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ABSTRACT Linear Temporal Logic (LTL) Model Checking (MC) has been applied to many fields. However,
the state explosion problem and the exponentially computational complexity restrict the further applications
of LTL model checking. A lot of approaches have been presented to address these problems. And they
work well. However, the essential issue has not been resolved due to the limitation of inherent complexity
of the problem. As a result, the running time of LTL model checking algorithms will be inacceptable if a
LTL formula is too long. To this end, this study tries to seek an acceptable approximate solution for LTL
model checking by introducing the Machine Learning (ML) technique. And a method for predicting LTL
model checking results is proposed, using the several ML algorithms including Boosted Tree (BT), Random
Forest (RF), Decision tree (DT) or Logistic Regression (LR), respectively. First, for a number of Kripke
structures and LTL formulas, a data set A containing model checking results is obtained, using one of the
existing LTL model checking algorithm. Second, the LTL model checking problem can be induced to a
binary classification problem of machine learning. In other words, some records in A form a training set for
the given machine learning algorithm, where formulas and kripke structures are the two features, and model
checking results are the one label. On the basis of it, a ML model M is obtained to predict the results of LTL
model checking. As a result, an approximate LTL model checking technique occurs. The experiments show
that the new method has the similar max accuracy with the state of the art algorithm in the classical LTL
model checking technique, while the average efficiency of the former method is at most 6.3 million times
higher than that of the latter algorithms, if the length of each of LTL formulas equals to 500. These results
indicate that the new method can quickly and accurately determine LTL model checking result for a given
Kripke structure and a given long LTL formula, since the new method avoids the famous state explosion

problem.

INDEX TERMS Machine learning, model checking, linear temporal logic, binary classification.

I. INTRODUCTION
Model checking was presented by Turing Award winner Prof.

Clarke et al. [1]. Up to now, model checking has been applied
to many fields of computer science and systems engineering,
such as microprocessor design & computer chip design [2],
security protocols [3] and malware detection [4], and this
technique has been used by some leading IT companies,
including INTEL and IBM [5].

What a system is in the field of systems engineering?
According to NASA’s definition [6], ‘“‘the combination of ele-
ments that function together to produce the capability to meet

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Liu.

VOLUME 7, 2019

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

a need”, and “the elements include all hardware, software,
equipment, facilities, personnel, processes, and procedures
needed for this purpose”. In fact, model checking provides
an effective way for such a complex system, to formally
determine whether a system has the capability to meet a given
need or not. Thus, model checking has been applied to many
aspects of systems engineering, such as spacecraft design [7],
robotics [8], [9], human-automation interaction [10], [11] and
group behavior interactions [12]. For many cases of system
developments, not only early phases but also later ones need
model checking. For examples, Microsoft used this formal
verification technique to check real code, and the model
checker found some distinct errors and bugs in codes [13].
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In general, temporal logic formulas are used for formal
specifications of elements (hardware or software) or sys-
tems, while automata, Kripke structures, Petri nets or Pro-
cess algebra are employed to describe models of elements
or systems. On the basis of it, the model checking algo-
rithms can automatically verify whether the systematic model
satisfy the required property and specification or not, dur-
ing systems analysis, requirements analysis, and systems
design. For a system, the result of model checking will
be “true/yes”, if the Kripke structure satisfies the formula,
i.e., the systematic model satisfy the required property. Oth-
erwise, the result of model checking will be ‘“false/no”,
i.e., the systematic model does not satisfy the required
property.

In model checking, linear temporal logic [14], which was
introduced to computer science by Turing Award winner Prof.
Pnueli, and computational tree logic (CTL) [15], [16], which
was proposed by Turing Award winner Prof. Clarke, are the
two popular temporal logics. And these two logics have been
used widely in international IT industry.

The state explosion problem is always one of the important
bottlenecks of LTL model checking. To address this problem,
many methods including symbolic, partial order reduction,
equivalence, compositional reasoning, abstract and symmetry
et al [1], have been proposed to reduce the huge state space,
which is caused by the model checking algorithms. As a
result, these methods work well. In a special case, 10120
states were verified automatically and effectively by a sym-
bolic model checker [17]. However, the huge state space still
restricts the further applications of model checking, in general
situation.

Unfortunately, the state explosion problem inherently orig-
inates from the gene of model checking, LTL model checking
in particular. Thus, no solution exists within the framework of
hard computing (‘‘actual/accurate computing’’).

Motivated by it, we introduce machine learning to ‘“‘pre-
tend” to perform LTL model checking in this paper. In other
words, we do not really execute MC computations, and
we only “predict” results of LTL model checking using
the machine learning algorithms. The key to design the
new method is that both LTL model checking algorithms
and ML binary classification ones will output and only
output the following two opposite results after they runs:
“true’’/“‘yes”’/*“1” /positive, or “false’’/*“no”’/*0’’/negative.
Thus, the LTL model checking is naturally induced to
the ML binary classification. As a result, this famous
non-polynomial complexity problem has an approximate
polynomial solution. This is the contribution of this
paper.

