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ABSTRACT Modulated wideband converter (MWC) is a multi-branch sub-Nyquist sampling structure for
processing the spare wideband signals. By mixing with a periodic pseudo-random bit sequence (PRBS),
each branch of MWC compresses the information of the input signal into a narrow baseband which can be
sampled at low speed. Based on the several sampling sequences, the input signals can be reconstructed by
compressed sensing (CS) optimization algorithms. However, the classic MWC (C-MWC) still consumes a
lot of hardware resources because of its complex structure. Especially when the spectrum is blind, the total
sampling rate is required to be four times the Landau rate for joint sparse reconstruction. To solve this
problem, this paper proposes alternate MWC (A-MWC). A-MWC replaces the periodic PRBSes with two
sets of alternating PRBSes and uses a trigger to synchronize the PRBSes and the sample sequences. Based
on a reasonable assumption that the input signals are the wide-sense stationary (WSS) signals which have
the same power spectral density (PSD) in each time slice, this paper reduces the requirement the sampling
rate for blind joint sparse reconstruction to twice Landau rate successfully. Both simulation and experiment
prove that A-MWC reduces the number of branches required for blind reconstruction without reducing the
quality of the reconstructed signal.

INDEX TERMS Modulated wideband converter, compressed sensing, hardware implementation, cognitive
radio, wide-sense stationary signal.

I. INTRODUCTION
With the rapid development of wireless communication
in recent years, the spectrum becomes crucially scarce.
However, the spectrum resource is wasted due to it is not
fully utilized by primary users (PUs). Cognitive radio (CR)
is proposed to improve spectrum utilization by opportunis-
tic sharing the spectrum between PUs and secondary Users
(SUs) [1]–[5]. Therefore, SUs not only need to monitor a
wide band to ensure sufficient unoccupied spectrum but also
need to receive and reconstruct the union of several bands.

Due to the sparseness and randomness of the spectrum
processed by SUs, the traditional Nyquist sampling con-
sumes considerable hardware resources, and the sampling
signal contains a significant amount of redundant informa-
tion. Analog compressed sampling is a class of sub-Nyquist
sampling structures based on CS theory [3], [6]–[8]. With
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limited hardware resources, they have the dual capabilities
of spectrum sensing and signals reconstruction [9], [10].

In recent years, several compressed sampling struc-
tures have been proposed and improved, such as random
demodulation [11]–[13], multi-coset sampling [10], [14],
MWC [15]–[18] and so on. Random demodulation can sense
the discrete spectrum and reconstruct a multi-tone signal, but
it is difficult to be compatible with a piecewise continuous
multiband spectrum. In spite of the strong application for
multi-band signals, the performance of multi-coset sampling
structures is also limited by the front-end bandwidths of
ADCs and extreme sensitivity of channel mismatch. In [19],
Mishali and Elder proposed C-MWC, which ADCs only need
to sample the low-pass filtered signal. Benefited from its
hardware realizability and natural advantage of processing
multi-band signals, this structure is very suitable for CR
technologies.

Landau discovered a minimal rate requirement allowing
a perfect reconstruction for any sampling system, which is
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called Landau rate [20]. Landau rate is equal to the actual fre-
quency occupancy. For an N -band signal in which the maxi-
mum bandwidth of each band does not exceedBw, the Landau
rate is NBw. Mishali and Elder demonstrated that the sample
rate need for blind reconstruction by C-MWC is as two times
as a Landau rate [10], [21]. As stated, the blind reconstruction
algorithm named SBR2 need a sampling rate of 2 NBw, but
it isn’t a perfect reconstruction in some cases. The method
named SBR4 is claimed to be a perfect reconstruction, but
the sampling rate of 4 NBw is needed.For C-MWC, the cost
of the hardware resource is positively related to the number
of branches. And the number of branches is proportional
to the total sampling rate of C-MWC structure. Although it
is possible to reduce the number of branches by increasing
the sample rate of each branch, the number of branches is
still considerable for the hardware implementation, especially
blind signal reconstruction [10].

Under the assumption that the received signal is aWSS sig-
nal, literature [22]–[24] proposes a single channel MWC for
wideband spectrum sensing. Also based onWSS signals, this
paper proposes an A-MWC structure that takes into account
both wide spectrum sensing and signal reconstruction. As far
as we know, almost all existing communication signals are
wide-sense stationary, so it is a reasonable and broad assump-
tion. Using two sets of alternating PRBSes as local oscillators
sequences, A-MWC successfully reduces the sampling rate
required for blind joint spares reconstruction of signals to
twice Landau rate without degrading the reconstructed signal
quality.

This paper is organized as flow: In Section II, we present
the C-MWC structure and the signal processing of C-MWC
briefly. Section III described the A-MWC structure and com-
pared the similarities and differences between A-MWC and
C-MWC. The simulations based on MATLAB are placed in
Section IV. In V, a circuit-level A-MWC is designed and
the experimental results are displayed. Finally, Section VI
concludes this paper.

II. THE CLASSICAL MODULATED WIDEBAND CONVERTER
A. SPARSE MULTI-BAND SIGNAL MODEL
The signals which can be processed by C-MWC must
conform to the sparse multi-band signal model, as shown
in Fig. 1. In this signal model, x(t) is a continuous time
real signal. x(f ), the Fourier transformation of x(t) has at
most N disjoint sub-bands which distributed in FNyq =
[−FNyq/2,FNyq/2] randomly. FNyq is the Nyquist frequency
and N is an even number due to the conjugate symme-
try of the spectrum of the real signals. The bandwidth of
each sub-band does not exceed Bw Hz. The signals are
considered sparse in frequency domain if thermal noise is
ignored.

TABLE 1 summarizes some symbols and their meanings in
this paper. Constants, intervals, sets, and variables are written
in different formats.

FIGURE 1. The signal model of C-MWC.

TABLE 1. Symbol description.

