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ABSTRACT Aiming at the constrained two-dimensional guillotine cutting problem of rectangular items,
a heuristic algorithm with block corner-occupying pattern is presented in this paper. It can maximize the
pattern value for the totally included items, but the occurring frequency of each item type doesn’t exceed its
upper bound. Several rows and columns of identical items are packed at the left-bottom corner of the sheet,
and the remaining part is divided into two sub-sheets. The sub-sheets are then packed and divided in the same
way till no items can be packed. This upper bound and normal size methods applied in the algorithm will
avoid the unnecessary calculation. The algorithm is compared with 9 literature algorithms with benchmark
instances and random instances. Computational results show that, compared with the 8 heuristic algorithms,
the pattern value of this algorithm is increased by 0.787% to 6.119% and the calculation time is reasonable.
Compared with the exact algorithm, for large size instances the pattern value of this algorithm is 0.090%
lower than it, but the calculation time is only 0.079% of it.

INDEX TERMS Corner-occupying pattern, constrained two-dimensional guillotine cutting problem, heuris-

tic algorithm.

I. INTRODUCTION

In industrial production, for instance, the cutting of sheet
metal, glass, and plywood, two-dimensional cutting problem
often occurs. Good cutting pattern can improve the sheet uti-
lization and reduce production cost [1]-[5]. Two-dimensional
cutting problem can be regular or irregular cutting problem,
constrained or unconstrained cutting problem, guillotine or
non-guillotine cutting problem, depending on the item geom-
etry, constraint on upper bound frequency of item, and cutting
process, respectively.

This paper discuss the rectangular constrained guillotine
two-dimensional cutting(RCG_2DC) problem: m types of
rectangular items are cut from a rectangular sheet with size
L x W (length L, width W) using guillotine cuts, where the
ith type has size [; x w;, value v;, and upper bound b; (i €
M = {1,2,...,m}). The objective of RCG_2DC problem
is to maximize the pattern value, which is the total value of
items packed on the sheet. Assume that pattern P contains p;
pieces of type-i items, the pattern value of P is V. Let N be
the set of non-negative integers. The mathematical model of

The associate editor coordinating the review of this manuscript and

approving it for publication was Ming Luo

136882 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

the RCG_2DC problem is:

m
max V = Zizlpivi,
st. O<pi<bpNp;eN), i=1,....,m. (1)

Belonging to the NP difficult combinatorial optimization
problem, RCG_2DC is called as a single large object packing
problem (SLOPP) in [6], and the solution space of feasible
cutting patterns is very large. The exact algorithms can only
solve the small scale problems, and take time too long to
solve the large scale problems, which is unbearable [7]-[10].
In practical cases, heuristic algorithms are generally used to
solve the RCG_2DC. They can be divided into two types in
terms of the construction idea.

The first type is the intelligent optimization algorithm.
Alvarez et al. first proposed a greedy random adaptive
search algorithm and developed a more complex tabu search
algorithm, then implemented a path relinking procedure to
improve the results of the above algorithm [11]. Hifi proposed
a hybrid approach based on techniques of hill-climbing and
dynamic programming [12]. Morabito and Pureza developed
a heuristic algorithm based on graph search and dynamic
programming [13].
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The second type is to limit the cutting pattern with a certain
geometric feature to reduce the solution space, and thus sim-
plifies the computation. For the two-staged cutting pattern,
Lodi and Monaci built two integer linear programming mod-
els and used a branch-and-bound framework to test them [14].
Hifi and M’Hallah proposed an exact algorithm which based
on a bottom-up strategy [15] and an approximation algo-
rithm which based on beam search [16]. For the homoge-
nous T-shape cutting pattern, Cui proposed a tree-search
algorithm which based on bottom-up approach [17]. Cui
and Yang proposed a recursive branch-and-bound algorithm
which based on top-down approach [18]. In order to improve
the speed of the algorithm, Cui proposed a fast heuristic
algorithm which based on dynamic programming and branch-
and-bound techniques [19]. For the item corner-occupying
cutting pattern, Chen proposed a recursive algorithm [20]. For
the general T-shape cutting pattern, Cui and Huang proposed
a heuristic algorithm with a layout-generation procedure [21].
For the homogenous strip corner-occupying cutting pattern,
Cui and Chen proposed a recursion approach to consider a
set of cutting patterns with specified geometric features, and
used a bound technique to discard unpromising branches [22].
For the three-staged cutting pattern, Cui et al. proposed
a heuristic algorithm with one exact procedure and two
heuristic procedures [23].