The remainder of this paper is organized as follows.
In Section II, some preliminaries of model checking
and machine learning are given. Section III presents our
new method. The comprehensive experiments are con-
ducted in section I'V. Section V compares the new method
with some related works. And Section VI will draw our
conclusion.

135704

Il. PRELIMINARY

A. NuXMV/ NuSMV

NuSMV is developed by Carnegie Mellon University, Uni-
versity of Genova, University of Trento and FBK-IRST [18].
It is a free tool for symbolic CTL model checking and sym-
bolic LTL model checking. As an improved version, NuXMV
extends NuSMYV, and the former features a strong verification
engine based on state-of-the-art algorithms [19].

B. MACHINE LEARNING ALGORITHMS AND GRAPH LAB
One core goal of machine learning is to classify data. There
are many ways for binary classification, such as BT, RF,
DT and LR. These popular ML algorithms have been applied
to many fields, such as text segmentation [20], face detec-
tion [21], hand pose recognition [22], multi-view, multi-pose
object detection [23], emotion recognition [24], molecular
hybridization prediction [25], computer vision [26], graphic
and image [27], [28], Chess End Games [29], real-time packet
classification [30], data stream mining [31], hard rock pillar
stability prediction [32], classification of intra-subject MRI
sequences [33] and controlling remote vehicles [34].

Graph Lab is an open source ML package [35], which
was developed by Carnegie Mellon University. This tool
integrates a variety of ML algorithms including BT, RF,
DT and LR, which greatly simplifies the training process of
models, and facilitates users’ operations and implementation
of specific ML algorithms.

Ill. THE PRINCIPLE OF THE NEW METHOD

We consider the following specific problem introduced in
section I. How to determine whether systematic model K
satisfies a LTL formula f or not, giving a pair of K and f using
a ML algorithm.

The principle of our method is shown in Fig.1. The core
is to train a large number of records using one machine
learning algorithm. And each record contains information on
a systematic models K, a LTL formulas f, and their model
checking result 1, i.e., flag. In other words, K and f are all
the two ML features, while r is the only one ML label.
Thus, a ML model called M which has a predictive ability is
obtained.

The steps of the process can be described as follows.

—1). As shown in Fig.1 (a), one can run a LTL model
checking algorithm and obtain a result of model checking
for a given pair of K and f. On the basis of it, he or she can
perform a binary classification. The result of the classification
will be 1, if the result of model checking is “‘true”. Otherwise,
the result of the classification will be 0.

-2). Step 1) is repeated m; times, and a training set con-
taining m; records is gotten. See the left part of Fig.1(b).

—3). Train this training set using a ML algorithm, and the
ML model M is obtained. See the middle part of Fig.1 (b).

—4). Another pair of K’ and f” whose model checking result
is required to be predicted, is input to the trained model M.
Whether K’ satisfies f” or not? It can be predicted by M.
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FIGURE 1. Given one pair of systematic model and formula, the new method can determine/predict
whether this systematic model satisfies this formula or not (a) for a given pair of Kripke structure K
and a LTL formula f, determine whether K satisfies f or not; (b) a ML model M which can predict the
model checking result for a pair of K’ and f, since M is obtained by training m1 groups of K, f and their

model checking result.

IV. SIMULATED EXPERIMENTS

A. THE EXPERIMENTAL OBJECTIVE

We will explore the ability and the efficiency of the new
method. Specifically, can the new method improve the effi-
ciency significantly under the premise that the new method
can approach the popular LTL model checking algorithm in
terms of power?

B. THE SIMULATION PLATFORM

—1). CPU: Intel(R) Core(TM) i7-4770 CPU @3.40GHz.

-2). RAM: 16.0 G

—-3). OS: Windows 7 64 bit.

—4). NuXMV and NuSMV: LTL model checking tool.

-5). Graph Lab: for implementing the several ML
algorithms.

—6). Jupyter: a visual platform for some tools including
Graph Lab and python.

C. EXPERIMENTAL PROCEDURES

—1).200 LTL formulas f are generated randomly, where the
length of each of formula equals to 500. In addition, 50 Kripke
structures K are generated randomly. Thus, 200*50 = 10000
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groups of sub-experiments on NuXMV will be conducted
one by one for determining whether or not 50 Kripke struc-
tures satisfy 200 LTL formulas, respectively. In fact, we only
select 100*50 = 5000 groups in all the 10000 groups, since
other 5000 groups of model checking run very very slowly
on NuXMYV, even several days one group! In other words,
5000 samples are employed by the below ML experiments.