B. COMPRESSED SAMPLING OF C-MWC
C-MWC is a sub-Nyquist sampling structure with M
branches, and its structure is shown in Fig. 2. The input signal
x(t) is divided into M branches by a splitter. In i-th branch,
the divided signal is mixed with a Tp-periodic PRBS pi(t)
which alternates between the levels ±1 for each bit. The
symbolPi represents one cycle of pi(t), and it containsW bits.
C-MWC requires Fp ≥ Bw, where Fp = 1/Tp. Then, the low-
pass filter with the cutoff frequency of Fct = Fs/2 limits the
bandwidth of the mixed signal. An ADC with the sampling
rate of Fs behinds the filter to sample the band-limited signal.
And the sample sequence is represented as yi[n]. In C-MWC,
a total ofM PRBSes are required, and they are different from
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FIGURE 2. The structure of C-MWC.

each other. These PRBSes are constantly repeated, as shown
in Fig. 2. The set ofM PRBSes is recorded as Q.
Consider the i-th branch. pi(t) has a Fourier expansion

pi (t) =
∞∑

l=−∞

ci,le
j 2πTp lt (1)

where

ci,l =
1
Tp

∫ Tp

0
pi (t)e

−j 2πTp ltdt (2)

When Fs = Fp, the discrete-time Fourier transform of the
i-th band-limited sampling sequence yi[n] is expressed as

yi (f ) = Yi
(
ej2π f Ts

)
=

+L0∑
l=−L0

ci,lx
(
f − lFp

)
, f ∈ Fp (3)

where Fp = [−Fp/2,Fp/2] and L0 = d
FNyq+Fs

2Fp
e − 1. The

operator dve returns the smallest integer which is greater than
(or equal to) v. We defined a L-length variable z(f ) with the
l-th element

zl(f ) = x(f + lFp), −L0 ≤ l ≤ L0, f ∈ Fp (4)

Fig. 3 displays the spectrum of z(f ) which corresponds to the
x(f ) of Fig. 1. It is convenient to write (3) in matrix as

yi(f ) = Ciz(f ) (5)

where Ci is L-length row vector and it is consisted of ci,l .
This paper uses a Roman, Bold format to write variables and
matrix.

Literature [10] proposes a method to reduce the number
of physical branches by increasing the ADC sampling rate
appropriately. In this method, an expander extends a physical
branch intoQe subbranches, whereQe = Fs/Fp is the expan-
sion factor. The parameter Qe is an odd number and Qe =
2Q′e + 1,Q′e ∈ N , where N represents the natural number
set. The spectrum analysis of an expander with Qe = 3 is
shown

FIGURE 3. The spectrum analysis of C-MWC.

in Fig. 3. With the expander, (3) is converted to

yi(f + kFp) =
+L0∑
l=−L0

ci,lx(f + kFp − lFp)

=

+L0∑
l=−L0

ci,(l+k)x(f − lFp) (6)

where f ∈ Fp and −Q′e ≤ k ≤ Q
′
e. The matrix form of (6) is

yi(f ) = Ciz(f ) (7)

where yi(f ) = [yi(f − Q′eFp), . . . , yi(f ), . . . , yi(f + Q
′
eFp)]

T

hasQe elements and the size ofCi isQe×L. It is worth noting
that when Q′e = 0, (7) and (5) are the same.
There areM physical branches in C-MWC structure, so the

system can be abstracted into an under-determined equation

y(f ) = Cz(f ) (8)

where

y (f ) =


y1 (f )
y2 (f )
...

yM (f )

 and C =


C1
C2
...

CM

 .
In CS, y(f ) is the observation vector with length of MQe

and C is the sensing matrix with the size of MQe × L. Fig. 3
also shows how C is constructed by the Fourier coefficients
of PRBSes.

C. RECONSTRUCTION METHOD
The key of reconstructing the signal is to solve (8). The sparse
multi-band signal model requires N non-adjacent sub-bands
with the bandwidth Bw ≤ Fp, so z(f ) contains up to N
nonzeros for every f ∈ Fp. That means z(f ) is N -sparse for
every f ∈ Fp.

We defined the function supp(z(f )) returns the support set
S which signifies the indices of the nonzeros of z(f ). For any
f in Fp, once S is found in advance, (8) can be simplified as

y(f ) = CSzS (f ) (9)
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where zS (f ) contains the elements of z(f ) indexed by S
and the other elements are considered to be zeros. Also, CS
contains the columns ofC indexed byS. As long asMQe ≥ N
is true, (9) is overdetermined or well-defined. Then, zS (f ) can
be calculated by

zS (f ) = C†
Sy(f ) (10)

where C†
S is generalized inverse of CS .

If the spectrum distribution of x(f ) is known in advance,
which means that the reconstruction is no-blind, then the
support set of z(f ) can be obtained for every f easily. The
reconstruction condition MQe ≥ N means that the total
sampling rate is greater than the Landau rate.

When the exact distribution of the signal band is unknown,
some CS algorithm is needed to reconstruct the support set,
such as l0-norm-based greedy algorithms [25], [25]–[27],
l1-norm-based convex optimization [28], sparse Bayesian
learning [29], [30], etc. Due to f is continuous, solving (8) is
the problem about infinite measurement vectors (IMV). The
approach which is to find z(f ) over a dense grid ofFp is called
discrete sparse reconstruction in this paper. Literature [10]
and [21] introduced a necessary condition for guaranteeing
the uniqueness of reconstruction is that the number of rows
ofC is greater than twice the sparsity, ieMQe ≥ 2N . It means
that the total sampling rate is greater than twice the Landau
rate for blind discrete sparse reconstruction.

However, discrete sparse reconstruction is very compli-
cated and cumbersome. Joint sparse considers the continuous
interval as a whole in the issue about sparse, and it is very
convenient and efficient to solve an IMV problem. For a
collection of vectors z(f ) over a continuous interval z(Fp) =
{z(f ) : f ∈ Fp}, its support set is defined by

S = supp(z(Fp)) =
⋃
f ∈Fp

supp(z(f )) (11)

z(f ) is N -sparse for every f ∈ Fp, but z(Fp) is jointly
2N -sparse for that each sub-band of x(f ) can contribute up to
two non-zero elements for z(Fp). As shown in Fig.3, the red
sub-band of x(f ) contributes two non-zeroes to z(Fp). For all
f ∈ Fp, z(f ) share this support set, then (9) and (10) are
applicable to the entire interval.

