility function (i = 1, 2, · · · 7).
Note that the lag gap refers to the distance between the rear
of the current vehicle and the front of the lagging vehi-
cle in lane l and the lead speed refers to the speed differ-
ence between the current vehicle and the lagging vehicle in
lane l.

After selecting the most suitable lane to change, the driver
should evaluate the available adjacent gap in the target lane
and decide whether to change lanes immediately. The gap
must be greater than the critical lead or lag gaps below:

ln(Gln t ) = βXln t + αvn + εln t (9)

where Gln t is the critical gap in the direction of target lane
l(m); Xln t is the explanatory variable that affects either the
critical lead gap or critical lag gap in the direction of the
target lane l; α is the lead/lag gap acceptance coefficient of
individual-specific explanatory variable vn; εln t ∼ N (0, σ 2)
are random terms.

III. CALIBRATION OF SIMULATION VARIABLES
The field data were collected from Xuanwu Avenue, a four-
lane road that stretches from west to east in downtown
Nanjing, China, using microwave radar detector and roadside
laser detector. The trajectories of different vehicles in the
road section were simulated, and used to compute the speeds
and accelerations. The computed results were adopted to
estimate our model for lane-changing. The variables of each
lane, including lane density, lane speed, and the proportion of
buses, were derived from the raw data. The resulting estima-
tion data contain 2,888 entries on 815 lane-changing vehicles.
About 40% of the data were categorized as calibration data
and the rest as the test data. Overview of the data are shown
in Table 1.

Fig. 2 presents the effects of the level of service (LOS),
which covers traffic flow, speed, delay and safety, on a
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FIGURE 2. The trajectories at different LOSs.

TABLE 1. Overview of the research data.

specific lane of the multilane road. It can be seen that the
lane-changing behavior varies significantly with the LOSs.
Also, the trajectories show that the lane-changing behavior is
obviously affected by the operation features and traffic flow
of the multilane road.

In Fig. 2, The lane-changing behavior occurs frequency
at LOS C. When the LOS belongs to classes A and B, each
vehicle tends to drive on the current lane, because of the high
degree of freedom to select speed and operating conditions
of each lane. However, the traffic flow does not increase
at the same rate across the adjacent lanes of the multilane
road. Thus, the drivers on different lanes tend to change
lanes for a better driving experience. When the LOS is above
class C, there is often few acceptable gaps in the target lane,
which suppresses the lane-changing behavior. Thus, the lane-
changing behaviors at LOS C were selected to analyze the
drivers’ preference on lane-changing behavior.

A. CALIBRATION OF CAR-FOLLOWING VARIABLES
Before calibrating car-following variables, the field data
were divided into two parts. Each part was further split
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TABLE 2. Variables fitting results.

into 8 groups based on acceleration, deceleration, and four
vehicle-following patterns, namely, car following car (C-C),
car following bus (C-B), bus following bus (B-B) and bus
following car (B-C). Variables of equation (4) were fitted by
maximum likelihood estimation (in Reference [23]) and the
results are displayed in Table 2.

B. BCALIBRATION OF LANE-CHANGING VARIABLES
This subsection calibrates the explanatory variables of (4)
by the maximum likelihood estimation. The likelihood curve
is not purely concave. If all coefficients of the individual-
specific error term have opposite signs, then the solution
will not change because of the symmetricity of the curve. To
prevent falling into the local optimum trap, multiple points
were selected for the optimization. Note that the estimation
involves no traffic simulator, i.e. the estimated models are
simulator-independent.

1) CRITICAL GAP OF LANE-CHANGING
A vehicle cannot change into the target lane if the available
gap is not acceptable. Before lane-changing, the driver must
evaluate the adjacent gap in the target lane and decidewhether
to change lanes immediately. Besides, both lead and lag gaps
should be greater than the corresponding critical gaps before
changing lanes.

During lane-changing, the critical lead and lag gaps are not
fixed values, but vary with the speed of the current vehicle
in the current lane and that of the vehicles in the adjacent
lane. The relationship between the critical gaps and the speed
difference was derived from the trajectories in lane-changing
(Fig. 3).