—2). We program on NuXMYV for each pair of K and f
one by one, and run our program so that the result of model
checking is obtained.

-3). 5000 groups of sub-experiments on NuXMV for
model checking produce 5000 records, where each record
contains the three fields, for the two features and the one label,
respectively. As a result, a data set containing 5000 records is
obtained. And this is the original data set for our Graph Lab
experiments.

—4). A part of 5000 records will take part in our training
process on Graph Lab with a machine learning algorithm.
These records form a training set, and other records form
a test set. How many records are there in the training set?
It depends on the value of some hyper-parameters. In fact,
we only need adjust the values of the two hyper-parameters,
i.e., seed and fraction, as presented in Table 2.
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-5). We can obtain a ML model M, according to step 4).
And we will get the predictive result in terms of model
checking if we input the first two fields of a record in the
test set, to M.

—6). We can compare the predicted result comes from
step (5) with the real value of the third field, i.e., r. On the
basis of it, we can make clear whether the prediction is
accurate or not. On the basis of it, the average predictive
accuracy of the whole test set can be computed. In this way,
we can analysis the power of the new approach.

—T7). We can obtain and compute the average running time
for model checking one pair of K and f on NuXMYV, as well
as the average predictive time of one pair of K and f on Graph
Lab, with the timing function in these two experimental tools.
On the basis of it, we can compare the efficiency of the two
methods.

From step 1) to step 7), 5000 groups sub-experiments
on NuXMYV and Graph Lab are conducted to study model
checking long-length LTL formulas. In the similar way,
sub-experiments on NuXMYV and Graph Lab are conducted
to study model checking short-length LTL formulas whose
length is 25. In the similar way, NuSMYV can replace NuXMV
to do the above things.

In order to illustrate the principle and steps of our NuXMV
experiments, we give an example as follows.

S4

FIGURE 2. An example on Kripke structure K = KO.

Example 1 Fig.2 illustrates an example on Kripke struc-
ture K = KO. KO has the five states and the eight transi-
tions. All three atomic propositions p, q, r are not satisfied
in state sg, while only atomic proposition q is satisfied
in state s;, and so on. The state sg can be transformed
to state sy, and state s; can be transformed to state sy
or state sy, and so on. KO can be represented with a
string 0000100100101110110122124303243. In this string,
the first 15 bits describe whether the three atomic proposi-
tions are satisfied in each of the five states or not, while the
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rest bits represent the serial number of start state and the one
of end state in all the eight transitions.

For KO = “0000100100101110110122124303243” and
£1 = “IX(('F((}p&q[nU(p|'g D) UF(p&q&!r))) *, NuXMV
model checking is run and returns it model check-
ing result, i.e., “true (yes)”, indicating KO satisfy fl.
Therefore, the three fields K, f, r of this record are
“0000100100101110110122124303243”,  IX((!F(('p&q|r)
U(pl!'q|r)))U(F(p&qé&!r)))” and “17, respectively. Moreover,
NuXMYV model checking spends 0.018 second.

As for KO = “0000100100101110110122124303243”
and 2 = “XI((F(G!(!p|!q&r)))U((p&q|r)U(!p|q&r)))”, its
model checking result, i.e., ‘“false (no)”, is reported
by NuXMYV, which indicates KO does not satisfy f2.
Therefore, the three fields K, f, r of this record are
“0000100100101110110122124303243, “X!((F(G!(!p|!q&
1))U((p&q|r)U(!p|q&r)))” and “0”, respectively. Moreover,
NuXMYV model checking spends 0.017 second this time.

Example 1 is over.

This example shows us how to construct two records with
NuXMYV and append them to our raw data set for our Graph
lab experiments. It is just an example about short formulas,
i.e., the length of the formulas is 25 (L = 25), due to simplic-
ity. If the length of the formulas is 500 (L = 500), we will
construct our raw data set in the same way.

Therefore, a data set A1 containing 405 records is obtained,
where the length of each formula is 25, as well as a data set
A2 containing 405 records is obtained where the length of
each formula is 500. It should be noted that A1 and A2 use
the same Kripke structures.

Furthermore, a data set A3 containing 5000 records is
obtained where the length of each formula is 500, as well
a data set A4 containing 1000 records is obtained where
the length of each formula is 500. It should be noted that
A3 and A4 are the two subsets of the data set originated from
the above 10000 groups model checking. In fact, we have
established another data set called AS including 1000 records.
Similar with A3 and A4, A5 has some randomly generated
records and the length of each formula is 500. Differ from
A3 and A4, A5 is not a sub-set of the data set originated from
the above 10000 groups model checking.

Al, A2, A3, A4 and A5 provide the raw data for our Graph
lab experiments.