Continuous of finite (CTF) block proposed in [10], [21]
is applied to find the support set of an infinite measurement
vectors. As shown in Fig. 4, CTF block defined aMQe×MQe
matrix

Q =
∫
f ∈Fp

y (f )yH (f ) df (12)

where the superscript H signifies the Hermitian transpose.
Then, we need to solve for any matrix V according to Q =
VVH and construct a new equation

V = CU (13)

Equation (13) is referred to as multiple measurement vectors
(MMV) problem which can be solved by some classical

FIGURE 4. The flow chart of joint sparse reconstruction of C-MWC.

CS optimization algorithms [25]–[27], [29]. Literature [10]
and [21] prove that the sparsest solution U of (13) has the
same support set S as z(f ). Therefore, U is also jointly
2N -sparse. Similarly, to ensure the uniqueness of the sparse
solution, any 4N columns of Cmust be linearly independent,
so MQe ≥ 4N . It means that the total sampling rate for joint
sparse reconstruction needs more than 4 times the Landau
rate. Although the total sampling rate required is doubled,
the joint sparse reconstruction only uses the CS algorithm
once to reconstruct the support set. Therefore, joint sparse
reconstruction greatly reduces the amount of calculation and
is widely used in engineering. Fig. 4 summarizes the process
of joint sparse reconstruction of C-MWC.

Theminimum total sampling rate required for signal recon-
struction of C-MWC is summarized in TABLE 2.

III. ALTERNATE MODULATED WIDEBAND CONVERTER
As described in the literature [21], the C-MWC structure
requires at least twice the Landau rate for blind discrete sparse
reconstruction, that means MQe ≥ 2N . But joint sparse
reconstruction with more engineering value requires a total
sampling rate greater than 4 times the Landau rate.

In this paper, we propose A-MWC structure for process-
ing the WSS signals. As shown in Fig. 5, a trigger which
is an uniform square wave is generated to synchronize all
the PRBSes and ADCs. And the period of the trigger is
determined by the length of sampling window. Unlike MWC,
which requires a set of M PRBSes to repeat continuously,
A-MWC requires two set ofM PRBSes to repeat alternately.
When the received signal is a WSS signal, the sampling rate
required for blind discrete sparse reconstruction is reduced
to the Landau rate. Aslo, the total sampling required for
joint sparse reconstruction is reduced to twice the Landau
rate. In this section, we introduce the signal model, sampling
processing and signal blind reconstruction of A-MWC.
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TABLE 2. Comparison between C-MWC and A-MWC.

FIGURE 5. The structure of A-MWC.

A. SPARSE MULTI-BAND WSS SINGNAL
Assuming a real-valued continuous-time signal x(t) consists
of up to Ng stationary transmissions which are uncorrelated
with each other, x(t) can be modeled as

x(t) =
Ng∑
g=1

βgsg(t). (14)

where sg(t) represent a band-limited wide-sense stationary
real signal with zero-mean, and βg ∈ {0, 1} has the power to

decide whether the g-th transmission is present or not. In the
frequency domain, x(t) is demanded to contain N = 2Ng
nonadjacent continuous sub-bands that randomly distribute
in [−FNyq/2,FNyq/2], and the bandwidth of each sub-band is
not more than Bw Hz. The symbol FNyq indicates the Nyquist
frequency. Therefore, the effective bandwidth of the signal
does not exceed NBw Hz.
Assume that the input signal is a band-limited zero-mean

WSS process which has the same power spectral densitie
(PSD) in any time slice [22], [31]. The PSD obeys the func-
tion Px(f ) =

∫
∞

−∞
x(τ )x(τ − t) exp(−j2π f τ )dτ , and (15) is

hold.

E{x(f1)x(f2)H} = 2πPx(f )δ(f1 − f2) (15)

where E{·} signifies the expectation operator.

B. SAMPLING PROCESSING OF A-MWC
In C-MWC, the W -bit PRBSes are always repeated. But in
A-MWC, there are two sets of W -bit PRBSes, named set
QA and set QB respectively. Each set contains M PRBSes,
corresponding toM branches.

In fact, due to hardware limitations, the length of the sam-
pling sequences is finite. There is a sampling time window
function implicit in signal processing of both C-MWC and
A-MWC. The timing of signals in A-MWC are displayed
in Fig. 6. As shown, the sampling window is divided into
sampling sub-window A and sampling sub-window B, which
are correspond to two equal time intervalsTA andTB respec-
tively. In TA, QA are sent repeatedly with the period of Tp,
and PAi represents a cycle of the PRBS in the i-th branch. But
in TB, QB participates in mixing with period of Tp, and PBi
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FIGURE 6. The timing of signals in A-MWC.

represents a cycle of pBi (t). Both TA and TB are preferably
integer multiples of Tp.
A-MWC considers the input signal x(t) separately in the

two time intervals TA and TB, and two signals are defined as

xA(t) = x(t), t ∈ TA (16)

xB(t) = x(t), t ∈ TB. (17)

And xA(f ) and xB(f ) represent the spectrum of xA(t) and
xB(t), respectively. Since a WSS signal has a same power
spectral densities in any time slice, xA(t) and xB(t) have a
same PSD function Px(f ).
The sampling sequence matrix y[n] is also split in time into

two parts,

yA[n] = y[n],
n
Fs
∈ TA (18)

yB[n] = y[n],
n
Fs
∈ TB (19)

The trigger synchronizes the PRBSes with the sampling
sequences, and its presence guarantees that yA[n] andQA are
consistent on the timeline. Of course, yB[n], and QB are also
consistent in TB.