Some of the above algorithms have shorter computation
time but lower solution quality, while others have better
solution quality but longer computation time. It is worth
studying to construct an algorithm to get a good solution in a
reasonable time.

In this paper, we propose a block corner-occupying heuris-
tic algorithm for the RCG_2DC. The algorithm selects an
item type, places several rows and columns of items at
the left-bottom corner of the sheet and divides the rest of
the sheet into two sub-sheets. The sub-sheets are further
packed and divided until no items can be packed. There are
three contributions in this paper. First, a new guillotine cut-
ting pattern, namely block corner-occupying cutting pattern,
is designed. Second, a heuristic algorithm based on dynamic
programming for the block corner-occupying cutting pattern
is constructed. Last, the proposed algorithm was compared
with several published algorithms; the results show that the
proposed algorithm is competitive.

The remainder of this paper is organized as follows.
In section II we describe the characteristics and mathemat-
ical model of the block corner-occupying cutting pattern.
In section III, we present a heuristic algorithm that generates
the block corner-occupying cutting pattern. In section IV,
we give the experimental results and compare the algorithm
in this paper with those in literature. Finally, we conclude this
work and make suggestions for future research in section V.

Il. BLOCK CORNER-OCCUPYING CUTTING PATTERN

Without loss of generality, the length of the sheet and items
are defined as the horizontal direction, and the width as the
vertical direction. The items are allowed to rotate 90 degrees
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(a) Horizontal dividing

A

(b) Vertical dividing

FIGURE 1. Two ways of divides the unoccupied region of the sheet.

in the packing process. After rotation, type-i item is converted
into type-(i+m) item, the length and width of the type-(i + m)
item is w; and [;, respectively, where i € M. After this
treatment, the original m types of items are converted into 2m
new types. The type-i item and type-(i+m) item correspond to
the original and rotational case, respectively. In the following,
if there is no special description, the type-i item refers to the
new type-i item.

Definition 1 (Block): A block consists of several rows and
columns of items with the same type and the same direction.

Definition 2 (Block Corner-Occupying Cutting Pattern): A
type items are selected and packd at the left-bottom corner of
the sheet in a block mode. A cutting line is drawn to divide the
remaining part of the sheet into 2 sub-sheets. The sub-sheets
are further packed and divided, until no item can be packed.

Definition 3 (Pattern Value): The pattern value is the total
value of items contained in a sheet or a sub-sheet.

As shown in Figure 1, s rows and # columns of type-i items
are placed at the left-bottom corner of the sheet x x y, the
unoccupied region is divided into sub-sheet A and B by a
cutting line along the upper boundary (Figure la) or right
boundary (Figure 1b). Let fx(x,y, i, s, t) and fy(x,y,1i,s,1)
denotes the value of the sheet with the cutting line in hori-
zontal and vertical direction, respectively. Let F(x, y) be the
value of the sheet and n(x, y, i) be the number of type-i item
in the sheet. Let h(x, y, i) be the sum of the number of type-i
items and type-(i + m) items in the sheet x X y.

When 1 < i < m and the cutting line is horizontal, (2) and
(3) can be derived, as shown at the top of the next page.

When 1 < i < m and the cutting line is vertical, (4) and
(5) can be derived, as shown at the top of the next page.

Equation (3) is explained as: s rows and ¢ columns type-i
items are placed at the left-bottom corner of the sheet x x y,
the unoccupied region is divided according to figure 1(a).
If the total number of the type-i and type-(i+m) items doesn’t
exceed the upper bound b;, the value of sheet x x y is the sum
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h(x,y,i):n(x_tl[,SWi,i)+n(x,y_swl‘,i)+n(x_tli,swl',i+m)+n(x,y_SWi,i+m)+St (2)
st + F (x — tl; )+ F —sw;) ifh ) < b;
R e @)
0 if h(x,y, ) > b;
h(xvy,i)=”(tli»y_swi,i)+n(x_tlhy,i)+n(tli,y_swi,i+m)+”(x_tli,y,i+m)+Sf (4)
Froyiiist) = vist + F (tl;, y — swy) + F (x — tl;, y) %fh(x,y, z:)fb,' )
0 if h(x, y, i) > b;

of type-i items, sub-sheet A and B; otherwise it is 0. Equation
(5) is similar to (3) except that the unoccupied region is
divided according to figure 1(b).

When m < i < 2m and the cutting line is horizontal, (6)
and (7) can be derived, as shown at the top of the next page.

When m < i < 2m and the cutting line is vertical, (8) and
(9) can be derived, as shown at the top of the next page.