D. EXPERIMENTAL RESULTS

1) THE EXPERIMENTAL RESULTS ON A1 AND A2

First, Fig.3 illustrates some comparisons of predictive accu-
racy and average predictive time for one record, when Al,
A2 and the four ML algorithms are employed.

Supposing the classical model checking (such as NuXMV)
has an accuracy of 1, the ML-based method has a max accu-
racy of 98.21% (L = 500), when LR algorithm is employed,
as shown in Fig.3(a). Thus, the ML-based method has an
approaching accuracy with state of the art of the classical
model checking technique.
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FIGURE 3. (chromatic figure) Power and efficiency of the new method under the circumstance of the different lengths of LTL formulas,
i.e., L (A1 & A2 are used). (a) predictive accuracy; (b) average predictive time for one record.

TABLE 1. Compared with NuSMV and NuXMYV, the new method enhances the efficiency of LTL model Checking (A1 and A2 are used).

Length of

Average running time (t;) of

Average running time (t) of

Average predictive time (t;)

formulas, i.e., NuSMV for one pair of NuXMYV for one pair of al ggﬁlms of the new method based on t/t3 to/ts
L Kripke structure and formula  Kripke structure and formula & ML for one record (s)
RF 0.000046 326 326
_ BT 0.000037 405 405
L=25 0.0150s 0.0150s DT 0000045 113 133
LR 0.000045 333 333
RF 0.000052 4370769 4975000
B BT 0.000044 5165455 5879545
=500 227.28s 258.70s DT 0.000051 4456471 5072549
LR 0.000051 4456471 5072549

As shown in table 1, each of the four ML algorithms
obtains their predictive results on one group model checking
within 0.00006 seconds, when the length of LTL formulas
is 500. In comparison, NuXMV consumes 258.7 seconds for
one group model checking. Compared with NuXMV model
checking, the efficiency of the ML-based method increases
several million times, when the length of LTL formulas is
500, as shown in table 1. And the efficiency of the ML-based
method increases only several hundred times, when the length
of LTL formulas is 25. This discovery indicates that the longer
the formula, the more comparative efficiency the ML-based
method has.

Thus, we will study what happen when the length of
LTL formulas is 500 rather than 25. A data set containing
405 records is too small. Thus, A3 will be employed.

2) THE EXPERIMENTAL RESULTS ON A3
Now, the data set has 5000 records. And the results are
illustrated in table 2 and table 3.

This time, as illustrated in table 2, the max accuracy
reaches 1 when LR is used, indicating that the ML-based
method has a same power with state of the art of the classical
model checking technique, although the former method is
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an approximate model checking one and the latter method is
based on accurate computing.

In addition, the ML-based method is several million times
faster than state of the art of the classical model checking
technique again, as shown in table 3.

E. DISCUSSION

First, 1160 groups of model checking results are ‘“‘yes”,
and other 3840 groups of results are “no”, for 5000 groups
of model checking experiments in the data set A3. These
results provide abundant positive examples and negative ones,
avoiding the data unbalance, which can guarantee the gener-
alization ability of ML model.

Second, as shown in table 2 (1), the max predictive accu-
racy of the machine learning algorithms is 1 when the length
of the formula is 500. It indicates that the predictions are
very accurate using the new method to simulate LTL model
checking, regardless of the length of the LTL formulas. The
reason for this is that the LTL model checking is a strongly
learnable problem. Therefore, the new method based on
machine learning has a good learning ability.

It should be noted that, this max accuracy of 100% is
obtained with 492 test records in our experiments, so that
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TABLE 2. Graph Lab experiments where length of each formula is 500 (A3 is used): (1) the optimal results (AUC: Area under ROC Curve; TNR: Prediction
specificity; TPR: Prediction sensitivity); (2) What are the values of the parameters and the hyper-parameters if the illustrations of Table 2(1) occur
(Meaning of parameters & hyper-parameters: Seed: Seed for the random number generator used to split; Fraction: For determining the proportion of the
records of training set in the total records of data set; Testing record #: The number of test records).

Q)

Algorithms RF BT DT LR
Prediction Accuracy 0.8918 0.9052 0.8560 1
Running time per record (in second)  0.000049  0.000036  0.000033  0.000032
AUC 0.7244 0.9792 0.6138 1
Specificity (TNR) 0.996 0.991 0.994 1
Sensitivity (TPR) 0.454 0.546 0.234 1
Precision 0.964 0.937 0.897 1
Prediction Accuracy 0.8918 0.9052 0.8560 1
Running time per record (in second)  0.000049  0.000036  0.000033  0.000032
2
Algorithms RF BT DT LR
Training record # 4381 4441 4389 4508
Testing record # 619 559 611 492
Seed 2008 2280 1750 135
Fraction 088 0.89 0.88 0.9

TABLE 3. Compared with NuSMV and NuXMV, the new method enhances the efficiency of LTL model Checking (L = 500 & A3 is used).