In TA, A-MWC is equivalent to a C-MWC with the
PRBSes of QA. xA(t) is the input signal, yA[n] represents
the M sampling sequences. Therefore, an under-determined
equation is built like (8).

yA(f ) = CAzA(f ) (20)

where CA is the sensing matrix composed of Fourier coef-
ficients of the PRBSes of QA. The l-th element of zA(f ) is
expressed as

zAl (f ) = xA(f + lFp), −L0 ≤ l ≤ L0, f ∈ Fp (21)

In the same way, A-MWC is equivalent to a C-MWC with
the PRBSes of QB in TB. So, (22) and (23) are obtained.

yB(f ) = CBzB(f ) (22)

zBl (f ) = xB(f + lFp), −L0 ≤ l ≤ L0, f ∈ Fp (23)

A-MWC is equivalent to two C-MWCs that work alter-
nately in time, and the two C-MWCs which use two different
sets of PRBSes are considered to be independent. (20) and
(22) are also established separately in their respective time
intervals.

C. RECONSTRUCTION METHOD OF A-MWC
As long as (20) and (22) are solved, the signal xA(t) and
xB(t) can be successfully reconstructed, then x(t) can also
be obtained by simple splicing. A reasonable assumption
is that the spectral distribution of the WSS signal does not
change in the sampling duration. This means that xA(f ) and
xB(f ) have the same distribution of non-zeroes. For every
f ∈ Fp, zA(f ) and zB(f ) are both N -sparse. As analyzed in
Section II-C, both zA(Fp) and zB(Fp) are jointly 2N -sparse,
and they also have the same support set.

If the signal is non-blind, the support set S can be eas-
ily obtained, whether discrete sparse reconstruction or joint
sparse reconstruction.With S, (20) and (22) can be simplified
like (9).

yA(f ) = CA
S z

A
S (f ) (24)

yB(f ) = CB
S z

B
S (f ) (25)

Like C-MWC, no-blind discrete sparse reconstruction
requires that the total sampling rate be greater than the Lan-
dau rate, (24) and (25) can be solved by generalized inverse
matrix, while no-blind joint sparse reconstruction requires a
total sampling rate of more than twice the Landau rate.

zAS (f ) = [CA
S ]

†yA(f ) (26)

zBS (f ) = [CB
S ]

†yB(f ) (27)

Although the sampling rate required for non-blind recon-
struction is exactly the same as that of C-MWC, A-MWC
can show its advantages in blind reconstruction. If (20) and
(22) are solved separately, that is equivalent to solving two
independent C-MWCs blindly. As described in Section II-C,
blind discrete sparse reconstruction requires a total sampling
rate to reach twice the Landau rate, while blind joint sparse
reconstruction requires a total sampling rate of 4 times the
Landau rate.

An important purpose of this paper is to reduce the total
sampling rate required for blind reconstructed signals by
exploiting the wide-sense stationarity of the signal. Although
zA(f ) and zB(f ) have the same distribution of zeroes, (20) and
(22) cannot directly solve the support set jointly for zA(f ) 6=
zB(f ). However, xA(t) and xB(t) have the same PSD Px(f ) for
the the wide-sense stationarity.

Based on (20), we consider the b-th element of yA(f ).

yAb (f ) = CA
b z

A(f ) (28)

where CA
b represents the b-th row of CA. Do the following

calculation

E{yAb (f )[y
A
b (f )]

H
} = CA

bE{z
A(f )[zA(f )]H}[CA

b ]
H (29)
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Since xA(t) is a WSS signal which has the characteristics
expressed by (15), E{zA(f )[zA(f )]H} is a diagonal matrix.

E{zA(f )[zA(f )]H}

= 2πdiag(px
−L0 (f ), p

x
−L0+1(f ), . . . , p

x
L0 (f )) (30)

where pxl (f ) = Px(f + lFp),−L0 ≤ l ≤ L0 and f ∈ Fp. Then,
(29) can be rewritten as

E{yAb (f )[y
A
b (f )]

H
} = 2π

L0∑
l=−L0

CA
(b,l)[C

A
(b,l)]

∗pxl (f ) (31)

where CA
(b,l) represents the elements in the b-th row and

the l-th column of CA and the superscript ∗ indicates the
conjugate operation. It is convenient to write (31) as

RAb (f ) = DA
bPx(f ) (32)

where RAb (f ) = E{yAb (f )[y
A
b (f )]

H
}, DA

b is a row vector
with its l-th element being 2πCA

(b,l)[C
A
(b,l)]

∗, and Px(f )
is a column vector expressed as Px(f ) = [px

−L0
(f ),

px
−L0+1

(f ), . . . , pxL0 (f )]
T . Because yA(f ) has a total of MQe

elements, (32) is expanded in matrix as

RA(f ) = DAPx(f ) (33)

where RA(f ) is MQe-length column vector with the b-th
element of RAb (f ) and D is a MQe × L matrix. In the same
way, (34) is built in time interval TB.

RB(f ) = DBPx(f ) (34)

Because xA(t) and xB(t) have a same PSD function Px(f ),
(33) and (34) have an identical unknown variable Px(f ).
Combining (33) and (34), we have

R(f ) = DPx(f ) (35)

whereR(f ) =
[
RA (f )
RB (f )

]
andD =

[
DA

DB

]
. The length ofR(f )

is 2MQe and the size of D is 2MQe × L.
Since xA(f ), xB(f ), and Px(f ) have the same positions of

sub-bands, zA(f ), zB(f ) and Px(f ) also have the same distri-
bution of the non-zeroes. Therefore, for every f ∈ Fp, Px(f )
is N -sparse, while Px(Fp) are jointly 2N -sparse. By using
the same CS algorithm for solving (8), the support set S of
Px(f ) can be obtained by solving (35). With S, (20) and (22)
becomes non-blind reconstruction. The Fig. 7 summarizes the
flow of blind joint sparse reconstructed by A-MWC.

TABLE 2 compares the differences between A-MWC and
C-MWC. The input signal of C-MWC is sparse multi-band
signal, while A-MWC emphasizes the wide stationarity of
signal. C-MWC with M branches requires only one set of
PRBSes (Q, containing M PRBSes), which is repeated with
the period of Tp in the whole sampling duration. However,
A-MWC with M branches requires two set of PRBSes,
QA and QB, each of which contains M PRBSes. Moreover,
QA repeats in TA with the period of Tp, while QB repeats
in TB with the period of Tp. A-MWC need a trigger to

FIGURE 7. The signal processing flow chart of A-MWC.

synchronize yA[n] and QA in TA. Of course, yB[n] and QB
are also synchronized. The signal reconstruction processes of
C-MWC and A-MWC are also different and the processes are
shown in Fig. 4 and Fig. 7, respectively.

