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ABSTRACT In cellular systems, information signals must be transmitted at high rates and with high
reliability. One of the possible solutions to meet such criteria is the use of systems with multiple transmitting
and/or receiving antenna arranged in the form of amultiple-input, multiple-output (MIMO) system.However,
signal processing techniques in MIMO systems are developed under the assumption of transmission on
Gaussian channels, which may lead to the decrease of efficiency in non-Gaussian communication scenarios.
In this context, the widespread use of MIMO systems in recent years has motivated the development of new
processing techniques that can be employed in scenarios that also consider the presence of non-Gaussian
noise in communication channels. This work proposes a novel signal detection technique forMIMO systems,
which is called maximum correntropy detector (MCD), being adequate to environments characterized by
Gaussian and non-Gaussian noise. The introduced approach is based on complex correntropy function and
can be seen as a generalization of the maximum likelihood detector (MLD) concept. The MCD is evaluated
on Gaussian and non-Gaussian channels, where superior performance is achieved when compared with the
classic detectors, without significant increase of the computational complexity.

INDEX TERMS Complex correntropy, maximum correntropy detector, multiple-input multiple-output
systems, non-Gaussian noise, signal detectors.

I. INTRODUCTION
In last-generation cellular systems, information signals must
be transmitted at high rates with high reliability [1].
However, information signals are affected by various degen-
erative channel effects, which degrade overall system perfor-
mance [2]. When a certain interference threshold is reached,
any added power to the signal will not result in improvements
to the communication system [3]. In this case, minimizing
such undesirable effects can be performed using appropri-
ate transmission techniques. Among the existing approaches,
systems based on multiple transmitting and/or receiving
antennas, named as multiple-input, multiple-output (MIMO)
systems, have been consolidating in recent years [4].

Minimizing the degenerative effects of the communication
channel in MIMO systems can be accomplished by using
a set of transmitting and receiving antennas separated by
some wavelengths in a spatial diversity scheme [4]. This
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arrangement can be particularly useful because it generates
information diversity without compromising the transmitted
signal bandwidth [5].

In order to improve performance of MIMO systems, sev-
eral detection and reception techniques of signals have been
proposed so far, e.g., maximum likelihood detector (MLD),
minimum mean square error (MMSE), zero-forcing (ZF) [6]
or robust log-likelihood ratio method [7]. Although these
are classical and well-consolidated solutions in the literature,
such detectors were proposed for Gaussian communica-
tion channels [4], [6]. However, in many practical sys-
tems, the noise profile can also be characterized by the
presence of outliers, which characterize a non-Gaussian
channel [8], [9]. In fact, according to [10]–[12], there is a
significant deterioration in system performance due to the
influence of non-Gaussian noise, which directly affects the
methods based on the second-order statistical moments.

Over time various statistical models have been proposed
to describe a non-Gaussian noise. One of the statistical dis-
tributions most widely used for this purpose is the stable
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distribution [13]. The stable distribution can be understood
as a generalization for the Gaussian distribution [14] and
by adjusting the free parameters of this distribution, it is
possible to define how impulsive is the noise of the modeled
channel [15].

Recently, some works have investigated the MIMO trans-
mission technique in non-Gaussian scenarios. The authors
in [16] presented an adaptive reception technique based on the
use of an impulsive noise level detector. On the other hand,
the work developed in [17] introduces an alternative solution
to the same problem using an adaptive reception technique
through adaptive recursive least mean square (RLS), adaptive
normalized least mean square (NLMS), and variable step-
size adaptive normalized least mean (VSNLMS) algorithms,
which aim to minimize the effect of impulsive noise on
the system performance. In [18] the authors used a nonlin-
ear complex Multiple Support Vector Machine Regression
(M-SVR) methodology for estimation of fast-fading multi-
path channel.

In this context, this work introduces a novel detection
method for MIMO systems, called Maximum Correntropy
Detector (MCD). The proposed detector uses complex
correntropy for properly choosing a transmitted symbol
on a channel characterized by non-Gaussian noise and
time-variant fading. It is also worth mentioning that the
correntropy function has been successfully used in various
applications involving non-Gaussian signals, e.g., spectral
sensing [19], automaticmodulation classification [20], patho-
logical voice recognition patterns [21], non-linear system
identification [22] and non-linear self-interference cancella-
tion in full-duplex radio systems [23]. The proposed detector
employs the maximum complex correntropy criterion for
decision making on symbols transmitted on a channel sub-
ject to impulsive noise and time-variant fading. The results
demonstrate that the proposed reception technique is a gen-
eralization of the MLD detector concept, also presenting
good performance when compared with the classical methods
reported in the literature. Beside, this work investigates the
influence of the kernel size, a parameter of the correntropy
function, on the performance of the MCD and proposes a
method to select this parameter as a function of the measured
geometric signal-to-noise ratio.