Average running time (t;) of Average running time (t,) of

Average predictive time (t3) of the

NuSMV for one pair of Kripke NuXMYV for one pair of Kripke M.L new method based on ML for one t/t; t/ts
algorithms
structure and formula structure and formula record (s)
RF 0.000049s 4251020 4112245
BT 0.000036s 5786111 5597222
e . DT 0.000033s 6312121 6106061
LR 0.000032s 6509375 6296875

the actual max accuracy pmax is not less than 492/(492 +
1) = 492/493 = 99.8%. In other words, pmax € [0.998, 1]
holds.

As shown in table 3, the average running time of each
of machine learning algorithms for predicting one record is
less than 0.0001 seconds, when the length of the formula is
500. It indicates that the predictions are very fast using the
new method to simulate LTL model checking, although the
formulas are very long. The reason for this is that the LTL
model checking is a strongly learnable problem, so that it can
be simulated in polynomial times. By contrast, the average
running time of state of art of the algorithm of the classical
LTL model checking technique is more than 200 seconds
when the length of the formula is 500, which is more than
4 million times as much as the new method. The reason is
that the LTL model checking algorithm has a non-polynomial
complexity, while the new method based on machine learning
has a polynomial complexity.

Third, as shown in Table 1, compared with the LTL model
checking algorithm, the new method will enhance the effi-
ciency 300 times at least if the length of all formulas is
25, whereas the new method will enhance the efficiency
4 million times at least if the length of all formulas is 500.
This phenomenon prompts us that the longer the length of
the formula, the higher the efficiency of the new method is,
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due to the advantage of the polynomial algorithm over the
non-polynomial algorithm.

It should be noted that the LTL model checking problem
has an inherent exponential complexity, and all LTL model
checking algorithm can never break this low bound. In com-
parison, as an approximate model checking method rather
than accurate model checking one, the new method based on
machine learning algorithm breaks this limitation.

Four, as shown in table 2 (1), the optimal accuracies of
the different ML algorithms for predicting the results of LTL
model checking are different. The accuracy of LR is highest,
i.e., 100%, and the accuracies of the other three algorithms
are lower than 91%. Considering model checking is a kind of
accurate computing, it is safe to say that BT, RF and DT is
not suitable to this mission, whereas LR is better.

Final, the thing is, the trained ML model can predict the
model checking result for a given arbitrary Kripke structure
and a given arbitrary LTL specification, if the Kripke struc-
tures in the testing set and the training set have the same size,
and the LTL formulas in the testing set and the training set
have the same length. What is to be done if the length and
the size are different? The answer is simple. One can train
the different ML models for predicting the different class of
formulas and Kripke structures. The formulas which have
the same length and the Kripke structures which have the
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FIGURE 4. (chromatic figure) Roc Curve of the Optimal Classifiers, (L = 500 & A3 is used). (a) RF; (b) BT; (c) DT;

(d) LR.

same size will be put into the same class. Lengths and sizes,
i.e., the number of classes, are finite and enumerable, so that
the number of ML models is finite and enumerable. If some-
one conducts model checking using the new method, it will
automatically select an appropriate ML model according to
lengths and sizes of input formula and Kripke structure.

F. MORE COMPARISONS AMONG THE DIFFERENT

ML ALGORITHMS

How to evaluate the obtained the different ML models men-
tioned above? Besides predictive accuracy, the researchers
often use AUC, ROC curve, sensitivity, specificity and pre-
cision, as the performance metrics of ML binary classifiers.

Sensitivity (also called TPR) and specificity (also called
TNR) are statistical measures of the performance of a binary
classification test, where sensitivity measures the proportion
of actual positives that are correctly identified as such, and
specificity measures the proportion of actual negatives that
are correctly identified as such. In addition, precision mea-
sures the proportion of true positives to predicted positives.
Table 2(1) shows sensitivity, specificity and precision for the
four optimal classifiers of the four ML algorithms, when the
length of the LTL formulas is 500.

ROC curve is a graphical plot that illustrates the diagnostic
ability of a binary classifier since its discrimination thresh-
old is varied. In short, the closer ROC curve is to the top
left corner of the graph, the better the classifier is. AUC is
defined as the area under the ROC curve. Obviously, the value
of this area will not be greater than 1. AUC ranges from
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0.5 to 1 because ROC curves are generally above the line
y = x. AUC is the most important evaluation criteria for
binary classifiers because it’s not easy for users to distinguish
which ROC curve is closer to the top left corner of the graph,
i.e., which classifier works better. In comparison, AUC can
do it since this is a numerical value. That is to say, the bigger
the value of AUC is, the better the classifier is.