For a C-MWC with M branches, the underdetermined
equation (8) hasMQe rows. However, the undetermined equa-
tion (35) constructed by A-MWCwithM branches has 2MQe
rows. And their unknown variables z(f ) and Px(f ) have the
same length and sparsity (whether discrete sparse or joint
sparse). Therefore, blind discrete sparse reconstruction needs
the number of rows of (35) to be greater than twice the
sparsity (2MQe ≥ 2N ⇒ MQe ≥ N ). It means that the
total sampling rate is greater than Landau rate. For blind joint
sparse reconstruction, solving (35) needs 2MQe ≥ 4N ⇒
MQe ≥ 2N , that is, the total sampling rate is greater than
twice Landau rate. Whether blind discrete sparse reconstruc-
tion or blind joint sparse reconstruction, the total sampling
rate required by A-MWC is half that of C-MWC, so A-MWC
has obvious advantages in hardware complexity compared to
C-MWC.

For anN -band signal, C-MWC requires at least 2N (or 4N )
sub-branches to construct an underdetermined equation with
2N (or 4N ) rows for blind discrete sparse (or joint sparse)
reconstruction. And A-MWC requires at least N (or 2N ) sub-
branches to construct an underdetermined equation with 2N
(or 4N ) rows for blind discrete sparse (or joint sparse) recon-
struction. Therefore, the matrix size required to reconstruct
the N -band is the same whether A-MWC or C-MWC. The
CS optimization algorithm for reconstructing the support set
plays an absolutely dominant role in the cost of signal recon-
struction. But the calculation cost of this part of C-MWC
and A-MWC is the same.Therefore, the computational cost
of A-MWC is higher than that of C-MWC, but the increase is
slight.
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FIGURE 8. Schematic of (a) uniform division and (b) moving uniform
division.

IV. SIMULATION
In this section, the estimation method of E{yAb (f )[y

A
b (f )]

H
}

is displayed. We define two criteria that the support sets are
considered to be reconstructed effectively. An A-MWC and
a C-MWC are built in MATLAB, and the simulation results
are also shown in this section.

A. ESTIMATED METHOD OF EXPECTATION
In A-MWC, the sampling sequences are divided into two
parts by the two sampling sub-windows. In their respective
sampling sub-windows, (20) and (22) are easily established
by the method of C-MWC. To establish (35) successfully,
the expectation E{yAb (f )[y

A
b (f )]

H
} needs to be estimated.

The estimation method is shown here. We transform yAb (f )
into yAb [n] by the inverse fast Fourier transform (IFFT) first.
Then, yAb [n] is divided into J frames and the j-th frame is
denoted as yAb,j[n]. The symbol yAb,j(f ) denotes the spectrum
of yAb,j[n]. E{y

A
b (f )[y

A
b (f )]

H
} can be estimated by statistical

average

E{yAb (f )[y
A
b (f )]

H
} =

1
J

J∑
j=1

yAb,j(f )[y
A
b,j(f )]

H (36)

A large J value is needed to ensure the accuracy of the
estimate. But yAb [n] is a finite length sequence. If it is divided
equally into J frames as described in Fig. 8(a), the length of
each frameNjmay not be sufficient to describe the basic char-
acteristics of the signal. To solve the contradiction between
J and Nj, we divide yAb [n] in the way of moving window,
as shown in Fig. 8(b). By controlling the step-length, this
method can obtain the appropriate J and Nj.

Since the expectations are estimated by statistical aver-
age, a long sampling duration is required to obtain enough
samples. Although the moving average shown in Fig. 8(b)
can somewhat reduce the requirement of sampling points for
estimation, a long sampling duration is still recommended.

B. RECONSTRUCTION OF SUPPORT SET
When the signal is blind, CS optimization algorithms are used
to reconstruct the support set. We define two criteria to deter-
mine whether the support set is effectively reconstructed,
named perfect support set reconstruction and successful sup-
port set reconstruction.

When the estimated support set Sest is identical to the
actual support set Sact , then it is a perfect support set recon-
struction.

Sest = Sact (37)

Perfect reconstruction is a very strict criterion. The response
of the CS receiver to the input signal is a very complex nonlin-
ear process, and the boundaries of the sub-bands are difficult
to accurately divide. Usually, the reconstruction algorithm
sets a looser iterative termination condition to avoid the ele-
ments of Sact from being missed, although the false alarm
bands may be increased [16], [29]. So we defined successful
support set reconstruction as{

Sact ⊆ Sest (38a)

num(Sest )− num(Sest ) ≤ Dfa (38b)

where num(S) represents the number of elements of S.
(38ba) guarantees that all elements of Sact are not miss-
ing. Dfa of (38bb) constrains the number of false alarm
bands allowed by successful reconstruction. Due to the con-
jugate symmetry of the spectrum, the false alarm bands
are also present in pairs. So Dfa is generally set to
even. For example, the support set of a three-carrier real
signal is Sact = {−64,−51,−47,−46, 46, 47, 51, 64}.
If Sest = {−64,−51,−47,−46,−17, 17, 46, 47, 51, 64},
then the bands of the false alarm are {−17, 17}. Although
it is not a perfect reconstruction, the reconstruction is still
considered a successful reconstruction with Dfa = 2.
However, too many false alarm bands can degrade the

receiver’s reputation for spectrum sensing. According to the
number of sub-bands of the input signal, it is necessary to set
an appropriate Dfa to balance the detection probability and
the false alarm probability. In our paper, Dfa = 0 is set for
double-carrier real signal and Dfa = 2 is set for three-, four-,
and five-carrier real signals. For the real signals with more
than five carriers, Dfa = 4 is set. In this paper, the number
of carriers only calculates positive frequencies, for example,
the number of sub-bands of a four-carrier real signal isN = 8.