A. CONTRIBUTIONS
The main contributions of this work include:

1) The analysis of signal detection techniques in MIMO
systems considering scenarios characterized by impul-
sive noise;

2) Introduction of a novel signal detection technique for
MIMO systems through the use of correntropy;

3) Analysis of the proposed technique in scenarios char-
acterized by impulsive noise with α-stable distribution
and Gaussian channels;

4) Modeling of the adaptive kernel size for the proposed
problem;

FIGURE 1. Adopted MIMO transmission scheme.

5) Demonstration that MCD is a generalization of
the MLD.

B. PAPER ORGANIZATION
The remainder of this paper is organized as follows. Section II
presents the system model in terms of the MIMO representa-
tion and the non-Gaussian noisemodel. Section III introduced
the mathematical analysis and architecture of the proposed
detector. Section IV describes numerical results obtained by
simulation. The main conclusions are given in Section V.

II. SYSTEM MODEL
The MIMO digital transmission system is represented
in Figure 1 [4]. At the transmitter, the information source
is applied to a serial-to-parallel converter, which divides the
original sequence into NT parallel sequences. Each one of
the sequences is modulated and transmitted by a different
antenna. There are NR antennas at the receiver, spaced so
that the received signals can be considered independent of
each other. Each one of the NR received sequences is demod-
ulated and applied to the MIMO detector. The detector out-
put generates estimates of the transmitted parallel sequences
(s̃k , where k = 1, . . . ,NR), which are applied to a parallel-
to-serial converter in order to combine the estimates to obtain
the original transmitted signal.

Considering a MIMO system with NT transmitting anten-
nas and NR receiving antennas, the k-th symbol received by
the m-th antenna is given by [24]:

ym(t) =
NT∑
n=1

sn(t)hmn(t)p(t)+ ηm(t)

m = 1, . . . ,NR, kTs ≤ t < (k + 1)Ts, (1)

where sn(t) is the symbol transmitted by the n-th antenna,
which is obtained from a phase-shift keying (PSK) or quadra-
ture amplitude modulation (QAM) scheme, hmn(t) is the
attenuation due to the channel between the n-th transmitting
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antenna and the m-th receiving antenna, ηm(t) is the channel
noise, p(t) is a rectangular pulse, and Ts is the signaling
interval.

In this work, it is assumed that the coefficients hmn(t)
remain constant during each signaling interval (kTs ≤ t <
(k + 1)Ts). Besides, the transmitter employs a perfect inter-
leaving scheme so that the signaling coefficients hmn(t) are
uncorrelated to each other at each interval, being defined by:

hmn(t) = hmn,r (t)+ jhmn,q(t) kTs ≤ t < (k + 1)Ts, (2)

where hmn,r (t) and hmn,q(t) are modeled as Gaussian pro-
cesses with zero mean and variance 1/2, so that the magnitude
of hmn(t) presents a Rayleigh distribution and the phase has
uniform distribution over [0, 2π ) [25].

A. SIGNAL DETECTION
Once received and demodulated, the samples ym(t) must be
applied to a detector in order to estimate the transmitted
symbols [26]. Several detectors have been proposed in the lit-
erature, while this work adopts theMLD as a reference, which
is adequate for minimizing the error probability on channels
characterized by additive white Gaussian noise(AWGN) [1].
In this case, symbol ŝMLD estimated by the detector is given
by [24]:

ŝMLD = arg
s ∈�NT

min

∣∣∣∣∣ym −
NT∑
n=1

hmnsn

∣∣∣∣∣
2

, (3)

where sn represents one element in the set of possible constel-
lation symbols used in the transmission and� is the possible
subspace containing all transmitted symbols, i.e., sn ∈ �.
One possible drawback associated with the MLD lies in

the fact that it is not adequate to impulsive noise channels.
Besides, the computational complexity increases as the num-
ber of receiving antennas also does [24].