Based on exponential model, the relationship between the
critical gaps and speed differences can be expressed as:{

Glead = 4.11e0.3859Vdlead + 12.14
Glag = 15.63e0.1683Vdlag

(10)

where Glead is the critical gap between the current vehicle
n on original lane and the leading vehicle on adjacent lane;
Glag is the gap between the current vehicle n on original
lane and the lagging vehicle on adjacent lane; Vdlead is the
speed difference between the current vehicle n on original

FIGURE 3. Speed difference under lane-changing process.

lane and the leading vehicle on adjacent lane; Vdlag is the
speed difference between the current vehicle n on original
lane and the lagging vehicle on adjacent lane.

It can be seen from equation (10) that, in the course of
lane-changing, drivers differ in their requirements on the gap
between adjacent lanes. Under the same speed difference,
the critical lead gap is generally larger than the critical lag
gap. Besides, the two critical gaps grow at different rates with
the increase in speed difference.

2) MODEL CALIBRATION
The likelihood function was employed to describe the lane-
changing decision of the driver on the multilane road. It is
assumed that different drivers are independent in their obser-
vations. The explanatory variables of equation (8) were com-
puted by the maximum likelihood estimates on MATLAB.

The 815 pairs of lane-changing trajectories were split into
two groups: 326 pairs for calibration and 489 pairs for testing.
The calibration results of our model and Choudhury’s model
were given in Tables 3 and 4, respectively. Since the Sig
values were less than 0.05, the variables of the two models
are statistically significant in the calibration process.

3) PERFORMANCE COMPARISON
The receiver operating characteristic (ROC) curve of our
model were compared with that of Choudhury’s model. Both
curves were drawn based on the 489 pairs of trajectories for
testing. The ROC curves of two models are shown in Fig 4.

The ability of each model to predict the selected lane can
be determined easily by comparing its ROC curve with a
straight line with a slope of 45◦. The larger the area between
the curve and the line, the stronger the prediction ability of
the model, that is, the smaller the false positive and negative
prediction results. The area under the ROC curve generally
falls between 0.5 and 1.0. The prediction ability increases
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TABLE 3. Calibration results of our model.

TABLE 4. Calibration results of Choudhury’s model.

FIGURE 4. The ROC curves of our model and Choudhury’s model.

as the area approaches 1.0. If the area is smaller than 0.5,
the model is inapplicable; if the area is equal to 0.5, the model
is invalid; if the area is between 0.5 and 0.7, the model has a
poor prediction accuracy; if the area is between 0.7 and 0.9,
the model has a medium accuracy; if the area is greater than
0.9, the model has a high accuracy. Based on the trajectories,
the ROC curves of the two models were compared in Table 5.

TABLE 5. Comparison of the ROC curves.

As shown in Table 5, the area under the ROC curve of
our model was 0.933, larger than that of Choudhury’s model
(0.868). This means our model has the better prediction abil-
ity on discretionary lane-changing decisions on the multilane
road.

C. MODEL VERIFICATION
In this subsection, the traffic density and traffic flow are
simulated based on the actual data collected from Xuanwu
Avenue. The simulation targets a 3,000m-long road section,
which was divided into 6,000 cells, each corresponding to
0.5m. The four lanes of the road were denoted as Lanes 1, 2,
3 and 4, respectively, from the outside to the inside. Several
detectors were arranged at the interval of 1,000 cells. During
the simulation, the vehicle travelled from left to right. In the
light of the field data, two types of vehicles were chosen to
run on the fast lane. One is a 5m-long car, which occupies
10 cells. The other is a 12m-long bus, which occupies 24 cells.
The time step was set to 1s. The proportion of buses in the
traffic flow was designed as 22%, the same as the field data.
The density-flow curves of different lanes were thus obtained
(Fig. 5).

As shown in Fig. 5, with the growth in traffic flow, the four
lanes had a marked difference in the optimal traffic density,
owing to the lane-changing behaviors. Taking Lanes 1 and
4 for instance, the optimal density of Lane 1 was almost
1.6 times that of Lane 4. In addition, the four lanes suffered
from a huge capacity loss induced by drivers’ preference on
lane selection. Taking Lanes 1 and 2 for instance, the capacity
of Lane 1 was about 45% of that of Lane 2.

To verify the simulation effect of our model, the author
analyzed the correlation between the traffic flows measured
on Xuanwu Avenue and those simulated by our model. From
the measured data, 500 sets of traffic density were randomly
selected in different lanes, and used for traffic flow simula-
tion. Themeasured data are compared with the simulated data
in Fig. 6, where the abscissa is the measured data, the ordinate
is the simulated data, the diagonal line is a reference line for
the correlation of 1 (the measured data are fully consistent
with the simulated data).

