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ABSTRACT The increasing load demand in residential area and irregular electricity load profile encouraged
us to propose an efficient Home Energy Management System (HEMS) for optimal scheduling of home
appliances. We propose a multi-objective optimization based solution that shifts the electricity load from
On-peak to Off-peak hours according to the defined objective load curve for electricity. It aims to manage
the trade-off between conflicting objectives: electricity bill, waiting time of appliances and electricity load
shifting according to the defined electricity load pattern. The defined electricity load pattern helps in
balancing the load during On-peak and Off-peak hours. Moreover, for real-time rescheduling, concept of
coordination among home appliances is presented. This helps the scheduler to optimally decide the ON/OFF
status of appliances to reduce the waiting time of the appliance. Whereas, electricity consumers have
stochastic nature, for which, nature-inspired optimization techniques provide optimal solution. For optimal
scheduling, we proposed two optimization techniques: binary multi-objective bird swarm optimization
and a hybrid of bird swarm and cuckoo search algorithms to obtain the Pareto front. Moreover, dynamic
programming is used to enable coordination among the appliances so that real-time scheduling can be
performed by the scheduler on user’s demand. To validate the performance of the proposed nature-based
optimization techniques, we compare the results of proposed schemes with existing techniques such as multi-
objective binary particle swarm optimization and multi-objective cuckoo search algorithms. Simulation
results validate the performance of proposed techniques in terms of electricity cost reduction, peak to average
ratio and waiting time minimization. Also, test functions for convex, non-convex and discontinuous Pareto
front are implemented to prove the efficacy of proposed techniques.

INDEX TERMS Coordination, dynamic programming, knapsack, multi-objective optimization, Pareto
front, meta-heuristic, nature-inspired, bird swarm and cuckoo search algorithm, multi-objective bird swarm
optimization, hybrid technique, demand side management, demand response, smart grid.
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CPP Critical Peak Price
CSO Cuckoo Search Algorithm
DR Demand Response
DSM Demand Side Management
EA Evolutionary Algorithm
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ICT Information and Communication
Technology

MBBSO Multi-objective Binary BSO
MBCSO Multi-objective Binary CSO
MBHBCO Multi-objective Binary Hybrid BSO and

CSO
MBPSO Multi-objective Binary PSO
MOCSO Multi-objective CSO
MOPSO Multi-objective PSO
MOBSO Multi-Objective BSO
MOHBCO Multi-Objective Hybrid BSO and CSO
NSGA-II Non-dominated Sorting Genetic

Algorithm II
PAR Peak to Average Ratio
PSO Particle Swarm Optimization
RTP Real Time Price
ToU Time of Use

ACRONYMS
Appα Appliance user request to be switched ON
Appαc List of appliances user wants to reschedule
Appd A particular appliance d where d ∈ D, D total

appliances
AppdDh Appliance d working demanded hour
AppdPrate Appliance d power rating
AppdSh Appliance d scheduled hour
D Dimension of search space, i.e., total number of

appliances
AppdWt

Waiting time of an appliance
Aval inttime Available time interval
C Cognitive constant
CO2 Carbon dioxide
Dis Euclidean distance
ε Smallest constant to avoid 0 in denominator
E .Chour Electric cost during an hour
E .C total Total electricity cost
E .L Aggregated load of ON appliances
E .LS

T
Per hour complete list of scheduled load

E .Lunsch Unscheduled electricity load
E .P Complete list of 24-hours electricity price
E .Phour Electric price during a particular hour
F Vector function
FL Frequency by which scrounger follows the

producer
FQ Frequency of a bird flight behaviours
Fiti Fitness level of a particle according to

equation 13
Hoff
p Off-peak hour

Hon
p On-peak hour

M Total number of iteration
meanj Average position of the whole swarm
N Length of search space
Ocost Objective function for electricity cost
Oload Objective function for load
O.Lhourcurve Objective load curve for particular hour

Ointtime Operational time interval
Ototal List of the objectives
Owait Objective function for waiting time of

appliances
Pr Probability constant for bird swarm
par Probability of cuckoo egg identification
R Repository
S Social accelerated constants
sumFit Sum of the fittest value of swarm
℘ Status of an appliance
ð Step size ð = 0.1
γ Constant to create the objective load
ĝj Swarm global best position
p̂i,j Bird previous best position
X Search space
xi,j Position of a particle in search space
x Decision vector
Y Objective vector

I. INTRODUCTION
The integration of Information and Communication Technol-
ogy (ICT) with electricity infrastructure revolutionize the tra-
ditional grid into smart grid [1]. The emergence of smart grid
allows the consumers to play a flexible role in the resource
management, monitoring and controlling the operations of
the smart grid infrastructure. Moreover, the exchange of data
between the smart utility (service provider) and end user
is achieved using Advanced Metering Infrastructure (AMI).
This provides bi-directional communication paradigm and
also enables the consumers to customize the execution of
appliance operations based on the electricity prices in partic-
ular time. Moreover, this supports the end users to become
active from passive consumers in the smart grid using
AMI [1].

With the availability of smart infrastructure, the utility is
capable to monitor and respond to the varying demands of
the consumers. It helps the utility to generate electricity and
adjusts the pricing tariffs accordingly. The variation in the
pricing tariffs depends on the peak load because of high
power demand in a particular time period [2]. Furthermore,
demand management mechanisms are employed in smart
grid to fulfill the demand of electricity using the available
resources. Demandmanagement mechanisms are categorized
into two main groups: Demanad Side Management (DSM)
and Demand Response (DR). In former, the reactive approach
is adopted by the utility to maintain the balance between
supply and demand. In latter, the consumer is encouraged to
shift load from On-peak (high prices) hours to Off-peak (low
prices) hours to avoid blackouts [2].

Irregular pattern of electricity demand is observed because
of the extensive and irregular usage of electric appliances
in a residential area. This leads to imbalance electricity
load over specific time intervals (i.e., during the On-peak
hours) and destabilizes the utility. To avoid load peaks,
the utility defines the price tariffs under the DR program for
On-peak and Off-peak hours. In order to minimize the peaks
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formation, the research community is devoted to manage the
load demand through various mechanisms in Home Energy
Management System (HEMS). A HEMS properly manages
and controls the electricity load through scheduling electri-
cal appliances. If the electrical appliances are not properly
scheduled and load is not shifted from On-peak to Off-hours,
the stability of the utility can be compromised [3].