Fig.4 illustrates the ROC curves for all the four optimal
classifiers, as well as table 2(1) shows the values of AUC for
each of the four optimal classifiers, when the length of the
LTL formulas is 500. Plainly, this discovery prompts us that
BT and LR are the suitable algorithms to our application, and
the best classifiers can occur if each of these two algorithms
is employed, when the length of the LTL formulas is 500.
However, LR is better than BT, as shown in this table.

In the above discussion, our program running on Graph
Lab automatically seeks the highest predictive accuracy for
each of the four ML algorithms, respectively, by adjusting
the values of the two hyper-parameters including the one that
can affect the number of records in the test set. As a result,
the corresponding four test sets are obtained automatically,
and they contain different number of records, when the four
optimal accuracies of the four ML algorithms appear. That is
to say, it is the different values of the hyper-parameters that
lead to the optimal models of the different algorithms.

Now, the obvious question becomes: for the four ML algo-
rithms: how will the observation be if the four ML algo-
rithms are set to the identical values of the hyper-parameters?
Fig.5 has answered this question.
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FIGURE 5. (chromatic figure) Comparison of performance of ML algorithms with the same
values of hyper-parameters (seed & fraction) (L = 500 & A3 is used). (each dot denotes a
classifier, its abscissa means the value of seed, and its ordinate means the obtained accuracy
of the classifier). (a) obtained various classifiers when fraction = 0.88; (b) obtained various
classifiers when fraction = 0.89; (c) obtained various classifiers when fraction = 0.9;

(d) obtained various classifiers (a combination of the above three sub-figures).
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FIGURE 5. (continued.) (chromatic figure) Comparison of performance of ML algorithms with
the same values of hyper-parameters (seed & fraction) (L = 500 & A3 is used). (each dot
denotes a classifier, its abscissa means the value of seed, and its ordinate means the obtained
accuracy of the classifier). (a) obtained various classifiers when fraction = 0.88; (b) obtained
various classifiers when fraction = 0.89; (c) obtained various classifiers when fraction = 0.9;
(d) obtained various classifiers (a combination of the above three sub-figures).
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FIGURE 5. (continue.) (chromatic figure) Comparison of performance of ML algorithms with

the same values of hyper-parameters (seed & fraction) (L = 500 & A3 is used). (each dot
denotes a classifier, its abscissa means the value of seed, and its ordinate means the obtained

accuracy of the classifier). (a) obtained various classifiers when fraction = 0.88; (b) obtained
various classifiers when fraction = 0.89; (c) obtained various classifiers when fraction = 0.9;

(d) obtained various classifiers (a combination of the above three sub-figures).
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FIGURE 5. (continue.) (chromatic figure) Comparison of performance of ML algorithms with the
same values of hyper-parameters (seed & fraction) (L = 500 & A3 is used). (each dot denotes a
classifier, its abscissa means the value of seed, and its ordinate means the obtained accuracy of
the classifier). (a) obtained various classifiers when fraction = 0.88; (b) obtained various
classifiers when fraction = 0.89; (c) obtained various classifiers when fraction = 0.9;

(d) obtained various classifiers (a combination of the above three sub-figures).
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TABLE 4. Graph Lab experiments where length of each formula is 500 (A4 is used).

Algorithms RF BT DT LR
Prediction Accuracy 0.9590 0.9970 0.9360 1
Running time per record (in second)  0.000035  0.00005 0.000038  0.000035
AUC 0.9970 0.9983 0.8040 1
Specificity (TNR) 0.995 0.996 0.996 1
Sensitivity (TPR) 0.764 1 0.611 1
Precision 0.968 0.981 0.970 1

TABLE 5. Compared with NuSMV and NuXMV, the new method enhances the efficiency of LTL model Checking (L = 500 & A4 is used).

Average running time (t;) of Average running time (t,) of

Average predictive time (t;) of the

NuSMV for one pair of Kripke NuXMYV for one pair of Kripke M.L new method based on ML for one t/t; b/t
algorithms
structure and formula structure and formula record (s)
RF 0.000035s 5951429 5757143
BT 0.00005s 4166000 4030000
208.3s 201.5s DT 0.000038s 5481579 5302632
LR 0.000035s 5951429 5757143

This figure illustrates the relationship between all the two
hyper-parameters and the obtained accuracies. In this figure,
the different colored dots which have the same value of the
horizontal ordinate denote the different performance of the
different ML algorithms with the same value of the hyper-
parameters.

As shown in Fig.5, we evidently feel that the red dots are
a little higher than the other dots on the whole. It indicates
that the overall performance of LR is better than those of the
other three algorithms, when the length of the LTL formulas
is 500.

Furthermore, each ML algorithm has a best classifier,
i.e., ML model, as shown in the red arrows of the figure.
Clearly, the location of the best LR classifier is higher than
those of the other three best classifiers, according to the
location of the four red arrows. It also indicates that the
optimal accuracy of LR is better than those of the other three
ML algorithms.