The descriptions of Equation (7) and Equation (9) are the
same as that of Equation (3). 2m types items that can be
placed at the left-bottom corner of sheet x x y. Limited by
the boundary of the sheet, the maximum number of rows and
columns of type-i items at the left-bottom corner is |y/w;]|
and |x/I;], respectively. The symbol ““|-]” represents the
down rounding. Fy (x,y) and Fy(x,y) represents the sheet
value with the dividing line in horizontal and vertical direc-
tion, respectively, and are written as in (10)—(12), as shown at
the top of the next page.

Equation (10) and (11) indicate that the optimal item type
that placed at the left-bottom corner of the sheet and the
optimal number of rows and columns are determined by
maximizing the sheet value. Equation (12) indicates that the
pattern value of the sheet is the larger one among two division
modes.

1ll. HEURISTIC ALGORITHM

In this paper, all possible size of sub-sheet generated in
optimal corner-occupying pattern is listed from small size to
large. The corner-occupying pattern of the sheet is determined
when the corner-occupying pattern of the sub-sheet L x W is
obtained. The normal size and the pattern value upper bound
of the sub-sheet are used to exclude unnecessary calculations.

A. NORMAL SIZE

The normal size is used to reduce the calculation in Chen
(2008). In this paper, the normal length/width is a linear
combination of the length/width of all items. Let G, and Gy
be the set of normal length and width, respectively, then:

2m
GL = {x|x = Zi—l ail;,

2m
Gw = Dly= Zi:l biwi,

a,-eNandOfxﬁL} (13)

bie Nand 0 <y < W}
(14)
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In Equation (13-14), N is a set of non-negative integers. The
normal size of the sub-sheet has the following properties: if
the maximum normal length Az (x) and width Ay (y) are not
greater than x and y, the sub-sheet Ay (x) X Aw(y) and x x
y have the same pattern value in accordance with the block
corner-occupying cutting pattern.

It can be seen from the nature of the normal size
that the algorithm of this paper only needs to investigate
the normal size of the sub-sheet. Let G = {gp (1),
gL 2),....,ec (G}, Gw = {gw (D), gw (2),...,
gw (|Gwl)}, where |G | and |Gw | are the number of elements
of the set of G; and Gy, respectively. The elements in the sets
are arranged in ascending order.

For example when [} = 45,1, = 68,13 = 83,4 = 91,
L = 150, then G = {45, 68, 83, 90,91, 113, 128, 135, 136},
|G| = 10. Obviously, |Gy | is much smaller than L.

Since |G| and |Gw| are much smaller than L and W,
the application of normal size can avoid the unnecessary
calculation and reduce the calculation time.

B. THE UPPER BOUND OF PATTERN VALUE

For the cutting problem with the same sheet and items, the
total value of the items contained in the unconstrained pattern
is greater than or equal to that in the constrained pattern.
The reason is the number of times allowed for each item
type is unconstrained in the unconstrained pattern, while it
cannot exceed its upper bound in the constraint pattern. The
unconstrained cutting problem is generally easier to solve.
In this paper, the value of the optimal unconstrained block
corner-occupying pattern is used as the upper bound of the
constrained corner-occupying pattern. Let fXU (x,y,1,s,t)and
f)f] (x,y,1,s,t) be the value of unconstrained pattern of the
two dividing method in Figure 1, respectively. F}(/ (x,y),
F )l,] (x, y) represents the unconstrained pattern value of sheet
with the dividing line in horizontal and vertical direction,
respectively. FU(x, y) be the value of unconstrained pattern
of sub-sheet x x y. There are (15)—(19), as shown at the top
of the next page.