C. SIMULATION SETTING
A system with A-MWC structure is designed in MATLAB
and TABLE 3 shows the design parameters. The A-MWC
has 5 branches with Qe = 5, so both CA and CB have a
size of 25 × 155. The sensing matrix is calculated from the
Fourier coefficients of 10 PRBSes. Both the mixers and the
low-pass filters are ideal. To simplify the operations, the FFT
replaces the DTFT in both simulations and experiments. The
number of sampling points determines the spectrum resolu-
tion of FFT. Whether C-MWC or A-MWC, we recommend
a long sampling duration so that FFT has enough points to
achieve satisfactory resolution. In the simulation, the sam-
pling window contains 20,000 sampling points, so the sam-
pling duration is 100 us. And the two sample sub-windows
each containing 10,000 points are divided according the
timeline, so the length of both TA and TB is 50 us. QA
and QB repeat 2000 cycles in TA and TB, respectively.

135532 VOLUME 7, 2019



P. Wang et al.: Design of Broadband Compressed Sampling Receiver Based on Concurrent Alternate Random Sequences

TABLE 3. Design parameters of A-MWC and C-MWC in simulation and
experiment.

When estimatingE{yAb (f )[y
A
b (f )]

H
} using (36), the parameters

J andNj of the moving uniform division are set to 50 and 800,
respectively.

As a comparison, a 5-branch C-MWC with Qe = 5 is also
built in MATLAB. The PRBSes of C-MWC directly selects
QA of A-MWC. The design parameters are also displayed
in TABLE 3. The sampling duration is 100 us (20000 sam-
pling points), the PRBSes repeat 4000 cycles in the sampling
duration.

In our simulation, a series of multi-band WSS real signals
with different signal to noise ratio (SNR) are injected into
both A-MWC and C-MWC. The number of carriers of the
signals changes from 3 to 8, which means N changes from
6 to 16 with the step of 2. In this simulation, the injected
noise is zero-mean Gauss white noise. The signal-to-noise
ratio of the input signals varies from −40 dB to 40 dB with
step of 2 dB. At each number of carriers and each SNR, a
hundred of simulations are done. In each simulation, the sub-
bands of the injected signal are wideband signals with band-
width selected from 5 MHz, 10 MHz and 20 MHz randomly,
and the carriers are also randomly distributed in [0-3 GHz]
while ensuring that all the sub-bands are not adjacent. In each
simulation, the signals injected into A-MWC and C-MWC
are identical, and the blind joint sparse reconstruction of
A-MWCandC-MWCuses an improved orthogonalmatching
pursuit algorithm.

D. RESULTS OF SIMULATION
Fig. 9 display the reconstruction probability of support sets
varies with SNR and carrier number. As shown, whether
A-MWC or C-MWC, the reconstruction probability of the
support set increases with the increase of SNR. But A-MWC
has better performance than C-MWC in the case of low SNR.

FIGURE 9. The reconstruction probability of support sets varies with SNR
and carrier number.

When the number of carriers is greater than 7, even if the
signal-to-noise ratio is increased to 30 dB, the performance of
the support set reconstruction of C-MWC is not satisfactory
(reconstruction rate is lower than 80%). However, The proba-
bility of reconstructing 8-band signal support set by A-MWC
is higher than 90%, when the signal-to-noise ratio is higher
than 5 dB.

For an N -band signal, the zA(Fp) of C-MWC and the
Px(Fp) of A-MWC are theoretically jointly 2N -sparse.
2N only provides a theoretical upper limit, which is to assume
that each band provides two non-zeros for zA(Fp) andPx(Fp).
However, when the bandwidth of sub-bands is much smaller
than Fp, each sub-band may only provide one non-zeroes
for zA(Fp) and Px(Fp). As shown in Fig. 1, the yellow sub-
band contributes a non-zero for zA(Fp) and Px(Fp), while
the red sub-band contributes two non-zeroes for zA(Fp) and
Px(Fp). The exact sparsity of zA(Fp) and Px(Fp) is between
N and 2N . In addition, the number of rows of (1) and (2) is
greater than 4N is a strict condition to ensure the uniqueness
of the sparse solution.When this condition is broken, the sup-
port set may be reconstructed successfully, but its uniqueness
is doubtful. The simulation results also confirm that the blind
joint sparse reconstruction still has an not bad support set
reconstruction rate when the number of sub-bands exceeds
the theoretical value (N = 12 for A-MWC and N = 6 for
C-MWC).

Although successful support set reconstruction defined by
(38b) allows for some false alarm bands, (26) and (27) are
over-determined or well-defined as long as num(Sest ) ≤
MQe is satisfied. Then, the signals of each sub-band can be
reconstructed smoothly. Based on this method, the energy of
the reconstructed signal on the false alarm band is usually
smaller than that of other bands, and the false alarm band can
be further determined and removed according to the ampli-
tude of each band. For example, a four-carrier real signal with
a SNR of−18 dB is injected into the receiver, and the carrier
frequencies are 721 MHz (5 MHz), 1203 MHz (20 MHz),
1737 MHz (20 MHz) and 2409 MHz (20 MHz). The val-
ues in parentheses represent the bandwidth of sub-bands
corresponding to the carrier frequencies. The support set
is Sact = {−65,−44,−43,−30,−18, 18, 30, 43, 44, 65},
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FIGURE 10. The normalized amplitude of yA(f ).

FIGURE 11. The normalized amplitude of zA
S (f ).

but the support set estimated by our CS algorithm is
Sest = {−66,−65,−44,−43,−30,−18, 18, 30, 43, 44, 65,
66}. Obviously, the false alarm bands are {−66, 66}. When
Dfa = 2, the support set satisfies (38b), so the reconstruction
is effective. Fig. 10 display the normalized amplitude of
yA(f ), and the number in the legend indicates the number of
the sub-branch of the CS receiver. zAS (f ) reconstructed from
Sest is shown in Fig. 11. The black spectrum circled by the
black imaginary box in the Fig. 11 represents the amplitude
allocated to the false alarm band. By calculation, only 0.33 %
of the total power is allocated in the false alarm bands in this
example. Therefore, we can we can further remove the false
alarm bands {−66, 66} from Sest . A more accurate signal
can be reconstructed by the updated support set. Of course,
the power weight of the false alarm band will increase as the
SNR deteriorates. Therefore, the method of identifying the
false alarm bands based on the powers of reconstructed sub-
bands can be used as an auxiliary means of reconstructing the
signal.