As shown in Fig. 6, the highest correlation (0.96) appeared
in Lane 2, and the lowest (0.9) in Lane 3. The distribution of
the correlation results shows that the simulated traffic flow
was slightly above the measured data in Lane 3. Overall,
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FIGURE 5. Density-flow curves of different lanes.

FIGURE 6. Correlation between measured and simulated traffic flows.

the correlation between measured and simulated traffic flows
surpassed 0.9 in all four lanes, a sign of the applicability of
our model in simulating the capacity of the target road.

IV. SIMUALTION AND RESULTS ANALYSIS
Buses and cars have great differences in space occupa-
tion, acceleration, deceleration and speed. Therefore, the
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FIGURE 7. Decline in road capacity induced by buses.

FIGURE 8. The road capacity trend with the proportions of buses.

traffic flow containing both buses and cars was converted
into an equivalent flow of cars, denoted as passenger car
equivalents (PCE).

To disclose the impacts of buses on road capacity,
the capacity of each lane in the target road was simulated with
two types of traffic flows. One of them contains only cars, and
the other contains only buses. Fig. 7 illustrates the decline in
road capacity induced by buses.

As shown in Fig. 7, buses caused obvious decline in
road capacity, especially in Lane 1. The road capacity was
expected to peak at 5,880veh/h, and minimize at 3,860veh/h,
putting the difference at 2,020veh/h. The PCE of buses can

be computed by:

PCEbus =
Cb
Cc

(11)

where Cb is the expected capacity of the pure-car traffic
flow; Cc is the expected capacity of the pure-bus traffic
flow. The PCE of buses were computed as 1.5 by equation
(11), which agrees well with the recommended value in the
Highway Capacity Manual (Sixth Edition, 2016). The road
capacity trend with the proportions of buses is presented
in Fig. 8 below.
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In Fig. 8, the lane capacity changed significantly with the
compositions of the traffic flow. The growing proportion of
buses had the greatest impact on the capacity of Lane 1.
It could be concluded that road capacity may be reduced by
the lane-changing maneuvers of buses. Despite taking up a
small fraction of the traffic flow, the buses have a great impact
on road capacity, especially under heavy traffic. Besides,
the road capacity reached the minimum level when the pro-
portions of buses and cars were basically even. The analysis
results also show that the impact of buses on multilane road
capacity cannot be fully characterized by a fixed PCE of buses
With the changes in the proportion of buses, the road capacity
varied by 18% from the peak value of 5,880 pcu/h to the
minimum value of 4,859 pcu/h. This means the impact of
bus proportion must be considered in the research of road
capacity.

V. CONCLUSION
This paper attempts to disclose the spatiotemporal change
law of road traffic flow. Based on cellular automata model,
a novel microscale model was developed to simulate car-
following and lane-changing behaviors simultaneously, and
to disclose how road capacity is affected by the proportion
of buses. The position update rules were determined under
the car-following state and the lane-changing state. Next, our
model was calibrated and verified through a simulation on an
actual road with heterogenous traffic flow. The main results
are as follows:

The proportion of buses has a great impact on the road
capacity. The four lanes had a marked difference in the opti-
mal traffic density, owing to the lane-changing behaviors, and
suffered from a huge capacity loss induced by drivers’ pref-
erence on lane selection. The buses caused obvious decline
in road capacity, and the growing proportion of buses had the
greatest impact on the capacity of Lane 1. The capacity of
that lane plunged deeply with a huge range of fluctuation.
Besides, the road capacity reached the minimum level when
the proportions of buses and cars were basically even. With
the changes in the proportion of buses, the road capacity
varied by 18% from the peak value of 5,880 pcu/h to the min-
imum value of 4,859 pcu/h. This means the impact of buses
on multilane road capacity cannot be fully characterized by
the fixed PCE of buses.

Although curbside bus stops are also proven to affect road
capacity, in this study, we mainly analyze the impact of the
bus on road capacity during the normal driving process, and
cannot consider the bottleneck due to curbside stops of buses.
Through accounting for the microscale interaction among
different vehicles, our model can character the macroscale
fluctuation features of actual multilane road capacity. With
the proposed model, transit authorities can more intuitively
understand the dynamic evolution of traffic flow and the
impact of buses on the road capacity. Moreover, the research
findings provide an excellent tool for transit authorities to
dynamically allocate limited road space to buses and other
vehicles according to the proportion of buses. Thus, transit

authorities can increase road capacity while improving bus
services.
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