The above equations constitute a dynamic programming
model. Equations (15) and (16) are recursive formulas for
the model. Equation (15) shows that s rows and 7 columns
type-i items are placed at the left-bottom corner of the
sheet x x y, the unoccupied region is divided according to
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hx,y,i—m) =n(x —tl, sw;, i) +nx,y—swi, i) +n(x —tl, swi, i —m) +n(x,y—sw;, i —m) + st (6)
ist +F (x —tl, swp) + F (x,y —sw;) ifh(x,y,i—m) < b
fX (x,y, is. 1) = vist + F (x i swi) +F (x y sW;) 1 (x y l. m) i—m %)
0 ifh(x,y,i—m) > bj_p
h(x’yai_m) = ”(tli»y_swi,i)+n(x_tli7yvi)+n(tli,y_swi,i_m)+”(x_fli,y,i—m)+6‘f (8)
ist + F (tl;, y — swy)) + F (x — tl;, if h(x, y, i — <b;_
FeGuyiist) = vist + F (tl;, y — swi) + F (x — tl;, y) 1 (x,y l m) < bi_p ©)
0 if h(x, y, i — m) > by,
F 9 = 9 b .7 ’t 10
X (x.3) riré%/;(se{l.‘.,l_y/w,-ﬂr}l,atxe{l,...,Lx/l;J}fX(x Y8, 1) (10)
F 9 = 9 9 .7 7t 11
y (%) riréil;(se{].‘.,I_y/w,'ﬂr}l,atxe{l,...,Lx/lij}fY(x Y iy 5, 1) (in
F (x,y) = max{Fx (x,y), Fy (x,y)} (12)
U . _ U U
I Gy is, ) =vist+F7 (x —tl, swi) + F~ (x,y — sw;) (15)
fF Geoyiivs ) = vist + FY (i, y — swi) + FY (x — ;. y) (16)
FY (x,y) = J(x,y i st 17
x %) riré%}se{l...,Ly/w,-?}l,atxe{l,.‘.,Lx/l,-j}fX 3,4 5,1) 17
FY (x,y) = Y,y iys,t 18
y (69 el sell o lypwil et Lx/l,-j}fY (x5 5, 1) (18)
FY (x,y) = max {F{ (x,y) . Fy (x,y)} (19)

figure 1(a). The value of sheet x x y is the sum of type-i
items, sub-sheet A and B. The meaning of equation (16) is
similar to that of equation (15), except that the unoccupied
region is divided according to figure 1(b). Equations (17)
and (18) show that the type, rows and columns of items are
determined according to the principle of maximum pattern
value. Equation (19) indicates that the pattern value of the
sheet equals the larger of the pattern value of figure 1(a) and
figure 1(b).

Due to the full capacity of the dynamic programming
algorithm, the pattern values of sub-sheet with other sizes are
known when that of the sub-sheet with largest size is obtained.

C. CALCULATION OF PATTERN VALUE

In the process of generating constrained pattern, the number
of each item type in the pattern is kept to be within its upper
bound. For Figure 1, s rows and ¢ columns of type-i items
are placed at the left-bottom corner of the sub-sheet x x y,
wherei € {1, ..., 2m}. The number of type-j items contained
in the sub-sheet A and B are n(x4, ya,j) and n(xg, yg,j),
respectively. x4 and y4 are the length and width of the sub-
sheet A, while xp and yp are the length and width of the
sub-sheet B. For any feasible pattern, the number of each type
items with original case and rotation case cannot be more than
their upper bound. That is to say the following 4 constraints
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must be satisfied. The heuristic algorithm in this paper is
shown in Figure 2.

Constraint 1:

When (1 <j<m) and (fj = i or i — m), (20) can be
obtained, as shown at the bottom of the next page.

Constraint 2:

When (m+ 1 <j <2m)and (j =iori—+m), (21)can be
obtained, as shown at the bottom of the next page.

Constraint 3:

When (1 <j < m) and (j # i and i — m), (22) can be
obtained, as shown at the bottom of the next page.

Constraint 4:

When m + 1 <j < 2m) and (j # i and i + m) and (23)
can be obtained, as shown at the bottom of the next page.

Formula (20) means when type-j item is the original case
of type-i item, the number of original case and rotational case
of type-j items in pattern is st plus the number of type-j items
and type-(j 4+ m) items in sub-sheet A and B. It is not more
than the upper bound of type-j item.

Formula (21) means when type-j item is the rotation case
of type-i item, the number of original case and rotational case
of type-(j — m) item is st plus the number of type-j items and
type-(j — m) items in sub-sheet A and B. It is not more than
the upper bound of type-(j — m) item.

Formula (22) means when type-j item is the original case
and neither the type-i item nor the type-(i — m) item, the
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Input: an instance of RCG_2DC problem I* = (LW,I[ |,w[ ],v[],b[]).
Output: the maximum pattern value of the instance I#.
0  [The original item type-i is regarded as two new item types of item-i and item-(i+m), where i € M.
1 [LetF(x,y)=0,forx=0,.,L,y=0,.,W.
2 [Forp=1to |G|
3 Forq =11t |Gyl
4 Letx = g,(p), ¥ = gw(q)
5 If FV(x,y) < F(x,gw(q—1))theng=q+1
6 Fori=1to2m
7 If x < I; ory < w; then the item type-i is not considered
8 For s = 1 to min{|y/w;|,b;}
0 For t = 1 to min{|x/l;|,|b;/s]}
10 If F(x,y) < v;st + F(x — tl,sw;) + F(x,y — sw;) and the pattern is feasible
11 Let F(x,y) = v;st + F(x — tl,sw;) + F(x,y — sw;)
12 IfF(x,y) < v;st+ F(tl,y — sw;) + F(x — tl;,y) and the pattern is feasible.
13 Let F(x,y) = v;st + F(tl,y — sw;) + F(x — tl,,y)
14 |Forx=1toL
15 Fory=1toW
16 Let F(x,y) = F(AL,(x),Aw(Y)).