B. IMPULSIVE NOISE
Typically, the additive interference model adopted in com-
munication systems is the Gaussian white noise (GWN) [27].
Even though it is a very popular approach, the use of Gaussian
distributions to model additive noise cannot be extended to all
communication channels [28]–[30]. In fact, for a wide range
of communication scenarios, it is more appropriate to take
impulsive interference into account as well [31].

Several statistical models have been proposed so far
to describe impulsive noise. One of the most popular
statistical distributions for this purpose is the α-stable distri-
bution [13]. It can also be understood as the generalized rep-
resentation of a Gaussian distribution [27]. By adjusting its
respective free parameters, it is possible to generate various
probability distribution functions, such as Gaussian, Cauchy-
Lorentz, or Lèvy.

A random variable with α-stable distribution can be param-
eterized through a characteristic function defined by [27]:

ϕ(t) = exp
[
jλt − γ |t|α(1+ jβsign(t)ω(t, α))α

]
, (4)

FIGURE 2. Probability distribution function of some α-stable symmetrical
distributions as a function of β = λ = 0 and γ = 1.

where:

ω(t, α) =

tan
(πα

2

)
when α 6= 1

2
π
log |t| when α = 1,

(5)

sign(t) =


1 when t > 0
0 when t = 0
−1 when t < 0,

(6)

being:

0 < α ≤ 2;−1 < β ≤ 1; γ > 0;−∞ < λ < +∞. (7)

A given variable X (α, β, γ, λ) with α-stable distribution
Sα(β, γ, λ) is described by a probability distribution function
whose free parameters are {α, β, γ, λ} [32]:

1) Parameter α is called characteristic exponent or stabil-
ity, thus denoting the tail lengthening of the α-stable
probability distribution function.

2) Parameter β is the symmetry index or kurtosis, which
represents the function symmetry.

3) Parameter γ is the dispersion parameter or scale, cor-
responding to the statistical dispersion of the function
around a central point.

4) Parameter λ is the position of the distribution center.
Figure 2 presents the α-stable probability distribution func-

tion for several values of α, also considering parameters
β = λ = 0 and γ = 1.
A particular case that is supposed to be analyzed in this

work occurs when β = 0 and λ = 0. In this condition, the α-
stable distributions are said to be symmetrical [8], while the
characteristic function is represented by:

ϕ(t) = exp
(
−γ |t|α

)
. (8)

Using the α-stable distribution for modeling the impulsive
noise is particularly useful due to some properties of this
distribution, i.e.:
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1) Generalized central limit theorem: the sum of a large
number of independent and identically-distributed ran-
dom Y1,Y2, . . . ,Yn with or without finite variance
converges to a random variable X with an α-stable
distribution:

Y1 + Y2 + . . .+ Yn
dn

+ an
d
⇒ X , (9)

where dn > 0, an are real constants and Y
d
⇒ X denotes

the distribution convergence.
2) Stability property: A distribution is said to be α-stable

if the independent random variables X , X1, and X2 with
α-stable distribution meet the stability criterion [13]:

v1X1 + v2X2
d
= µ1X + µ2, (10)

where v1, v2, µ1, e µ2 are scalars, and d
= represents

equal probability distributions.
3) The α-stable distribution is capable of modeling a wide

variety of other distributions from its free parameters.
Particularly for α = 2 and β = 0, the α-stable
distribution becomes a Gaussian distribution, while for
α = 1 and β = 0 it corresponds to a Cauchy-Lorentz
distribution, i.e.:

fα=2(γ, λ, x) =
1

√
4πγ

exp
[
−
(x − λ)2

4γ

]
, (11)

fα=1(γ, λ, x) =
1

π [γ 2 + (x − λ)2]
. (12)

4) The α-stable distribution allows controlling the tail
lengthening of the probability density function, while
modeling scenarios with higher or lower degree of
impulsivity [27], as shown in Figure 2. Besides, the fol-
lowing statement can be easily demonstrated [33]:

lim
x→0

Pr(X > x)=γ α
0(α)
π

sin
πα

2
(1+ β)x−α, (13)

where 0(·) is the Gamma function, which is defined
by [34]:

0(x) =
∫
∞

0
e−t tx−1dt . (14)

In this case, the lower the value of α, the higher the tail
weight of the probability distribution function associ-
ated with the stable distribution, resulting in scenario
with higher impulsivity.