In literature, numerous energy management systems have
been proposed [4]–[13] to encourage the consumer to shift
the load during the Off-peak hours to reduce the electricity
cost. However, the consumer has to compromise comfort in
order to reduce the electricity bill by ignoring thewaiting time
for the operation of an appliance. Thus, it shows that a home
load management is a multi-objective problem with multiple
trade-offs regarding various targeted objectives.

The utility and electricity consumer can communicate and
coordinate through AMI to reduce the burden on the utility,
which also helps the consumer in reducing the electricity
bill. The coordination among the appliances can help in
dynamic scheduling, which increases the consumer comfort
and also reduces the waiting time (i.e., to start operation)
of appliances [16]. During real-time scheduling, a consumer
can modify the schedule of the appliances by generating an
interrupt. In this regard, Erol-Kantarci and Mouftah [17] pro-
pose appliance coordination with feed in energy management
scheme to enable the consumers to turn ON an appliance
as per the requirements with complete freedom. However,
when consumer turns ON an appliance, it coordinates with
the energy management unit for getting an appropriate time-
slot, which increases the delay and results in consumers’
discomfort. Authors in [18] extend the work done in [17] by
incorporating coordination among the appliances based on
waiting time to reduce the cost and the PAR. In [17] and [18],
the appliances after coordination can only be turned ON at
convenient time-slot. The freedom of scheduling appliance
irrespective of electricity price and load is not provided, thus,
a dire need for an efficient HEMS emerges, which can deal
with sudden changes in the load demand without sacrificing
the user comfort.

A. MOTIVATION
DSM strategies are developed to overcome the energy
scarcity issues, which are created due to increasing demands
of power. In this respect, load management based on DR is
one of the most popular DSM strategies which is used to
shift the load from On-peak to Off-peak hours. However,
this shifting results in peaks creation during the Off-peak
hours [3] and also increases the waiting time of the appli-
ances. Additionally, this depicts that the electricity cost, Peak
to Average Ratio (PAR) and the waiting time are the con-
flicting parameters which belong to the category of multi-
objective problems. Many systems like [3]–[13] have been
developed to overcome these conflicting objectives. The
authors in [3] have considered the electricity cost and the
stability of the utility, which is determined through PAR.
The trade-off between electricity bill and user comfort is

minimized by [4]–[12]. The parameters to measure the user
comfort level are varied based on waiting time, indoor and
outdoor temperatures [4]–[11]. Articles [3] and [12] targeted
the stability of the utility and consumer’s electricity bill
reduction, while ignoring the waiting time of an appliance.
The user comfort along with minimum cost (electricity bill)
is achieved by [4]–[11] at the cost of peaks formation during
Off-peak hours. These sudden peaks during Off-peak hours
(due to load shifting) increase the burden on the generation
unit. Thus, an efficient system is required to optimize the
conflicting objectives for the betterment of the utility and end
consumers.

To find the optimal solutions for the aforementioned
problems [4]–[13], deterministic (conventional) and non-
deterministic (meta-heuristic) techniques have been pro-
posed. The performance of an optimization technique
depends on the nature of the problem, the deterministic
schemes are the best problem solvers in deterministic envi-
ronment. However, if the problem is stochastic in nature, then
meta-heuristic techniques are the most feasible to find an
optimal solution.

The increasing popularity of nature-inspired meta-
heuristic algorithms in solving real-time problems attracted
the research community from numerous domains like sci-
ence and engineering, decision making in business, etc.
The nature-inspired techniques are capable in minimiz-
ing the computational complexity based on four features:
self-learning, self-optimization, self-processing and self-
healing [19]. Moreover, the earlier said features are the basic
building blocks of any nature-inspired algorithm which make
it more effective and efficient. Additionally, these algorithms
are easy to implement, flexible to deal with broad range
of problems and have high degree of ergodicity [20]. Fur-
thermore, these algorithms have the ability to escape from
local optima by exploration and exploitation mechanism
and also have the ability to search multi-modal landscape
with adequate diversity. The deterministic techniques make
the assumption(s) of certainty, proportionality, etc., for the
problem being optimized; however, few or no assumption is
taken into consideration for a meta-heuristic algorithm [21].

With the vast exploration of features of nature inspired
techniques, still, no universal technique has been proposed
for solving all optimization problems. Thus, there is an oppor-
tunity to solve complex optimization problems by improving
the existing or proposing new meta-heuristic algorithms [22].
Moreover, the meta-heuristic algorithms are widely used for
finding a sub-optimal solution instead of locating an optimal
solution from the given search space. This is the reason,
we propose new nature-inspired optimization techniques:
(1) Multi-objective Binary Bird Swarm Optimization
(MBBSO) algorithm, which is the multi-objective version
of BSO, its four searching strategies makes it efficient and
effective during exploitation and exploration of the search
space [23], (2) Multi-objective Binary Hybrid of BSO and
Cuckoo search Optimization (MBHBCO) algorithm, which
is a hybrid technique because combining two or more
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meta-heuristic algorithms enhance the performance [24].
In the proposed hybrid algorithm, Cuckoo Search Optimiza-
tion (CSO) follows the BSO, although, BSO is efficient and
effective; however, its convergence speed is slow as compared
to CSO. To improve its convergence speed, CSO is hybridized
with BSO to help in quick exploration of the search space for
increasing the convergence rate.

This paper is an extension of [25], where only CSO is
used to handle multi-objective home energy management
problems. Whereas, in this paper, we use Pareto front opti-
mization to deal with the conflicting objectives: electricity
cost, waiting time and PAR reduction with and without coor-
dination. The only difference in the day-ahead scheduling
with coordination and without coordination is the decision
making step. During the day-ahead scheduling, the final
solution from the Pareto front solution set is selected using
the Roulette wheel selection method. For the coordination
based day-ahead scheduling, a solution is chosen first by the
Roulette wheel method, then a final solution is generated after
coordination among the appliances. Additionally, the system
flexibility is our target for real-time scheduling by enabling
the consumer to coordinate with HEMS at any time during
the working hours as explain in [26]. Further, a consumer can
request to reschedule any of the appliance in any time-slot ‘t’.
During the process of rescheduling, the appliances coordinate
with each other to decide which appliance is more suitable
according to its power rating and current electricity price.
In day-ahead scheduling, Pareto front based feasible solution
is obtained using meta-heuristic techniques: MBBSO and
MBHBCO. In order to schedule the appliances in real-time,
coordination is incorporated. Coordination in both day-ahead
and real-time scheduling is incorporated through dynamic
programming in proposed HEMS.