FIGURE 2. A heuristic algorithm for solving the pattern value of the sub-sheet.

TABLE 1. Hardware environment of the algorithms in this paper and nine published papers.

PC Main frequency 3.60GHz, Memory 16GB
PC Mian frequency 2.20GHz, Memory 1GB

Algorithm Hardware environment
This paper PC Main frequency 2.4GHz, Memory 4MB
[15] UltraSparc10 processor, Main frequency 250 MHz, Memory 128 MB
[20] PC Main frequency 300MHz,Memory128MB
[21] PC Main frequency 2.66GHz, Memory 3.37GB
[22] PC Main frequency 2.66GHz, Memory 3.37GB
[16] PC Main frequency 2.8GHz Memory 512 MB
[23] PC Main frequency 2.13GHz, Memory 4GB

]

]

]

PC Main frequency 2.66GHz, Memory 3.37GB

number of original case and rotational case of type-j item is
the number of type-j items and type-(j+m) items in sub-sheet
A and B. It is not more than the upper bound of type-j item.
Formula (23) means when type-j item is the rotation case
and neither the type-i item nor the type-(i + m) item, the
number of original case and rotational case of type-(j — m)

item is the number of type-j items and type-(j — m) items in
sub-sheet A and B. It is not more than the upper bound of
type-(j — m) item.

From the figure 2, we can see that the time complexity of
this algorithm is less than OQ2m |G| |Gw | bi)? + LW). The
Oth line indicates that the items have two cases with/without

st +n(xa, ya,j) +n(xp, yg,j) + n(xa, ya,j+m) +n(xg, yp.j+m) < b; (20)
st +n (x4, ya,Jj) +n(xg, yp,j) +nxa, ya,j —m) +n(xg, yg,j —m) < bj_p (21)
n(xa, ya.Jj) +n(xp, yg,j) +n(xa, ya,j+m) +n(xp, yp,j +m) < b; (22)
n(xa, ya,j) +n(xg, yg,j) +n(xa, ya,j —m) +n(xp,yp,j —m) < bj_n (23)

136886

VOLUME 7, 2019



W. Pan: Block Corner-Occupying Heuristic Algorithm for Constrained Two-Dimensional Guillotine Cutting Problem I E E E ACC@SS

TABLE 2. Experimental results of the small and middle size benchmark instances.