V. EXPERIMENT
We also designed a circuit-level CS receiver which can switch
between A-MWC and C-MWC. In this section, experimental
results will be displayed.

FIGURE 12. The photo of our CS receiver.

TABLE 4. The PRBSes in hexadecimal form.

A. EXPERIMENTAL PLATFORM
The hardware circuit of a CS receiver is shown in the Fig. 12.
In this paper, both A-MWC and C-MWC are implemented
by this platform. Our CS receiver includes an RF board,
three IF boards, an interface converting board and an FPGA
(Field Programmable Gate Array) development board. The
hardware implementation of this CS receiver is described
in detail in [32]. The software ChipScope is responsible for
exporting the sample data from FPGA, and the signal is
blindly reconstructed in MATLAB.

This hardware platform can receive signals whose spec-
trum is randomly distributed in [−3 GHz, 3 GHz]. Whether
A-MWC or C-MWC, the Nyquist frequency FNyq is 6 GHz.
This hardware platform has three physical branches (M = 3),
and each physical branch can be expanded to five sub-
branches by expander (Qe = 5). The PRBSes with the
rate of 6.4 Gbps are generated by the GTX transceiver of
Xilinx company’s Virtex-7 FPGA VC707 Evaluation Kit.
Some of the main parameters of the CS receiver are shown
in TABLE 3.

Because in the two time intervals of TA and TB, (20) and
(22) are independently constructed in the way of C-MWC
structure, and the subsequent operations are only mathemat-
ical processing. In theory, the criterion for selecting PRBSes
for A-MWC is the same as that for C-MWC. There is no addi-
tional requirement. Two sets of 160-bit PRBSes of A-MWC
are given in the TABLE 4 in hexadecimal form. C-MWC uses
the PRBSes of QA in the experiment.
It’s worth noting that the sample rate 240 MHz is larger

than twice the cutoff frequency (100 MHz) of the low-pass
filter. Because the low-pass filters in objective circuits are
not ideal, the descending edge of its frequency response is
not steep. In order to reduce the effect of out-of-band infor-
mation, we have properly increased the sampling frequency
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FIGURE 13. The timing of signals of our CS receiver based on A-MWC
structure.

of the ADC. The sampling sequence is then filtered by a well-
performing digital filter before being used to reconstruct the
signal.

The transmission time and response time of each chip
causes a fixed time delay between all the signals. The tim-
ing of some main signals in the receiver is shown in the
Fig. 13. A long sampling duration is recommended for FFT
to have sufficient spectral resolution and for the estimated
E{yAb (f )[y

A
b (f )]

H
} to be accurate enough. But due to the limit

of the buffers of the FPGA, the maximum sampling point
of each physical branch is eventually set to 65536. That is
to say, the length of the sampling duration is 273.067 us.
For C-MWC, PRBSes repeat 10,922 cycles in the sampling
duration. For A-MWC, the sampling sub-window A contains
32766 sampling points, the length of TA is 136.525 us, and
QA repeated 5461 cycles. The sampling sub-window B con-
tains 32770 sampling points. The last four sampling points
are discarded in signal reconstruction because they do not
contain information in our experiment. The length of TB is
also 136.525 us, and QB repeated 5461 cycles.

The vector signal generator used in the experiment is
SMW200A from Rhode & Schwartz company. After mea-
surement and estimation, the time delay between the rising
edge of a trigger generated by FPGA and the beginning of
signal generated by vector signal generator is about 120.24 us
(about 28857 sampling points at 240 MHz sampling rate),
as shown in Fig. 13. In order to make a sufficiently long
sampling sequence which containing information fall into the
sampling window, the time delay between the trigger signal
and the sampling window is set to 113.075 us (27138 sam-
pling points at 240 MHz sampling rate). In this experiment,

FIGURE 14. (a) The spectrum of xA
ms(t). (b) Spectrum of the sampling

sequence of a branch. (c) Calculation of relative sensing matrix.

the trigger is set to a square wave with a period of 380 us
(91200 sampling points at 240 MHz sampling rate). The time
difference between the rising edge of the trigger signal and the
time point of switching PRBSes is 59.6 us (14304 sampling
points at 240 MHz sampling rate).

B. MEASUREMENT OF THE SENSING MATRIX
For a hardware-implemented CS receiver, mixing response
and channel response are unavoidable due to the non-ideal
characteristics of the device. PRBSes with a rate up to several
Gbps also suffer from waveform distortion in the process
of generation and transmission [33]–[37]. To correct these
non-ideal factors, signal reconstruction used the relative sens-
ing matrix measured by some synchronously known signals.
A detailed method proposed by us to measure the relative
sensing matrix is published in [33].

However, [33] is based on C-MWC, and the measurement
method requires a slight change to match A-MWC. In the
experiment, 5 MHz wideband synchronously signals were
selected as the measurement signals xms(t). The timing of
the measurement signal, trigger, and PRBSes of the A-MWC
is shown in Fig. 13. The measurement signal is also split
into two parts in time, denoted as xAms(t) and xBms(t). But
the measurement signal needs to guarantee xAms(t) = xBms(t).
So, xms(t) is a combination of two identical signals in time.