B. MAIN CONTRIBUTIONS
In this work, coordination based day-ahead and real-time
schedulers are proposed. While, the sole focus of this work
is to tackle following conflicting objectives:
1) distance minimization between objective load curve and

scheduled electricity load profile which eventually helps
to minimize PAR,

2) electricity cost reduction and
3) user comfort maximization (i.e, waiting time

minimization).
While maintaining the distance between objective load curve
and scheduled electricity load profile user electricity bill
(cost) and waiting time can be increased. Moreover, there is
always a trade-off between ‘cost and waiting time’, and ‘cost
and PAR’. To reduce the trade-off between conflicting param-
eters, day-ahead scheduling with and without coordination is
proposed. Further, real-time scheduling is performed to deal
with real time changes. In without coordination day-ahead
scheduling, meta-heuristics techniques are implemented to
minimize the load and electricity consumption cost based
on the defined objective functions. For coordination in day-
ahead and real-time scheduling, dynamic programming is

used for enabling coordination among the appliances. Both
scheduling mechanisms are validated against every perfor-
mance parameter (that are targeted objectives of this research
work) through extensive simulations. Further, the perfor-
mance metrics show that our proposed hybrid scheme effec-
tively maintains a minimum distance between the objective
load curve and scheduled electric load profile with minimum
cost and maximum user comfort.

The rest of the paper is organized as follows. Section II
reflects the state of the art work of different HEMS. Based
on the literature analysis, defined problem is mathematically
formulated in Section III-A and the proposed techniques are
explained in Section IV. Section III incorporates the system
model of proposed scheme using bio-inspired meta-heuristic
technique. Simulations results are demonstrated in Section V.
Finally, conclusion of the research is discussed in Section VI.

II. RELATED WORK
Home load management under DR is a challenging task in
the sense that DR allows the user to alter the electricity load
pattern, and get some incentives in term of electricity cost
reduction. This is practically possible through scheduling
home electric appliances. However, during scheduling, if we
only focus on electricity cost minimization then other factors
are affected, i.e., user comfort and PAR. For such conflicting
objectives, an efficient solution is required. In this respect,
a lot of work has been done and implemented in the real
environment.

The objectives of the authors in [3] are electricity cost
minimization and the maximization of utility confidence.
Authors in [4], consider the electricity cost, the operational
delay minimization and highlights the issues related to the
safe operation of an appliance, especially, if working time is
set by the scheduler during the absence of consumer or when
user is sleeping. The authors in [3], propose Evolutionary
Algorithm (EA) and approximate EA by formulating problem
as a constrained multi-objective optimization problem and
later, these techniques are adapted by [4]. The simulation
results of [3] show that the approximate EA is more efficient
as compared to EA; however, waiting time of an appliance
is totally ignored. On contrary, the conflict between the
electricity cost and the waiting time of user is resolved by
Muralitharan et al. [5]. As we know that whenever appliances
are scheduled from On-peak to Off-peak hours. Due to load
shifting, the load is increased in Off-peak hours. To tackle
this situation, utility defines a threshold and bound the user
to use the electricity within the specified limit. If user exceeds
the load limit, then he has to pay extra charges [5]. To avoid
this situation, authors in [5] propose an architecture which
is based on multi-objective EA. This maintains the energy
usage under the threshold limit by temporarily disconnecting
the running appliance and resume its operation later in the
day, which may creates peaks in the last hours.

In [6], issues related to the reduction of electricity con-
sumption and the cost associated with it are addressed.
Authors state that the understanding of human behaviour
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FIGURE 1. Systematic overview of HEMS and proposed model for scheduler of HEMS.

is very important for a successful system. In this per-
spective, the authors in [6] establish a human-behaviour-
centric smart appliances rescheduling method. First, they
predict the user behaviour and schedule the home appliances
accordingly. Task management methodology and multi-
objective based EA also known as Non-dominated Sorting
Algorithm II (NSGA-II) are presented in [7], [8] and [9] to
minimize the cost of electricity and consumers’ dissatisfac-
tion. In [9], authors study the user satisfaction level as level of
inconvenience.

The aforementioned literature describes the user comfort
in terms of waiting time of appliances; however, other fac-
tors also effect the user comfort level. The user comfort in
terms of indoor and outdoor temperature is measured in [10].
Zhang et al. propose the modified Particle Swarm Optimiza-
tion (PSO) algorithm for efficient scheduling of appliances
while handling the trade-off among electricity bill and user
comfort. They adapt the weighted sum method to solve the
optimization problem. Similarly in [11], the system design
is based on the Multi-Objective PSO (MOPSO) to solve
the conflict between energy consumption and user com-
fort in a complex building. The trade-off between, over-
all production cost minimization, individual electricity bill
reduction and user satisfaction maximization is handled
by [12]. To achieve the aforementioned objectives mixed
integer model is employed. Lokeshgupta et al. in [14] and
Muhsen et al. in [15] employed mixed integer linear pro-
gramming model and EA to minimize the user electricity
bill and peak load demand, respectively. Authors in [13]
tackle the three conflicting objectives:maximization of power

demands, minimization of electricity cost and reduction in
Carbon Dioxide (CO2) emission using EA.

From literature analysis, it is observed that most of the
researchers proposed the solution for two or more conflict-
ing objective problems. Further, they ignored the user com-
fort while handling the electricity bill and utility stability.
Though, some of the authors considered user comfort along
with electricity cost; however, formation of peaks during the
Off-peak hours is not considered.

III. SYSTEM MODEL
This section provides a systematic overview of the pro-
posed scheduler of HEMS as given in Fig. 1 and overview
of HEMS described in [27]. Our proposed model con-
sists of smart devices, HEMS, smart meter and the service
provider (utility). Whereas, HEMS manages the electricity
load by monitoring, controlling and scheduling the control-
lable load [27]. The proposed system model contains two
schedulers that perform day-ahead and real-time scheduling.
The day-head scheduling is completed at the beginning of
the day and it requires input parameters: electricity price
and demanded load. Based on these input parameters, objec-
tive load curve is defined which helps in load scheduling.
Moreover, user will be asked to list down priority appli-
ances. Whereas, real-time scheduling will be performed dur-
ing the day when a user generates an interrupt to switch
OFF some appliance(s) and wants some priority appliances
to be rescheduled in this available empty slot. The coordina-
tion will be performed here where scheduler will coordinate
with appliances and appliances coordinate with each other.
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As a result of this coordination, the empty slot will be allo-
cated to the appliance(s) who will be fitted in that available
slot. In real-time scheduling, the day-ahead schedule of home
electric appliance(s) will be updated.