5) Let X ∼ Sα(β, γ, δ) for 0 < α < 2, then [13]:

E[|X |p] < ∞ when 0 < p < α

E[|X |p] → ∞ when p ≥ α, (15)

where p > 0, p ∈ <. As a consequence of this property,
the second-order and higher-order statistical moments
do not converge for α < 2. Particularly for α < 1,
the expected value of variable X is not supposed to
converge.

Due to the property represented by Equation (15), the
α-stable distribution is characterized by an infinite variance

if α < 2. One of the most effective figures of merit in
communication systems is the signal-to-noise ratio (SNR),
which relates the signal power to the noise power. Thus,
it is essential to replace it for other metrics that are suitable
to scenarios characterized by α-stable noise model. A well-
established metric for this purpose is the geometric signal-to-
noise ratio (GSNR), which is defined by [14]:

GSNR = 10 log10

(
1
γM

M∑
k=1

sks∗k

)
, (16)

where sk is the transmitted signal,M is the number of samples
of the transmitted signal, and γ is the dispersion parameter.

III. PROPOSED DETECTOR
This work introduces a novel detector for MIMO systems
based on complex correntropy, which is called maximum
correntropy detector (MCD). The forthcoming subsections
are supposed to detail the operation of the proposed detector.
Initially, the theory of complex correntropy for random vari-
ables is presented, as well as the theoretical background of
the MCD. A detection architecture for MIMO systems based
on the MCD method is then described in detail.

A. COMPLEX CORRENTROPY FOR RANDOM SIGNALS
Feature extraction is of major importance in random signal
processing. In this sense, the use of statistical similarity met-
rics is a must, e.g., correlation. However, for non-Gaussian
random processes or in cases where the analyzed systems are
nonlinear, correlation may not be effective [19].

Among the techniques proposed for feature extraction in
scenarios where non-Gaussian data or nonlinearity exist,
the correntropy function is a prominent choice. It is
capable of extracting features from second-order statisti-
cal moments by correlation, as well as from higher-order
ones, with a computational complexity equivalent to that of
correlation [19].

In this work, the complex correntropy function is applied
to random variables, which is defined in the form [35]:

V c
σ (Q,W ) = E[kσ (Q,W )], (17)

where kσ (·) is a positive definite function called kernel,
Q,W ∈ C are complex random variables such that Q =
X + jZ and W = Y + jS, with X ,Y ,Z , S ∈ <, and E[ · ]
is the statistical expectation operator.

This work employs a Gaussian function as kernel due to
the inherent symmetry according to [8]:

kσ (Q,W ) =
1

2πσ 2 exp
{
−
(Q−W )(Q−W )∗

2σ 2

}
, (18)

where σ is the kernel size. Using a Gaussian kernel, the com-
plex correntropy defined in Equation (17) can be written as:

V c
σ (Q,W )=

1
2πσ 2 E

[
exp

(
−
(Q−W )(Q−W )∗

2σ 2

)]
, (19)

where subscript ∗ denotes the complex conjugate.
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The calculation of the complex correntropy according to
Equation (19) requires the knowledge of the joint probability
density function of the random variables Q and W . This
problem can be solved by estimating it by means of a Parzen
window. Thus, the estimation of the complex correntropy in
Equation (19) considering a Gaussian kernel is given by:

V̂ c
σ (Q,W ) =

1
2πσ 2

1
L

L∑
m=1

exp
(
−
(qm − wm)(qm − wm)∗

2σ 2

)
,

(20)

where L is the number of samples of signals qm and wm.
The complex correntropy is a similarity metric between

two random variables, which assumes a maximum value of
1/(2πσ 2) when Q = W . Besides, it can be considered as a
generalization of correlation. This is due to the fact that it con-
tains the information regarding infinite even-order moments
of random variable Q − W . This can be seen by applying
the Taylor series expansion to Equation (19). Assuming the
complex random variables Q = X + jZ andW = Y + jS, it is
possible to use the Taylor series expansion to write:

VC
σ (Q,W )

=
1

2πσ 2 E
[
1−

(X − Y )2

2σ 2 +
(X − Y )4

8σ 4

−
(X − Y )6

48σ 6 +
(X − Y )8

384σ 8 −
(Z − S)2

2σ 2

+
(Z − S)4

8σ 4 +
(Z − S)6

48σ 6 +
(Z − S)8

384σ 8

+
(X − Y )2(Z − S)2

4σ 4 −
(X − Y )2(Z − S)4

16σ 6

−
(X − Y )4(Z − S)2

16σ 6 +
(X − Y )2(Z − S)6

96σ 8

+
(X − Y )4(Z − S)4

64σ 8 +
(X−Y )6(Z−S)2

96σ 8 +. . .