D [15] [20] [21] [22] [10] This paper
pattern value  gap pattern value gap pattern value gap pattern value gap pattern value £3D  pattern value
HH 10689 11.545 - - 11391 4.670 - - - - 11923
2 2535 14.241 2892 0.138 2594 11.642 2892 0.138 - - 2896
3 1720 10.465 1860 2.151 1740 9.195 1840 3.261 - - 1900
Al 1820 14.286 2020 2.970 1820 14.286 1940 7.216 - - 2080
A2 2315 9.287 2502 1.119 2315 9.287 2455 3.055 - - 2530
STS2 4450 4.719 4620 0.866 4620 0.866 4620 0.866 - - 4660
STS4 9409 3.486 9700 0.381 9700 0.381 9700 0.381 - - 9737
CHL1 8360 6.651 8660 2.956 8474 5216 8660 2.956 - - 8916
CHL2 2235 7.114 2326 2.923 2273 5.323 2292 4.450 - - 2394
CWI 6402 5.654 6402 5.654 6402 5.654 6402 5.654 6766 -0.030 6764
CW2 5354 6.108 5354 6.108 5354 6.108 5354 6.108 5689 -0.141 5681
CW3 5287 8.644 5689 0.967 5468 5.048 5689 0.967 5744 0.000 5744
Hchl12 9630 3.873 9954 0.492 9735 2.753 9891 1.132 - - 10003
Hch19 5100 2353 5240 -0.382 5060 3.162 5220 0.000 - - 5220
2s 2430 14.650 2778 0.288 2604 6.989 2778 0.288 - - 2786
3s 2599 6.618 2721 1.838 2623 5.642 2721 1.838 - - 2771
Als 2950 1.186 2950 1.186 2950 1.186 2950 1.186 - - 2985
A2s 3423 4557 3535 1.245 3451 3.709 3535 1.245 - - 3579
STS2s 4569 2.320 4653 0.473 4653 0.473 4653 0.473 - - 4675
STS4s 9481 3.196 9770 0.143 9642 1.473 9770 0.143 - - 9784
OF1 2713 0.885 2737 0.000 2713 0.885 2737 0.000 2757 -0.725 2737
OF2 2515 10.099 2690 2.937 2690 2.937 2690 2.937 2769 0.000 2769
w 2623 5.642 2721 1.838 2721 1.838 2721 1.838 - - 2771
CHLIs 13036 1.258 13099 0.771 13036 1.258 13099 0.771 - - 13200
CHL2s 3162 5.787 3279 2.013 3236 3.368 3266 2.419 - - 3345
A3 5380 3.420 5451 2.073 5403 2.980 5451 2.073 - - 5564
A4 5885 6.117 6179 1.068 6014 3.841 6179 1.068 - - 6245
A5 12553 4.987 12976 1.564 12779 3.130 12985 1.494 - - 13179
CHLS 363 10.193 390 2.564 363 10.193 390 2.564 - - 400
CHL6 16572 1.979 16869 0.184 16573 1.973 16869 0.184 - - 16900
CHL7 16728 1.028 16840 0.356 16695 1.228 16881 0.113 - - 16900
cul 12321 1.453 12330 1.379 12321 1.453 12330 1.379 12500 0.000 12500
cu2 26100 0.383 26100 0.383 25934 1.026 26100 0.383 26200 0.000 26200
Hchl13s 11961 3.771 12214 1.621 12059 2.927 12214 1.621 - - 12412
Hchl4s 11408 7.574 12002 2.250 11964 2.574 11964 2574 - - 12272
Hchl6s 60170 2.187 61040 0.731 60666 1.352 61040 0.731 - - 61486
Hchl7s 62459 1.479 63102 0.445 62845 0.856 63102 0.445 - - 63383
Hch18s 729 23.320 904 -0.553 825 8.970 876 2.626 - - 899
Average 6.119 1.398 4.101 1.752 -0.128
Note: "-" indicates the data is not available.
rotation, the item type-i is converted into new item type- investigated one by one from small to large. In the 5th line,
(i+m) is after rotation. The 1th line indicates that the pattern the current sub-sheet will not be investigated if its value
values of sub-sheet of all the possible sizes were initialized. upper bound is not greater than that of the smaller sub-sheet.
Lines 2-4 indicate that the normal size of the sheets was Lines 6-7 indicate that the item type of the left-bottom corner
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TABLE 3. Experimental results of the large size benchmark instances.

D [16] [21] [22] [23] [10] This paper
pattern value gap pattern value gap pattern value  gap  pattern value  gap pattern value gap  pattern value

ATP30 140197 0.504 140461 0.315 140904 0.000 140544 0.256 140904 0.000 140904
ATP31 820260 0.570 822417 0.306 823976 0.116 822417 0.306 824878 0.007 824934
ATP33 37973 0.250 38015 0.139 38068 0.000 38017 0.134 38068 0.000 38068
ATP33 235580 0.562 235580 0.562 236611 0.123 236549 0.15 236903 0.000 236903
ATP34 357741 1.277 359162 0.876 361357 0.264 359806 0.696 361952 0.099 362310
ATP35 614429 1.317 618397 0.666 621021 0.241 618397 0.666 622518 0.000 622518
ATP36 129262 1.317 130156 0.622 130744 0.169 130366 0.459 130965 0.000 130965
ATP37 385811 0.461 385811 0.461 387276 0.081 386064 0.395 387439 0.038 387588
ATP38 259137 0.955 260622 0.380 261395 0.083 260622 0.38 261625 -0.005 261612
ATP39 266378 1.089 267684 0.595 268750 0.196 267772 0.562 269278 0.000 269278
ATP40 65584 2.607 66032 1.911 67154 0.208 66224 1.616 67294 0.000 67294
ATP41 202305 3.631 206190 1.679 206542 1.505 205159 2.19 210713 -0.504 209651
ATP42 33012 2.011 33289 1.163 33566 0.328 33289 1.163 33756 -0.237 33676
ATP43 212062 2.507 214589 1.300 214651 1.271 212558 2.268 218820 -0.659 217379
ATP44 70940 7.253 72895 4.376 73438 3.604 73048 4.158 76122 -0.049 76085
ATP45 74205 0.655 74205 0.655 74691 0.000 74205 0.655 74691 0.000 74691
ATP46 147021 2.695 149658 0.885 149911 0.715 149658 0.885 150983 0.000 150983
ATP47 144317 5.342 146789 3.568 148540 2.347 147811 2.852 152778 -0.492 152026
ATP48 165428 3.174 165640 3.042 167427 1.942 165640 3.042 170678 0.000 170678
ATP49 211784 4.941 213667 4.016 216749 2.537 213874 3915 222248 0.000 222248
Average 2.156 1.376 0.787 1.337 -0.090