G. MORE COMPARISONS ON THE DIFFERENT DATA

In the above discussion, we give some comparisons among
the four ML algorithms on the same raw data set rather than
the same test set. In other words, given a fixed data set, which
an algorithm will perform well, if both training and testing use
this data set? The above experimental results demonstrate that
LR is the best.

Now, another obvious question comes: how to compare
these four ML algorithms on the same test set instead of the
same raw data set? In other words, given a fixed test set,
which an algorithm and its optimal classifier will perform
well, if the four optimal classifiers use this same test set? The
experiments on A4 will provide an answer.

This time, all the four optimal classifiers run on the same
test set A4. As shown in table 4 and table 5, LR and BT
provide the two fast and accurate classifiers, where the LR

135714

TABLE 6. Graph Lab experiments where length of each formula is 500
(A5 is used).

Algorithms RF BT DT LR

Prediction Accuracy 0.3 03 03 0.3

optimal model is best again. Their AUC values identify the
same viewpoint, as illustrated in Fig.6. As for the average
predictive time for one record, all the four optimal classifiers
are very fast again, as shown in table 5.

Now, let A4 be replaced by AS, and all the four optimal
classifiers run on the same test set AS. The results are depicted
as table 6, indicating the performance is not acceptable at all!
In fact, the combination of table 4 and table 6 shows a vital
difference with regard to the following precondition of the
new approach.

Let AL = {11, I, ..., 1y} and Ak = {kj, ko, ...,k }, thus
the set A x Ak has m*n elements. If each element of Ay, is
a LTL formula and each element of Ax is a Kripke structure,
each element of A, x Ak will be a model checking result.
If a subset of AL x Ak makes up a training set and another
subset of Ay, x Ak forms a test set, the optimal classifiers will
perform well. However, even the optimal classifiers are hard
to complete their mission successfully, if a testing sample
does not occur in any subset of A, X Ag. In our experiments,
10000 records mentioned in section IV.C make up Ap, x Ak,
and the subsets of A, x Ak are A3 and A4, not AS5. It is
this fact and reason that leads to the sharp difference between
table 4 and table 6.

In summarize, the new method is much faster than the
existing ones, as well as the former is almost equal to the latter
in terms of accuracy. However, the use of the new method
would be limited by the above constraint, if a big data set
could not be established in advance.
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FIGURE 6. (chromatic figure) Roc Curve of the Optimal Classifiers, (L = 500 & A4 is used). (a) RF; (b) BT; (c) DT; (d) LR.

TABLE 7. The key differences among some related works and the new method.

The distinguishing feature of this type of studies

The distinguishing feature of the new method

Studies Type 1)
Studies Type 2)

Studies Type 3)
& Studies Type
4)

deal with some SAT problems rather than MC ones

ML and MC cooperate for a third party

The employed ML does NOT change the trunk of MC core
engine, which is still based on state space exploration, so that
both the state explosion problem and non-polynomial
complexity can NEVER be avoided fundamentally

address the key MC problem directly

perform ML for MC

The employed ML has changed the trunk of MC core engine, and
the new method is based on data training & prediction rather than
state space exploration, so that both the state explosion problem
and non-polynomial complexity are avoided

TABLE 8. Comparison among the existing MC algorithms of and the new method.

The existing MC algorithms

The new method

State explosion problem
Non-polynomial time complexity

Before real customers use it

Applied range

Can be relieved instead of avoided
They are suffering from it

A model checker is need to be developed

Very wide

Has been avoided

Has been avoided

Not only a ML-based tool, but also a massive data set is needed.
It may be quite an enormous undertaking

Has some limitations, such as safety-critical systems

Can counterexamples be generated? Yes

No

V. THE RELATED WORKS

A. SOME STUDIES RELATED TO BOTH ML AND MC

Model checking is a mainstream technique in the theoretical
computer science community, while machine learning is a
mainstream technique in the artificial intelligence commu-
nity. Up to now, a number of studies are related with both

VOLUME 7, 2019

of these two mainstream techniques. These studies are very
important and they can be summarized as the following three
types, roughly speaking:

—1). Machine learning for some SAT solvers [36]-[38].
In the strict sense, these works relate to machine learn-
ing, not model checking. In fact, SAT denotes the
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FIGURE 7. (a chromatic figure) lllustrations of something about our study. (a) about LTL model checking; (b) about ML binary classification; (c) an

illustration of this study.

boolean satisfiability. Therefore, SAT solvers deal with
boolean formulas, whereas model checking deal with tem-
poral logic formulas. And satisfiability and model checking
are relevant and different.

—2). These studies employ both model checking and
machine learning to address some problems in the field
of a third party. These works are quite far from this
paper in terms of topics. Thus, we will not dwell on it
here.