]
(21)

By grouping the terms containing σ 2 in the denominator
and besides, defining hσ 4 as a variable containing the high-
order terms of the summation, it is possible to write:

VC
σ (Q,W )=

1
2πσ 2−

1
2πσ 2 E

[
(X−Y )2+(Z−S)2

2σ 2

]
+ hσ 4 ,

(22)

thus,

VC
σ (Q,W )=

1
2πσ 2−

1
4πσ 4 E[(Q−W )(Q−W )∗]+ hσ 4 ,

(23)

finally,

VC
σ (Q,W ) =

1
2πσ 2 −

1
4πσ 4R[Q,W ]+ hσ 4 , (24)

where R[Q,W ] = E[(Q − W )(Q − W )∗] autocorrelation of
(Q−W ).

One can notice in equation (22) that the higher-order terms
represented by hσ 4 tend to zero faster than the second-order

one as σ increases, what corresponds exactly to the autocor-
relation of (Q−W ).

B. MATHEMATICAL FOUNDATION OF MCD
The MCD consists in the generalization of the MLD. It can
be accomplished through the use of complex correntropy as
a similarity measure instead of the mean square error crite-
rion. Thus, the MCD contains information on both second-
order statistical moments, notably indicated by theminimized
Euclidean distance in the MLD, as well as information on
higher-order statistical moments. In addition, the use of the
Gaussian kernel reduces the effect of outliers due to the neg-
ative exponential argument, which results in the robustness of
this technique on channels characterized by impulsive noise.

The MCD lies in selecting a given symbol sn of a constel-
lation used in the transmission to maximize the maximum
complex correntropy criterion defined in Equation (20). This
method can be derived adopting qm and wm as random vari-
ables assuming the following values:

qm = ym (25)

wm =
NT∑
n=1

hmnsn, (26)

Thus, the complex correntropy presented in Equation (20) can
be written in the form:

V̂ c
σ (Q,W ) = ϑ

NR∑
m=1

exp

−
∣∣∣ym −∑NT

n=1 hmnsn
∣∣∣2

2σ 2

 , (27)

where:

ϑ =
1

2πσ 2

1
NR
, (28)

being σ the kernel size.
The MCD method is based on the fact that correntropy

is similarity measure between two random variables, which
assumes the maximum value when both of them are identical.
Thus, the selected symbol sn is the one most likely to be
transmitted.

Assuming the presence of noise in the communication
channel, theMCDwill generate an estimate of the transmitted
symbol ŝMCD from the following criterion:

ŝMCD = arg
s ∈�NT

max ξ (s, σ ), (29)

where � is the possible subspace containing all transmitted
symbols and ξ (s, σ ) is a function derived from the complex
correntropy represented by Equation (19):

ξ (s, σ ) =
NR∑
m=1

exp

−
∣∣∣ym −∑NT

n=1 hmnsn
∣∣∣2

2σ 2

 , (30)

where | · | represents the modulus of a complex number.
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C. MCD PROPERTIES
This subsection is dedicated to the analysis of some useful
properties associated with the approach introduced in this
work.
Property 1: - For some value of σ , the MCD is an optimum

search process in the order of |�|NT , just like MLD [24].
Therefore, the computational burden of MCD and MLD is
nearly the same.
Property 2: - The MCD contains information on second-

order moments as associated withMLD, and also information
on higher-order statistical moments.

In order to demonstrate Property 2, it is only necessary to
expand function ξ (s, σ ) as represented by Equation (30) using
the Taylor series:

ξ (s, σ ) =
NR∑
m=1

∞∑
k=0

(−1)k

∣∣∣ym −∑NT
n=1 hmnsn

∣∣∣2k
2σ 2kk!