The proposed day-ahead load scheduling system is multi-
objective, where each objective has equal importance. These
objectives are: minimization of distance between objective
and scheduled load pattern, electricity cost reduction, PAR
and waiting time minimization. This strategy is helpful for
both end user and the utility where day-ahead or seasonal
prices are adapted. It benefits the user by reducing electricity
bill and minimize the extra generation cost on the utility
side by minimizing PAR. On contrary, real-time rescheduling
is a single objective problem which aims to maximize user
comfort in terms of accomplishment of user demand in real
time. Real-time scheduling starts whenever user generates
a run-time interrupt during the operational time of electric
appliances.

A. MATHEMATICAL MODELING
Due to unscheduled load, the peak generations are inevitable
and result in high electricity consumption cost, more dis-
comfort of the consumer and degradation in the performance
of the utility. In this section, we formulate a mathematical
model to show the relationship of variables in achieving
the desired objectives. Each objective function is separately
defined along with its decision variables to control the system
inputs for achieving desired outputs. In this section, the for-
mulation of HEMS is performed for day ahead and real time
scheduling for achieving the following objectives.

1) DAY-AHEAD HEMS
In order to schedule the appliances with day-ahead mecha-
nism, load is shifted from On-peak to Off-peak hours. More-
over, the consumer can manage load according to objective
load curve, minimization of electricity cost, and less appli-
ance’s waiting time. Further, the consumer can reduce the
PAR with the help of DSM strategy load shifting. Some
parameters are inversely proportional to each other like con-
sumer comfort and electricity cost, and PAR and electricity
cost, thus multi-objective optimization is also possible to
handle trade-off. The formulation of each objective function
along with its decision variables is given as follows:

a: LOAD MANAGEMENT
The load management is enabled in scheduler via shifting
the load from on peak to off peak hours. The decision of
load shifting is dependent on the objective load curve [28].
Whereas, the objective load curve is inversely proportional to
the electricity market prices [28]. Our objective is to mini-
mize the gap between the objective load curve and scheduled
load curve. Additionally, the 24-hour time period is divided
into On-peak and Off-peak hours according to the provided
electricity rates. Themathematical expression of the objective

function is computed as follows:

Oload = min(Dis|E .Lhoursch , O.L
hour
curve|), (1)

constraints on the decision variables are defined as:

O.Lhourcurve =

{
γ × mean(E .Lunsch)− std(E .Lunsch) Hoff

p ,

std(E .Lunsch) Hon
p .

(2)

The constant γ is adjusted based on the electricity
demand or the unscheduled load E .Lunsch by energy manage-
ment controller. The constraint for γ = 2 and restriction on
the objective load curve during On-peak hoursHon

p is that it’s

value should be less than Off-peak hourHoff
p . The constraints

on both decision variables are given in the following mathe-
matical expression.

Hon
p if E .Phour > mean(E .PH ),

Hoff
p if E .Phour ≤ mean(E .PH ). (3)

In equation 3, the decision is made about load shifting from
Hon
p to Hoff

p when the electricity price E .Phour in a particular
hour is greater than the mean of electricity price E .PH . The
Off-peak hour is decided based on the E .Phour which must be
equal to or less than the E .PH .
As we discussed earlier, different parameters have inverse

relationship and constraints on the decision variables are
applied to handle the trade-off. Similarly, in this objective
function, the objective load curve O.Lhourcurve during particular
hour is inversely proportional to electricity price E .Phour ,
which is mathematically modeled as follows:

O.Lhourcurve ∝
1

E .Phour
. (4)

The aggregated electricity load E .L of ON appliances during
a particular hour is calculated using equation 5.

E .L =
D∑
d=1

AppdPrate × ℘, (5)

where ℘ represents the status of an appliance d , its value
would either be 1 or 0. This variable shows whether an
appliance is contributing in creating peak through 1 which
is the ON status and 0 represents the OFF status of an appli-
ance Appd during particular hour means an appliance is not
involved in peak generation. Moreover, the power rating of
controllable appliances is given in Table 2.

b: ELECTRICITY COST MINIMIZATION
In the discussion of load management, equation 4 describes
the inverse relationship of load and electricity price. More-
over, through scheduling, load form On-peak hours will be
shifted towards Off-peak hours because of high electricity
demand during On-peak hours which is a major factor in high
electricity prices. Therefore, our next objective is to minimize
cost collectively for all ON appliances. The status of ON
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appliances is computed via equation 5. The objective function
of cost minimization is mathematically written as:

Ocost = min(E .C total). (6)

The minimization of electricity consumption is directly
proportional to the reduction in electricity cost, therefore,
the decision variables of Oload defined in equation 2 are used
for electricity cost minimization. The total electricity cost
E .C total is calculated as:

E .C total
=

H∑
hour=1

(E .Chour ). (7)

In order to calculate E .Chour of each hour for scheduling
appliances, equation 8 is formulated.

E .Chour
=

D∑
d=1

(E .Phour × AppdPrate × ℘). (8)

c: APPLIANCES’ OPERATIONAL WAITING
TIME MINIMIZATION
In greedy approach of load and electricity minimization,
the waiting time of appliances with high power rating
increases with the increase in number of appliances. There-
fore, it is worth mentioning, if an electricity consumer wants
to reduce the electricity bill then he has to pay some cost in
terms of waiting time which shows that electricity cost and
waiting time are inversely proportional to each other. Thus,
the next targeted objective is minimization of waiting time of
an appliance AppdWt

.

Owait = min(AppdWt
), (9)

the waiting time of an appliance AppdWt
is calculated

according to equation 10.

AppdWt
= |AppdDh − App

d
Sh |,

such that Wt ≤ 24 hour . (10)

The waiting time of the appliance AppdWt
should be less than

24 hours. The constraint helps in ensuring that the desired
appliance will be scheduled at least once within 24 hours time
domain.

d: PAR MINIMIZATION
The objectives of load management, electricity cost min-
imization and reduction in operation waiting time of an
appliance have direct influence on the consumer comfort.
However, the stability of the grid can not be ignored because
giving preferences to consumer could lead peak generations.
Thus, we also target to reduce PAR because it directly effects
the price specially Real Time Price (RTP) tariffs. The objec-
tive function for PAR minimization is written as follows:

OPAR = min(PAR). (11)

The objective defined in equation 11 is achieved through the
management of load using equation 2. The PAR of objective
function is calculated as given in equation 12.