Since the DC blocking capacitor prevents the spectrum in
[−Fp/2,Fp/2] (Fp= 40MHz) from entering the circuit-level
MWC, the 0-th column of CA and CB is set to zero. Two
columns of elements of CA and CB can be obtained for each
measurement, so a total of L0 = 77 measurements are needed
in our platform. At the l-th measurement, the carrier of xms(t)
is set to (40l−10) MHz, the−l-th and l-th column ofCA and
CB will be calculated.
After the bandwidth and carrier of xms(t) are set as

described above, the spectrum of xms(t) does not alias after
mixing and low-pass filtering. The spectrum of xAms(t) is
shown in Fig.14(a). In TA of the l-th measurement, the spec-
trum of the sample sequence of the i-th branch is shown
in Fig. 14(b). In Fig.14(b), we can see 10 non-overlapping
spectral segments, which are the weighted copies of the two
sub-bands of xAms(f ). And these weights are the elements of
the l-th and −l-th columns of CA

i . In TA, a total of 30 such
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FIGURE 15. The sampling sequences of three physical branches of
A-MWC.

spectrum copies can be obtained for the three branches.
Similarly, in the time interval TB of the l-th measurement,
we can also get 30 such spectrum copies which weights
the elements of the l-th and −l-th columns of CB. Because
xAms(t) = xBms(t), the spectrum xAms(f ) = xBms(f ). So, the pro-
totypes of the spectrum copies are the same whether in
TA or TB. After 77 measurements, all the elements of CA

and CB (except the 0th column) will get a spectrum copy
of their own. As shown in Fig.14(c), we arbitrarily select a
spectrum copy as the reference spectrum, and then calculate
the ratios of all the spectrum copies of both CA and CB to the
reference spectrum (or its conjugate symmetric spectrum).
As shown in Fig.14(c), the two matrices GA and GB formed
by those ratios are the relative sensing matrix.GA andGB are
essentially normalized CA and normalized CB. GA and GB

are completely equivalent toCA andCB, when reconstructing
signals [33].

C. EXPERIMENTAL RESULT
In our experiment, four multi-carrier wideband real signals
are injected into the A-MWC and C-MWC. The carrier fre-
quency, bandwidth, and power of each sub-band of the signal
are displayed in TABLE 5. In this paper, we use normal-
ized mean square error (NMSE) to measure the similarity of
the reconstructed baseband xBR[n] to the original beseband
xBO[n]. The NMSE is defined by

NMSE = 10 lg

∑Nl
n=1 |xBR[n]− xBO[n]|

2∑Nl
n=1 |xBO|

2
(39)

where Nl is the length of the baseband sequences.
A 5MHz dual-carrier WSS signal is injected into A-MWC

and C-MWC separately, and its carrier frequencies are
1990 MHz and 2151 MHz. Both A-MWC and C-MWC
reconstruct the support set perfectly. Fig. 15 shows the sam-
pling sequences of three physical branches of A-MWC.
In this figure, we can clearly observe that the sample
sequences are divided into two segments because A-MWC
uses different PRBSes in TA and TB. Fig. 16 shows the
normalized amplitude zAS (f ) which is reconstructed by the
signal recovery algorithm. It is noteworthy that the two sub-
bands are partially aliased after mixing.

FIGURE 16. The normalized amplitude of zA
S (f ) when A-MWC is injected

into a dual carrier signal.

FIGURE 17. The comparison of normalized amplitude between
reconstructed baseband (1990 MHz) and original baseband.

FIGURE 18. The comparison of phase between reconstructed baseband
(1990 MHz) and original baseband.

After zAS (f ) and zBS (f ) are obtained, we reconstruct the
two basebands separately. Comparing the two reconstructed
basebands with the original basebands, NMSE of−22.63 dB
(1990 MHz) and −21.47 dB (2151 MHz) are obtained sepa-
rately. Fig. 17 and Fig. 18 compare the amplitude and phase
of the reconstructed baseband (1990 MHz) with original
baseband, respectively.
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TABLE 5. Summary and comparison of experimental results.

FIGURE 19. The normalized amplitude of zA
S (f ) when A-MWC is injected

into the three carrier signal.

A three-carrier real signal with carrier frequencies
of 1950 MHz, 1990 MHz and 2150 MHz are injected
into A-MWC and C-MWC. The actual support set is
{−54,−50,−49, 49, 50, 54}. A-MWC reconstructs the sup-
port set perfectly, but C-MWC reconstructs the support set
with a false alarm band {−48, 48}. The normalized amplitude
of the reconstructed zAS (f ) is shown in Fig. 19. It can be
seen that the three sub-bands completely aliased after mixing.
As shown in TABLE 5, comparing the reconstructed base-
band with the original baseband, A-MWC has a better NMSE
compared to C-MWC. This is mainly due to the fact that the
false alarm band of C-MWC separates the energy that should
belong to the detection band.

Finally, a four-carrier WSS real signal is injected into
A-MWC and C-MWC. This signal contains two 5 MHz
real bands (1950 MHz & 2150 MHz) and two 10 MHz
real bands (1990 MHz & 2190 MHz). The actual support
set is {−55,−54,−50,−49, 49, 50, 54, 55}. A-MWC recon-
structs the support set successfully with false alarm bands
{−46, 46}, but C-MWC failed to reconstruct the support set.
The normalized amplitude of the reconstructed zAS (f ) is shown
in Fig. 20. As the number of carriers and bandwidth of
the sub-bands increases, the receiver’s response to the input
signal becomes very complex. As shown in Fig. 20, the blue
spectrum circled by the black dotted frame is incorrectly
demodulated to this position. This will cause the recon-
structed baseband to deviate from the original baseband,
thereby causing a drop in the NMSE.

TABLE 5 summarizes the four sets of experiments in this
paper. Under the same total sampling rate, the blind support

FIGURE 20. The normalized amplitude of zA
S (f ) when A-MWC is injected

into the four carrier signal.

set reconstruction of A-MWC can adapt more sub-bands than
C-MWC. Under the premise that the support set is known,
A-MWC and C-MWC can obtain almost the same signal
reconstruction quality.

VI. CONCLUSION
Simulation and experiment prove the feasibility of the
A-MWC structure. This structure greatly reduces the com-
plexity of the system without sacrificing quality of signal
reconstruction. Under the same total sampling rate, A-MWC
can reconstruct more sub-bands than C-MWC blindly. At the
same time, our team is committed to the integrated circuit
implementation of MWC structure, and a low-cost integrated
RF front-end based on a 0.13 µm RF CMOS process is
designed [38].
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