, (31)

Expanding Equation (31) until term k = 2 gives:

ξ (s, σ ) =
NR∑
m=1

1
2
−

∣∣∣ym −∑NT
n=1 hmnsn

∣∣∣2
2σ 2

+

∞∑
k=2

(−1)k

∣∣∣ym −∑NT
n=1 hmnsn

∣∣∣2k
2σ 2kk!

 . (32)

Analogously, Equation (32) can be rewritten in the form:

ξ (s, σ ) =
NR∑
m=1

[ν(σ )+ ϕ(σ )] , (33)

where:

ν(σ ) =
1
2
−

∣∣∣ym −∑NT
n=1 hmnsn

∣∣∣2
2σ 2 , (34)

represents the series expansion terms that aggregate first and
second-order statistics, while:

ϕ(σ ) =
∞∑
k=2

(−1)k

∣∣∣ym −∑NT
n=1 hmnsn

∣∣∣2k
2σ 2kk!

, (35)

corresponds to the series expansion terms that aggregate high-
order statistics.

From Equation (33), it can be stated that ξ (s, σ ) aggregates
both second-order moments represented by term ν(σ ), and
high-order moments represented by term ϕ(σ ).
Property 3: - TheMCD contains information on all infinite

even-order statistical moments.
This property can be easily observed in Equation (35),

as well as that term ϕ(σ ) contains infinite even-order statisti-
cal moments of the random variable

∣∣∣ym −∑NT
n=1 hmnsn

∣∣∣.
Property 4: - For high values of the kernel size (σ ),

the higher-order terms are minimized in relation to the
second-order terms.

FIGURE 3. Maximum correntropy detector architecture.

This property can be easily observed from the fact that the
(2k)-th statistical term é weighted by 1/σ 2k . Thus, the larger
the kernel size σ , the higher the contribution of the second-
order term in relation to the higher-order ones, given that high
order terms are weighted by factors smaller than the second-
order term.

In particular, for a sufficiently large kernel value,
the importance of higher-order terms is minimized, resulting
in:

ξ (s, σ ) ≈
1

2σ 2

NR∑
m=1

σ 2
−

∣∣∣∣∣ym −
NT∑
n=1

hmnsn

∣∣∣∣∣
2

, (36)

The analysis of Equation (36) shows that the MCD con-
verges to the MLD for large kernel sizes. In fact, the func-
tion maximization process described by Equation (36), cor-
responds to the same minimization processed expressed by
Equation (3) as associated with the MLD.

Aswill it be further demonstrated by the simulation results,
theMCD performance is superior to that ofMLD on channels
characterized by the presence of impulsive noise. Besides,
the same performance is achieved by both methods on chan-
nels characterized by AWGN. Since both approaches have
similar complexity, in practical systems the MCD can be
applied even to non-impulsive channels, since this aspect
does not affect the overall system performance in terms of
both symbol error rate and computational complexity.

D. SIGNAL DETECTION ARCHITECTURE
Figure 3 presents the signal detection architecture proposed in
this work. The ‘‘channel array estimation’’ block obtains esti-
mates for the attenuation coefficients between the transmitter
and receiver antennas {h̃mn}. On the other hand, the ‘‘stable
distribution parameter estimator’’ block estimates the param-
eters of the noise probability density function and, from
a mathematical expression, provides the proposed detector
represented by Equation (29) with the appropriate kernel size.

Estimating the kernel size is of major importance when
using the MCD receiver. From the proper adjustment of

137522 VOLUME 7, 2019



P. T. V. de Souza et al.: Novel Signal Detector in MIMO Systems Based on Complex Correntropy

this parameter, it is possible to increase or decrease the
importance of higher-order statistical moments in the method
performance. In this work, the kernel size is dynamically
adjusted, being calculated according to the GSNR and the
impulsivity parameter α of the communication channel:

σ = f (GNSR, α). (37)

The kernel size as a function of the aforementioned metrics
can be represented by adjusting a polynomial function, i.e.:

σ (GSNR, α) = p3(α)(GSNR)3 + p2(α)(GSNR)2

+ p1(α)(GSNR)+ p0(α), (38)

where p3(α), p2(α), p1(α), and p0(α) are quantities related
to parameter α of the communication channel. The adjust-
ment of parameters p3(α), p2(α), p1(α),and p0(α) can be per-
formed from points obtained in computer simulations as it
will be further explained in Section 4.1.