PAR =
max(E .LS

T
)2

(avg(E .LST ))2
, (12)

where S ∈ {sch and unsch}, sch and unsch represent
scheduled and unscheduled electricity load, respectively.

Whereas, E .LS
T
= {E .LS

1
,E .LS

2
,E .LS

2
, ...,E .LS

H
} is a list

of per hour electricity load calculated by equation 5.

e: MULTI-OBJECTIVE OPTIMIZATION
The earlier defined objectives: load management, electricity
cost minimization, reduction in service operation waiting
time and minimization of PAR are conflicting objectives and
require a multi-objective optimization solution. These objec-
tives are efficiently solvable by Pareto front: a set of solutions
in search space X which are superior than other solutions for
all objective vectors Y also known as Pareto optimal [29].
These solutions are non-dominated, for which Fi(x) cannot
be improved in any dimension without degrading it in another
dimension. Generally, a multi-objective optimization prob-
lem can be described as a vector function that maps deci-
sion vector x to objective vector F(x). Whereas, a possible
solution is obtained while assigning values to the decision
variable(s) [7], here decision variables are: On-peak hours
and Off-peak hours, ON and OFF status of an appliances
which directly influence the defined objective functions.
At the end, a final solution is selected from non-dominated
solution set by decision maker on the basis of some prede-
fined criteria [30].

Formally:

min(F(x)),

where F(x) = (F1(x),F2(x), · · · ,Fk (x)) . (13)

In our scenario of day-ahead scheduling, Ototal = F(x) and
Ototal = (Oload ,Ocost ,Owait).

2) SINGLE-OBJECTIVE REAL-TIME HEMS WHILE
INCORPORATING COORDINATION
In order to utilize the available resources like electricity
optimally in real-time HEMS, the concept of coordination
among the appliances is very vital to turn OFF or turn ON
any of the appliance. This provides the flexibility in the use of
system by allowing the consumers to interrupt any appliance
(means only interruptible appliances not fixed appliances)
and execute the operations of the desired appliance. With
this interruption, the HEMS is capable to reschedule the
appliance without degrading the performance of the system.
This flexibility has been added because of the real-time coor-
dination among the appliances using dynamic programming.
The rescheduling of the appliances by the HEMS is known
as real-time rescheduling and it helps in reducing the waiting
time of particular rescheduled appliance. The system starts
working whenever it receives an interrupt Î from the user.
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The mathematical representation of this run-time coordina-
tion is given as follows:

℘ =

{
0, if Î is generated,
1, otherwise.

(14)

If the interrupt is generated by the consumer, the appliance
is turned Off which is represented through ℘. In equation
14, the "0" denotes the Off state of the appliance due to the
interrupt generation from the consumer and "1" means that
the appliance is running and interrupt is generated for that
particular appliance to terminate its operations.

Appα =

{
1, if Î is generated,
0, otherwise.

(15)

where Appα ∈ Appαc , App
α is an appliance that is being

switched ON in the result of interrupt generation.While Appαc
is the list of appliances that user wants to reschedule in real-
time. To switch ON an appliance, the scheduler will check
the compatibility of available time interval (Avalinttime) with
operational time interval (Ointtime) according to the following
equation.

Ointtime ≤ Aval
int
time. (16)

User comfort and waiting time AppdWt
has an inverse rela-

tion, this relationship is mathematically expressed using
equation 17.

Comfort ∝
1

AppdWt

. (17)

In equation 17,Comfort is high, if thewaiting of the appliance
is less, however, this will increase the electricity consumption
cost. As this is related to single objective optimization, thus,
we are only concerned with the consumer comfort. Thus,
the objective of maximum consumer comfort with the help
of coordination through dynamic programming is achieved.

IV. PROPOSED METHODOLOGY
A vast range of optimization algorithms are available to solve
the home appliances’ scheduling problem. These algorithms
could be deterministic or stochastic. The deterministic algo-
rithm follow the same working procedure while the latter one
has some randomness. The selection of these optimization
techniques depends on the targeted objectives [31]. In this
study, our proposed HEMS consists of two parts, one is for
day-ahead scheduling which has multiple-objectives and sec-
ond one is real-time rescheduling with only one objective.
Former schedules the electric appliances for bill and PAR
reduction. The later one is introduced to incorporate coordi-
nation among HEMS and electric appliances. The real-time
scheduling problem is formulated as knapsack problem and
dynamic programming is implemented to solve it. In this
section, day-ahead and real-time rescheduling algorithms are
elaborated sequentially.

A. MULTI-OBJECTIVE OPTIMIZATION FOR
DAY-AHEAD SCHEDULING
In this underlying section, we elaborate the multi-
objective day-ahead scheduling using proposed MBBSO and
MBHBCO for HEMS.

The targeted objectives of day-ahead multi-objective opti-
mization are: distance minimization between objective elec-
tricity load curve and scheduled load pattern, electricity cost,
PAR andwaiting timeminimization. As discussed previously,
trade-off exists between cost and PAR, cost and waiting
time, and between the objective load curve and waiting time.
Furthermore, analysis concludes that the electricity demand
of user changes every day, so system must have the ability
to deal with different pricing tariffs. This stochastic nature
of user and price requires an efficient system to deal with
multiple-objective problem.

Multi-objective optimization problems have conflicting
objectives, as no single solution can be named as an optimum
solution. To overcome conflicts (trade-offs), a feasible region
is formulated through number of optimal solutions known as
Pareto front. Mathematical and nature-inspired (bio-inspired)
optimization techniques have been proposed to get Pareto
front. Selection of these schemes depends on the nature of
problem. Mathematical optimization techniques perform a
series of steps to get Pareto front. On contrary, bio-inspired
techniques set possible solutions in a single run. In this
perspective, different statistical, mathematical and nature-
inspired algorithms have been proposed and still researchers
are looking for new techniques.