-3). In fact, some studies have employed machine leaning
to deal with some model checking topics. In such researches
including the new method in this paper, machine learn-
ing provides technical services, and model checking is a
user of machine learning. For examples, how to select a
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suitable software model checker from a number of soft-
ware model checking tools for a given input instance? To
this end, an approach called Mux was presented to per-
form machine learning on a repository of software verifica-
tion instances [42]. Another study is about on-the-fly model
checking. Since in on-the-fly model checking, one do not
have complete knowledge about the model, the authors of
Ref.[43] use a machine learning method based on interac-
tion and reward receiving. More studies, such as [44], [45],
employ machine learning to deal with some topics related
with refining the abstraction, a technical scheme that can
reduce state space in the process of model checking. It is
a hotspot to study statistical model checking, a variant
technique of model checking, using machine learning. See

VOLUME 7, 2019
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Ref. [46]-[49], [50], [51] and [52] for more details. And no
more information will be detailed here, due to the limitation
of space.

Table 7 depicts the essential differences among the new
method and some related works.

B. COMPARISON WITH THE EXISTING LTL MODEL
CHECKING

Due to the characteristics of machine learning, it is not
guaranteed that a ML-based method can steadily reach the
predictive accuracy of 100% in any case. Thus, it is not
recommended to use the newly proposed approximate LTL
model checking technique to safety-critical systems. In com-
parison, the field of safety-critical systems has been one of
the most important applications of the classical LTL model
checking.

In addition, counterexamples cannot be produced since
no path or state is generated in the process of running the
ML-based method. Thus, it is not recommended to use the
new method to the MC cases that need counterexamples.

Furthermore, as mentioned above, pre-construction of a
massive data set will be a very time-consuming mission in
the stage of development. Maybe online learning can help
engineers deal with this problem. Anyway, it is just a cost
in the stage of realization in engineering.

Obviously, the new method has its flaws. However, the new
one also shows its comparative advantages. All the existing
model checking methods are based on accurate computing,
and the core of them is to explore exhaustively state space.
By contrast, our method based on machine learning is no
longer an accurate computing, although the result is still
accurate. The new method never searches the state space at
all, and it just does some predictions according to a data set.
As a result, the state explosion problem and the exponential
complexity are avoided entirely.

According to the experimental results and analysis,
the existing LTL model checking approaches and the new one
have the different characteristics, as summarized in table 8.
Thus, it is safe to say that they complement each other.

C. COMPARISON WITH SOME WORKS NAMING
APPROXIMATE MODEL CHECKING

Some studies have been conducted with naming “‘approxi-
mate model checking”. To the best of our knowledge, there
are the following three situations, roughly speaking:

—1). In some MC extensions, such as stochastic model
checking or probabilistic model checking, the complexity
and the state explode are more serious than that of the
model checking without extension. Even some time complex-
ities reach non-elementary, beyond exponent! If systematic
models [53], [54] and formulas [55], [56] are dealt with
approximately, or paths from the state space are obtained
through random sampling [57], such approximate technique
can reduce the state space or complexity [58], [59].

—2). Hybrid systems are often undecidable so that they
cannot be conducted model checking. If some techniques

VOLUME 7, 2019

including approximate ones [60] are employed to simplify the
decidability, model checking will be available.

-3). In order to reduce the state space, the following mean
are presented. For the formula describing a property, an upper
bound formula and a lower bound formula are provided,
so that the logically the lower bound formula implies the orig-
inal formula, as well as the original formula implies the upper
bound formula. That is, if the lower bound formula is verified
as true, then the original formula must also hold in the given
model. Conversely, if the upper bound formula is evaluated to
false, then the original formula must also be false [61]. If the
upper bound formula and a lower bound formula are easier
to be conducted model checking, the the state space will be
reduced. This idea was pioneered in Ref. [62], which has a
similar methodology with [63] and [64].

Obviously, the meaning of the term “approximate model
checking” is changing and confusing. One should judge its
true meaning according to context. Recording these studies
mentioned in this subsection as type 4), the last line in table
7 formulates the fundamental differences between this kind of
studies and the new method. In a word, these works are very
important, but they are NOT the same kind of things with the
new method at all.

VI. CONCLUSION

In this paper, an approximate LTL model checking technique
is formed and pioneered. To the best of our knowledge, this
is the first approach that uses directly machine learning as
the core engine of model checking, as well as the first model
checking method that avoid state explosion problem totally.
Fig.7 illustrates this study.

Our experiments have demonstrated that the longer the
LTL formula, the more obvious the comparative advantage of
the new methods is. In the real world, state of the art of LTL
model checking is insufficient to verify large-scale operating
systems and their complex properties, due to the well-known
state explosion problem and the exponential complexity. This
background will help us understand the benefit of using the
new method.
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