The parameters of the stable distribution can be estimated
from the method presented in [36], [37]. In this case, the char-
acteristic exponent α and the dispersion parameter γ can be
estimated by:

α̂ = φ1(ν̂α) (39)

γ̂ =
η̂0.75 + η̂0.25

φ3(α̂)
, (40)

where:

ν̂α =
η̂0.95 − η̂0.05

η̂0.75 − η̂0.25
, (41)

and η̂f represents f -th quantile of the sample set for the noise
η, φ1(ν̂α), and φ3(α̂) are tabulated functions as presented
in [37].

IV. SIMULATION RESULTS
This section presents the simulation results for the proposed
MCD. Symbol error rates (SER) were obtained for different
values of channel impulsivity considering twoMIMO system
configurations.

The evaluated MIMO arrangements employ spatial multi-
plexing (SM) in the following settings: (i) two transmitting
antennas and two receiving antennas; and (ii) four transmit-
ting antennas and four receiving antennas. In each scenario,
the performances of the MLD and MCD detectors were
analyzed.

The signals transmitted by each antenna are quadrature
phase-shift keying (QPSK) modulated with unit energy, and
are statistically independent of one each other.

Rayleigh flat fading due to multipath propagation in wire-
less channels is assumed, as well as a slow Doppler so that
the path gains between the transmitting and receiving anten-
nas can be considered constant at each signaling. Such path
gains are further considered to be perfectly known at the
receiver. In addition, the additive noise model assumed on
each receiving antenna is impulsive, following a symmetrical
α-stable distribution with β = δ = 0 and stability parameter

FIGURE 4. Relationship among kernel size, SER, and GSNR for an α-stable
channel with impulsive noise.

α in the following ranges: α = {1.3, 1.5, 1.7, 2.0}. For α = 2,
the modeled channel is Gaussian as presented in Section 2.1.

Impulsive noise parameters were estimated considering
103 samples. The samples were generated according to the
method proposed by Weron & Weron [8]. The GSNR was
varied from 0 dB to 20 dB with steps of 5 dB.

Simulation tests were carried out using the Monte-Carlo
method. At each point of the SER curves, at least 100 symbol
errors were employed in the estimation. All simulations were
performed considering the baseband, while other effects such
as the synchronization error were not evaluated.

A. KERNEL SIZE ADJUSTMENT
According to Section 3.4, one of the parameters that must be
defined in the proposed detector is the polynomial approxi-
mation coefficients for the kernel size determination as pre-
sented in Equation (33).

Since a mathematical relationship cannot be established
in order to determine the approximation coefficients, such
parameters were obtained from a set of surfaces generated
from computer simulations, which relate: (i) the SER; (ii) the
kernel size used by the proposed architecture (σ ); and (iii)
the GSNR for a channel with α-stable additive noise with a
specific and fixed factor α.

Figure 4 presents one of the surfaces for α = 1.5, where
each point was obtained for a minimum of 100 symbol errors.

From Figure 4, kernel size were chosen to minimize the
SER for a given GSNR. Such values are used to determine
the polynomial fit coefficients presented in Equation (33).
It is worth mentioning that the coefficients are determined
for a specific value of α and depend on this parameter as a
consequence. Table 1 presents the coefficients obtained for
the values of α investigated in this work.

Figure 5 presents the kernel sizes as a function of the
GSNR measured in the channel for α = {1.3, 1.5, 1.7, 2.0}.
Analyzing 5, it is reasonable to state that the kernel size tends
to increase as the GSNR also does. This relationship can be
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TABLE 1. Relationship among the adjustment coefficients p3,p2,p1, and
p0 and α.

FIGURE 5. Relationship between the optimal kernel size and GSNR for
distinct value of the channel impulsivity (α).

justified given that by increasing the GSNR of the channel,
the effect of impulsive noise is mitigated, and therefore,
the metrics for estimation of transmitted symbols must have
a greater influence of the second-order moment.

Another important point to note is that, as seen
in Figure 5, the influence of the α parameter on the optimal
fit of the kernel size is small. Thus, the detection architecture
performance is not very sensitive to small estimation errors
of the α parameter. However, there is a strong correlation
between the GSNR value and the optimal kernel size. Since
GSNR is related to the γ parameter of the impulsive noise
model, as indicated by Equation (16), this parameter must be
estimated as accurately as possible at the receiver.