In this respect, we have proposed MBBSO (an extension
of existing algorithm BSO) and MBHBCO (Hybrid version
of MBBSO and MOCSO) algorithms to optimize the search
space for load shifting under DR. Further, we evaluate the
performance of proposed optimization algorithms by com-
paring the simulation results with existing MBPSO [32]
and Multi-objective Binary CSO (MBCSO) [33]. BSO and
MBCSO are selected because of simulations conducted
in [24] and [33] validate the stability, effectiveness and supe-
riority of BSO over PSO and DE, and that of MBCSO over
NSGA-II and MODE. In the next section, we give a brief
introduction of proposed MBBSO, MBHBCO and existing
MBCSO.

1) MBBSO
BSO is a swarm based algorithm, it was introduced in [24].
The swarm intelligence behaviour of birds is adapted to solve
the optimization problems. MBBSO algorithm has the merits
of both PSO and DE which makes it extensible. We used
BSO because it is more efficient, accurate and robust than
PSO [24]. Moreover, it explores as well as exploits the search
space with four different strategies and its convergence speed
is also faster than PSO and DE. Further, MBBSO is inspired
from bird swarms’ social behavior and their interaction for
foraging, vigilance and flight as presented in [24]. This social
interaction helps the birds to forage food and escape from the
predators.
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BSO is an efficient algorithm for solving a single objective
problem; however, its multi-objective optimization algorithm
is not proposed. Thus, we have proposed MBBSO to solve
multi-objective problems. The swarm is modeled as a search
space to select an optimal solution and the position of each
bird is decided based on the ON or OFF status of an appli-
ance. The control parameters of algorithm are passed as input
variables and random population is initialized and evaluated
on the basis of defined objective function. These objectives
are used for the fitness evaluation of the population and all
non-dominated (Pareto front) solution sets υ are stored in
archive R. In each generation of MBBSO, first a leader is
selected using Roulette wheel selection method that is ĝ of
swarm. Then birds will be divided into three groups and their
positions will be updated accordingly, after that, R will be
updated. After maximum iterations, using threshold limit,
values are converted into binary form and an optimal solution
as a schedule of specific hour is selected.

In our proposed system, the swarm is a search space X
and its size is N ×D. The position of birds is decided through
the ON or OFF status of an appliance. The probability of a
bird to get the ON status of an appliance is Pr . The behaviour
of BSO is idealized on the basis of five rules which are as
follows [24]:
Rule 1: A bird decides his obligation (i.e., forages or keeps

vigilance) and this decision is modeled as stochastic.
Each bird is given the opportunity to switch between
vigilance and foraging behaviour.

Rule 2: Social information is instantaneously shared with
the whole swarm. During foraging, each bird can
promptly record and update the previous best expe-
rience of its own swarm regarding food terminus
which can help in food searching.

Rule 3: Birds with high reserves would have high probabil-
ity to be closer to the centre of the swarm. During
vigilance, each bird desires to move toward the cen-
tre.

Rule 4: Birds would fly periodically during this periodic
flight where they often switch between scrounging
and producing behaviours. Birds with highest and
lowest reserves would be categorized as a producer
and a scrounger, respectively.

Rule 5: A producer would be followed by scroungers ran-
domly because producers actively hunt for food.

The basics of BSO are assimilated in proposed MBBSO
for home load management. The working of the proposed
algorithm is depicted in Algorithm 1. All N virtual birds are
represented by their position x ti,j, for i = 1, 2, 3, . . . , N
at time ’t’, forage for food, vigilance and flight in D-
dimensional search space, for j = 1, 2, 3, . . . , D.
randn(0, 1) depicts the random Gaussian distribution number
with mean 0 and standard deviation 1. Each bird flies with the
frequency FQ (FQ > 0) in a unit interval from one place to
other.

For simplicity, the Rule 1 is formulated as a stochastic
decision. If a uniform random number is between [0 − 1]

which is smaller than Pr (Pr∈[0 − 1]), a probability
constant value then the bird would forage, otherwise continue
vigilance. Each bird forage for food according to bird’s own
and swarm’s experience [24]. In Algorithm 1, the control
parameters of an algorithm are taken as input variables. The
input varibales are: total number of time-slots (H), i.e., 24 in
this scenario, number of appliances (D), total iterations (M)
and tunning parameters (Pr , FQ, a1, a2, S C). Then random
population is initialized and evaluated on the basis of defined
objectives. These objectives are used for the fitness evaluation
of the population. Then non-dominated solution set based on
Pareto front is stored in R. The next step is leader selection,
i.e., ĝ of swarm. Then the search space is updated using basic
BSO steps. At the end, the search space is converted into
binary form using threshold limit and an optimal solution
is selected as a schedule of specific hour. Here, search space is
considered as the set of possible solution sets, each swarm is
taken as the possible combination of the appliances and each
bird in the swarm is taken as an appliance.

2) MBCSO
Yang et al. proposed theMOCSO in article [33]. The working
layout of CSO proposed by [35] is based on obligate brood
parasitic behaviour of cuckoo bird combinedwith Levy Flight
behaviour of some fruit flies. The basic structure of CSO can
be simplified by given Rules [35]:
Rule 1: Each cuckoo lays only one egg at a time in a ran-

domly chosen host nest.
Rule 2: The nests with high quality of eggs would be con-

sidered as best nests and will be proceed to the next
generation.

Rule 3: Available host nests are fixed, if host bird identifies
the cuckoo egg with a probability par ∈ [0, 1] then
the host bird either throws the egg or abandons old
one and builds a new nest. For further simplicity,
the abandon nests are replaced with new random
nests.

For all N host nests, the new position for ith cuckoo
for D-dimension (eggs) is performed by Lévy flight [35].
In this work, Lévy flight have random walk by Mantegna’s
algorithms is used because it is more efficient in search space
exploration [35].