of the sub-sheet has 2m selections. When the item size is
larger than the sub-sheet size, the item is not considered.
Lines 8-9 indicate that the numbers of row and column of the
item are enumerated, the item will not exceed the sub-sheet
boundary and the item number will not exceed its upper
bound. Lines 10-11lindicate that the pattern value is larger
if the sub-sheet is horizontally divided, the number of each
item type is below its upper bound, and the sub-sheet value
is renewed by the current pattern value. Lines 12-13 indicate
the vertical division case. Lines 14-16 indicate that the pattern
value of a sub-sheet with all possible sizes is equal to that of
a sub-sheet with the normal size.

IV. COMPUTATIONAL EXPERIMENTS

This section presents computational results of the presented
algorithm in section III. The algorithm is coded in C# and
running on a personal computer. Two groups of benchmark
instances and one group of random instances are used to
compare this algorithm with nine algorithms in published
papers. Table 1 lists the hardware environment of algorithms
in this paper and the other published papers. The calculation
time of the algorithm in this paper is obtained by record the
running time of the algorithm in solving the instances. The
calculation time of the published algorithm is obtained from
the published papers.
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A. BENCHMARK INSTANCES OF SMALL AND MIDDLE SIZE
This group consists of 38 benchmark instances with small
and middle size, as used in [21]. Table 2 shows the statistical
results of the pattern value in this paper and four other pub-
lished papers. The “gap” represents the pattern value differ-
ence in term of percentage between this paper and others.
Gap = (Vinis algorithm — Vpublised algorithm)/ Vpublised algorithm X
100. Positive gap means higher pattern value in this paper.
The pattern value of different algorithms is derived from
table 2 in [15], section 3 in [20], table 3 in [21], section 3
in [22] and table 4 in [10].

The averaged calculation time for each instance of algo-
rithm is 1.07 seconds in [15], 5.12 seconds in [20], 0.014 sec-
onds in [21]; 0.83 seconds in [10], it is not reported in [22].
The total calculation time is 6.82 seconds for all instances and
the averaged time is 0.18 seconds in this paper.

Compared to the algorithm in [15], the pattern values of the
algorithm in this paper are all higher in 38 instances, the pat-
tern value is averaged increased by 6.119%. Compared to the
algorithm in [20], the number of instances with higher, equal,
lower pattern value in this paper is 34, 1, 2, respectively, and
the average increase of pattern value is 1.398%. Compared to
the algorithm in [21], the pattern values of all 38 instances are
higher in this paper, and the average increase of pattern value
is 4.101%. Compared to the algorithm in [22], the number of
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TABLE 4. Experimental results of the random instances.

D [18] [19] This paper
pattern value gap pattern value gap pattern value
1A 1 1759161 4.698 1759161 4.698 1841806
1A 2 2676987 12.942 2660962 13.622 3023433
1A 3 2452608 1.327 2452608 1.327 2485161
1A 4 2036218 8.967 2036218 8.967 2218813
1A 5 2713122 4.637 2713122 4.637 2838925
1A 6 2906130 3414 2906130 3.414 3005337
1A 7 2251501 2.347 2196233 4.923 2304354
1A 8 1752346 4.806 1752346 4.8306 1836562
1A 9 2558842 7.160 2532439 8.277 2742051
1A 10 2570413 1.780 2541538 2.936 2616154
1A 11 1889186 5.548 1883293 5.879 1994006
1A 12 3386985 1.251 3386985 1.251 3429359
1A 13 2910872 3.047 2910872 3.047 2999566
1A 14 2213106 4.878 2213106 4.878 2321059
1A 15 1956502 6.811 1956502 6.811 2089767
1A 16 2570444 6.913 2570444 6.913 2748146
1A 17 2179374 6.075 2179374 6.075 2311781
1A 18 2916082 4.749 2916082 4.749 3054572
1A 19 2897755 5.760 2897755 5.760 3064662
1A 20 2572052 4.743 2572052 4.743 2694032
Average 5.093 5.386
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17 18 16’ FIGURE 4. Solution to ATP36 (pattern value 130942).