B. MCD PERFORMANCE
Using the adjustment rule presented in Equation (38) and
the values for the approximation coefficients presented
in Table 1, this section presents a set of simulations that
compare the SER as a function of the GSNR for the proposed
detector with that for MLD considering different channel
impulsivity values and two MIMO arrangements.

Figures 6-9 present the relationship of the SER as a
function of the GSNR for channels with α-stable noise for
α = 1.3, 1.5, 1.7, and 2.0, respectively. In each curve, the per-
formance of the proposed detector is compared with that of
the MLD for the 2 × 2 and 4 × 4 MIMO systems.
From Figures 6-8, considering the performance curves

obtained on non-Gaussian channels for α 6= 2), it can be

FIGURE 6. SER on channels with α-stable impulsive noise considering
α = 1.3.

FIGURE 7. SER on channels with α-stable impulsive noise considering
α = 1.5.

observed that the proposed detector is superior to theMLD for
all ranges of the GSNR. At lower GSNRs, the performance of
both techniques is similar, but for high GSNRs the gains are
equal to about 2 dB and 4 dB for the 2 × 2 and 4 × 4 MIMO
systems.

Still analyzing Figures 6-8, it is also noted that using more
receiving antennas does not lead to the improvement of MLD
performance on non-Gaussian channels. On the other hand,
theMCD performance is improved as the number of antennas
increases. The gain obtained in the 4 × 4 MIMO system is
about 2 dB when compared with the 2 × 2 MIMO system
using the MCD. On the other hand, the gain is nearly null
when the MLD is employed instead.

Figure 9 shows the behavior of the MCD and MLD on
Gaussian channels for α = 2. In this case, the perfor-
mance of the proposed architecture is equivalent on AWGN
channels, to that of the reference system employing the
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FIGURE 8. SER on channels with α-stable impulsive noise considering
α = 1.7.

FIGURE 9. SER on channels with α-stable impulsive noise considering
α = 2.0.

MLD receiver. This is expected as MLD is an optimal tech-
nique for channels with additive Gaussian noise. As a general,
it can be stated that the MCD performance will be at most
equivalent, but never superior to that of MLD.

Figures 10 and 11 summarize the behavior of the MCD
and MLD for distinct degrees of impulsivity of the channel
in 2× 2 and 4× 4MIMO systems, respectively. It is observed
that with the increase of the degree of impulsivity, i.e. when
parameter α decreases, the performance of both detectors is
impaired. However, theMLD is somewhat more affected than
MCD. As an example, from Figure 10, it can be stated that
the performance of the MCD with two receiver antennas in
a scenario with α = 1.3 is equivalent to that of the MLD
with two receiver antennas in a scenario with α = 1.5, which
corresponds to a less impulsive channel. The same behav-
ior occurs in Figure 11, where the performance is further
improved since more receiving antennas are employed.

FIGURE 10. SER of the MCD and MLD for distinct channels with α-stable
noise in a 2 × 2 MIMO system.

FIGURE 11. SER of the MCD and MLD for distinct channels with α-stable
noise in a 4 × 4 MIMO system.

C. DISCUSSION OF RESULTS
In practice, a communication channel has an impulsiv-
ity degree that varies over time. Thus, in some less
severe situations, parameter α approaches two and the
channel is Gaussian. However, in more adverse situa-
tions, which may be caused by natural or human effects,
the parameter α decreases, thus making the channel non-
Gaussian. In such situations, the MLD presents higher
error rates leading to burst error. In this same scenario,
the MCD would perform better and present reduced burst
error.

In this sense, since the MCD presents a computational
complexity equivalent to that of MLD, this detection strategy
can be used even if the channel is Gaussian, also considering
that the MCD would have an equivalent performance to that
of the MLD in this scenario.
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V. CONCLUSION
In order to increase the robustness of MIMO systems on
impulsive noise channels, this work has proposed a novel
method for signal detection based on the complex correntropy
function, which is so called MCD. The proposed technique
can be seen as a generalization of the MLD.

The performance of the introduced approach is evalu-
ated by computer simulation. The results indicate that the
MCD achieves superior performance than that of the MLD
technique on impulsive noise communication channels, and
also equivalent performance on Gaussian channels.

Future work aims to: (i) compare the MCD for MIMO
systems with other detection techniques proposed in the lit-
erature; (ii) analyze the detector performance in scenarios
where the channel is not known by the receiver.
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