According to CSO algorithm, the number of host nests
and the eggs of cuckoo will be the same, as one cuckoo can
lay only one egg at a time. The above-mentioned steps of
CSO are incorporated in MOCSO [33]. We have proposed its
binary version MBCSO for HEMS scheduler as elaborated
in Algorithm 2. In this algorithm, after the initialization of
control parameters and population, the search space X is
evaluated. Within maximum iteration (M), CSO steps are
performed and the best nest is selected as a schedule for the
current hour. The nest is selected from the non-dominated
Pareto front set using the Roulette wheel selection method.
Whereas, each egg represents the ON or OFF status of an
appliance. If cuckoo’ s egg is not recognized by the host bird,
the appliance status updated as switched ON; otherwise, it is
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Algorithm 1 Algorithm of Day-Ahead HEMS Scheduler Using MBBSO
Require: Input: [H , D, N , M , Pr , FQ, FL, a1, a2, S, C]
1: Initialization: Objective functions given in section III-A
2: t = 0, Random population (X ) of N × D and convert it into binary form BX
3: Evaluate the BX using equation 13,
4: Find the non-dominated solution sets and store in repositoryR.
5: for h← 1 to H do
6: Start of MBBSO
7: while t < M do
8: Select the leader (ĝ) formR using Roulette Wheel Selection.
9: if mod (t,FQ)6=0 then
10: for i← 1 to N do
11: if rand(0, 1) < pr then
12: Update position of each bird formR Forage for food (Equation 1 given in [24])
13: else
14: Update position of birds keep vigilance formR (Equation 2 given in [24])
15: end if
16: end for
17: else
18: Divide the swarm in two groups: producer and scrounger
19: for i← 1 to N do
20: if i == producer then
21: Update position of producer formR using Equation 5 given in [24]
22: else
23: Update position of scrounger formR using Equation 6 given in [24]
24: end if
25: end for
26: end if
27: Convert it in binary form Evaluate the fitness of updated BX (Equation 13)
28: If the new updated solution dominated the previous one,
29: Replace previous with current solution.
30: Find the non-dominated solution set and updateR
31: end while
32: Select the leader ĝ fromR
33: End of MBBSO
34: Sch(h,D) = ĝ
35: end for

switched OFF. Here, each cuckoo is an appliance and nest
represents the possible ON or OFF states of the appliances.
While updating the position, eggs within the nest appliances
with more importance according to the current situation are
converged towards the optimal point.

3) MBHBCO
In this section, we elaborate the proposed multi-objective
hybrid bird swarm and cuckoo search optimization algo-
rithm technique for Pareto front optimization. Generally,
two or more optimization techniques are hybridized to get an
efficient and effective scheme. Authors in article [23] stated
that hybridization is performed to enhance the performance
of an algorithm by embedding the best features of one algo-
rithm into another algorithm. A hybrid model has two main

aspects, the first refers to themethod of hybridizationwhereas
the second is the level of hybridization are explained as [23]:

Method of hybridization: a). meta-heuristic is combined
withmeta-heuristic, b). meta-heuristic is combinedwith other
techniques.

Level of Hybridization: Defines the degree of coupling,
control strategy and execution sequence elaborated as:

• Degree of Coupling: It is demarcated as loose coupled
and strong coupled. The former is known as a high
level of hybridization, where each technique maintains
its identity, i.e., flow of each technique is fully fol-
lowed, while the latter, is known as low level coupling,
these techniques interchange their internal working
procedure.

• Control Strategy: It is defined as coercive or cooperative.
During coercive, one of the hybrid technique follows
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Algorithm 2 Algorithm of Day-Ahead HEMS Scheduler Using MBCSO
Require: Input: [H , D, N , M , Par , ð, g]
1: Initialization: Objective functions given in section III-A
2: t = 0, Random population (X ) of N × D and Convert it into binary form BX
3: Evaluate the BX and store in F using equation 13,
4: Find the non-dominated solution sets and store in repositoryR.
5: for h← 1 to H do
6: Start of MBCSO
7: while t < M do
8: Select the leader (ĝ) formR using Roulette wheel selection.
9: for i← 1 to N do
10: Get each cuckoo position (xi) and updateR
11: Convert it in binary and updatedRnew
12: Evaluate the fitness Fnew (Equation 13)
13: if dominate(F inew,F

i) then
14: xi = xnewi using Equation 1 given in [35]
15: end if
16: end for
17: for i← 1 to N do
18: if rand > par then
19: xnewi = random walk
20: random walk using the Lévy flight
21: Convert it in binary and updated BXnew,
22: Evaluate the fitness Fnew (Equation 13)
23: if dominate(F inew,F

i) then
24: xi = xnewi using Equation 1 given in [35]
25: end if
26: end if
27: end for
28: Find the non-dominated solution set and updateR
29: end while
30: Select the leader ĝ fromR
31: End of MBCSO
32: Sch(h,D) = ĝ
33: end for

the flow of the other technique. Within the cooperative
strategy, hybridized techniques cooperatively explore
the solution space.

• Execution Sequence: It could be sequential or parallel.

From literature, it is analyzed that the optimal solution can
be maximal or minimal. The minimal optimization problem
can lead all the values toward zero, if the solution space
requires maximum iterations. Whereas, maximal optimiza-
tion can lead optimal point values toward the maximal point.
To avoid such situation, an optimal solution is required that
can keep values between minimal and maximal optimiza-
tion. In this perspective, we hybridize two meta-heuristic
techniques MBBSO (search for minimal optimization) and
MBCSO (search for maximal optimization) through loosely
coupled strategy. This strategy follows the sequential execu-
tion with coercive control strategy, where CSO steps follow
the BSO steps.

The proposed hybrid scheme is based on the non-
dominated Pareto front solution set. The complete work flow

of MBHBSO is given in Algorithm 3. In this algorithm,
during each iteration, best birds are passed as an input for the
CSO and the non-dominated solutions are stored after con-
verting them into binary form in an archive. These solutions
are represented as non-dominated Pareto front. During the
decision-making step, decision maker will select the global
best as the final solution. In the considered HEMS scenario,
host nests reflect the search space and eggs laid by cuckoo are
taken as the ON/OFF status of electric appliances, if the egg
is recognized by host bird, then the status of appliance will be
OFF, otherwise, it will be ON.

4) PARETO FRONT OPTIMAL
The repositoryR is updated using Pareto front optimal solu-
tion set υ. The non-dominated υi is selected if υi < νi.
Whereas, i = {1, 2, 3, . . . ,N} and υ, ν ∈ X .