FIGURE 3. Solution to A3 (pattern value 5564).

instances with higher, equal pattern value in this paper is 35,
2, respectively, and the average increase of pattern value is
1.752%. Compared to the algorithm in [10], the number of
instances with equal, lower pattern value in this paper is 4, 3,
respectively, and the average decrease is 0.128%.

Figure 3 is the cutting pattern of instance A3 generated
by the algorithm of this paper. The number in the fig-
ure represents the type of item. The symbol “/” on the
upper right corner of the number indicates that the item has
rotated 90 degrees. Gray area represents the scrap of the sheet.

B. BENCHMARK INSTANCES OF LARGE SIZE

This group consists of 20 benchmark instances with large
size, as used in [16]. The first 10 instances are un-weighted
where the item value is equal to the item area, and the
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last 10 are weighted where the item value may be not equal
to the item area. Table 3 shows the statistical results of the
pattern value in this paper and five other published papers.
The pattern value of different algorithm is derived from
table 1in[16], table 4 in [21], section 3 in [22], table 2 in [23],
and table 3 in [10].

The averaged calculation time for each instance of algo-
rithm is 0.20 seconds in [16], 0.014 seconds in [21],
35.22 seconds in [22], 0.18 seconds in [23], 701.83 seconds
in [10] and 0.56 seconds in this paper. It should be noted that
the algorithm in [10] is exact algorithm and the maximum
solution time was set to 900 seconds.

Compared to [16], the pattern value in this paper is higher
in all 20 instances. The average increase is 2.156%. Com-
pared to [21], the pattern value is higher in all 20 instances
and the average increase is 1.376%. Compared to [22], the
pattern value is higher in 17 instances, equal in 3 instances,
and the average increase is 0.787%. Compared to [23], the
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FIGURE 6. Solution to 1A_14 (pattern value 2321059).

pattern value is higher in all 20 instances, and the average
increase is 1.337%. Compared to [10], the pattern value in
this paper is higher in 3 instances, equal in 11 instances, lower
in 6 instances, the average decrease is 0.09%. Figure 4 and
figure 5 are the cutting patterns of instance ATP36 and
ATP48 generated by the algorithm of this paper, respectively.
As show in figure 5 and 6 of [23], the pattern value of instance
ATP 36 and ATP 48 is 130366 and 165640, respectively. They
are all lower than the pattern value in this paper.

C. RANDOM INSTANCES WITH SIZE OF TYPICAL IN
PRACTICE

This group consists of 20 random instances with size of typ-
ical in practice, as used in [18]. Table 5 shows the statistical
results of the pattern value in this paper and two published
papers. The averaged calculation time on each instance is
0.37 seconds in [18], 0.014 seconds in [19], and 1.69 seconds
in this paper. Compared to [18], the pattern values in this
paper are higher in all 20 instances, the average increase is
5.093%. Compared to [19], the pattern values in this paper
are better in all 20 instances, the average increase is 5.386%.
Figure 6 is the cutting pattern of instance 1A_14 generated
by the algorithm of this paper.

V. CONCLUSION

With regarding to the RGC_2DC problem, a block corner-
occupying cutting heuristic algorithm is presented, where
rectangular item is rotated by 90 degrees for higher pattern
value. This algorithm is a deterministic algorithm, that is
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to say, the result of each run of the algorithm is the same.
This type of pattern is a superset of item corner-occupying
cutting pattern and strip corner-occupying cutting pattern,
as far as we know, it has never appeared in the literature.
This pattern can make the same type of rectangular items
gathered in a block as most as possible and is beneficial for
the sheet cutting process. The presented algorithm is a heuris-
tic algorithm for guillotine cutting pattern. Compared with
other heuristic algorithms, this algorithm has higher pattern
value than two-staged, homogenous T-shape, item corner-
occupying, homogenous strip corner-occupying, T-shape and
three-staged cutting algorithm. This algorithm can keep cal-
culation time at reasonable level to meet the requirement in
practical application. The pattern value of the algorithm in
this paper is very close to that of the exact algorithm, and the
calculation time is much less than the exact algorithm.

The design idea in this paper is a relatively simple and
convenient reference for the enterprise staff to develop the
cutting software. Combine the presented algorithm with
sequential value correction heuristic algorithm to solve the
two-dimensional cutting stock problem of rectangular items
can be the research in future.
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