5) DECISION MAKING
The last and important step for multi-objective problem is
decision making in which decision maker has to select one
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Algorithm 3 Algorithm of Day-Ahead HEMS Scheduler
Using MBHBCO

Require: Input: [H , D, N , M , PRr , α, g]
1: Initialization:Objective functions given in section III-A
2: t = 0, Random population (X ) of N × D and Convert it

into binary form BX
3: Evaluate the BX and store in F using equation 13,
4: Find the non-dominated solution sets and store in repos-

itoryR.
5: for h← 1 to H do
6: Start of MBBCO
7: while t < M do
8: Select the leader (ĝ) form R using Roulette

wheel selection.
9: Algorithm 1 (Line 10-27) to update the popula-

tion
10: Updated population is passed as a initial popu-

lation to Algorithm 2
11: Algorithm 2 (Line 10-27) to update population
12: Find the non-dominated set and updateR
13: end while
14: End of MHBBCO
15: Select the leader ĝ fromR
16: Sch(h,D) = ĝ
17: end for

TABLE 1. Parameters of MBHBCO.

of the optimal solutions from non-dominated solution set.
Where an optimal point selection is quite challenging. During
the study it is observed that loadmanagement is the key factor
to minimize the electricity cost and PAR. During the decision
making step dynamic programing based coordination among
appliances is incorporated for efficient load management and
compared with without coordination selection.

a Decision making without coordination
In day-ahead scheduling without coordination only
roulette wheel, a probability based selection method is
adapted for decision making.

b Decision making with coordination
In the decision making step of with coordination,
first a solution is selected using roulette wheel selec-
tion method. After selection, some of the appliances
can be switched OFF or ON through coordination.
Appliance(s) is switched OFF, if the selected solution

from the Pareto front shows more electricity load as
compared to the O.Lhourcurve. However, if electricity load
found less as compared to the O.Lhourcurve some of the
appliance(s) can be switched ON.

B. COORDINATION FOR DAY-AHEAD AND
REAL-TIME SCHEDULING
Coordination for two different scenarios: day-ahead and
real-time scheduling is presented in this paper. For day-
ahead scheduling before finalizing the schedule coordination
among the appliances is incorporated, so that electricity load
can be closed towards the defined objective lines.

During the working hours, appliances are rescheduled in
real-time on user request, while maintaining the effects of
Off-peak and On-peak hours on electricity cost. Correspond-
ingly, we follow a different approach in which appliance
can be turned OFF through coordination during the given
time interval and an empty slot will be allocated to another
appliance after performing coordination between appliances
as shown in Fig. 2.

If the user generates an interrupt, it results in trigger-
ing algorithm 4 as given in [26]. This algorithm describes
scheduler and user coordination which is deployed using
dynamic programing. For instance, a user intends to resched-
ule Appαc and scheduler keeps these appliances on high prior-
ity. Through dynamic programing, it decides which appliance
to turn ON. This decision is based on On-peak, Off-peak
hours and available time interval.

To efficiently solve the day-ahead and rescheduling prob-
lem, it is formulated as knapsack problem. Real-time schedul-
ing is a single-objective problem, where target is user comfort
maximization by effective utilization of available time inter-
val. This available time interval is considered as knapsack
capacity and appliances are considered as the items to be
filled in the knapsack. In this scenario, working time interval
of an appliance is considered as a weight of an item. The cost
of the operational time of an appliance is described as value of
an itemwhich depends upon the price rate of a particular hour
and the power rating of appliances to be turned ON. At the
end, we get an optimal solution by combining items with
minimum weight and maximum value for an On-peak hour
andmaximumweight andminimum values for particular Off-
peak hour. This optimal value should not exceed the knapsack
capacity as explained in equation 16.

In case of day-ahead coordination, target is the load man-
agement, whereas according to the situation, an item is
added or taken out from the knapsack. If the scheduled
load exceeds the given objective load curve, some of the
appliances are switched OFF; otherwise, knapsack is filled
according to the available capacity through coordination.
The dynamic programming is very effective in solving a
knapsack problem when a single solution is required. Bell-
man in [36] introduced dynamic programming to solve the
knapsack problem. It divides a problem into sub-problems
and each sub-problem is solved separately using Bellman
equation 18. Solution of each problem is kept in a table,
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FIGURE 2. Real-time scheduling through coordination: An example scenario.

so that available solution can be used for the similar problem
in future. We compute the results using the equation 19 and
a table T [í, j́] which is used to maintain these values. The
possible solution which covers the maximum capacity and
maximum benefit is stored in table S[í, j́]. The optimal solu-
tion from stored table is selected using equation 20. Based on
this equation, the empty slot will be allocated to the priority
appliance(s) or selected appliance(s) will be removed from
schedle.

KS1,2De = [T [í− 1, j́],Value(í− 1)

+T [í− 1, íj− Listtime(í− 1)]]. (18)

T [í, j́] =

{
max(KSDe ), if Hoff

p

minKSDe , if Hon
p

(19)

S[í, j́] =

{
1, if T [í, j́] == KS2De
0, Otherwise

(20)

V. SIMULATION RESULTS AND DISCUSSION
In this section, we discuss the simulations results to evaluate
the effectiveness of the proposed multi-objective optimiza-
tion techniques and system model. Effectiveness of proposed
algorithms is proved by testing the techniques on defined
bench-mark functions as given in Figs. 3-6.

The simulation results under discussion are the average of
5 Iterations. We also study the effect of coordination on elec-
tricity cost, PAR and waiting time. Furthermore, we present
a comparative analysis of the proposed and existing multi-
objective algorithms. We also study how different input
parameters effect the performance of an algorithm. For this
purpose, we carry out experiments for three different pricing
schemes: RTP [28], Time of Use (ToU) [38] and Critical

Peak Price (CPP) [38]. These pricing tariffs are shown in
Figs. 8 (a)-(c), respectively. All simulations are carried out in
MATLAB 2018a. The simulations results depict the energy
consumption pattern and its effect on electricity cost, user
comfort and PAR. The smart home consists of D = 15
appliances as shown in Table 2 along with their power ratings
and daily usage. The power rating and daily usage of selected
appliances are taken from [39] and [40].

These appliances are selected because of their extensive
usage in all the seasons. The selected appliances are cate-
gorized into two groups: schedulable and non-schedulable
appliances. Schedulable appliances are further classified as:
interruptible and non-interruptible. Interruptible appliances
can be scheduled on different time-slots, whereas non-
interruptible appliances cannot be interrupted during the
operational cycle. For example, washing machine cannot be
interrupted once it starts its working, it will be turned OFF
only after completion of its task. For day-ahead scheduling
Interruptible appliances can be switcheeed Moreover, for
the real-time scheduling, we consider the dish washer and
vacuum cleaner as priority appliances in this scenario for
simulation. As discussed previously, we consider the time-
slot of one hour and each appliance is turned ON during
its allocated time-slots. However, the working time of dish
washer and vacuum cleaner could be less than an hour which
depends on users’ requirement.

A. MULTI-OBJECTIVE TEST FUNCTIONS
There are variety of test functions for multi-objective opti-
mization techniques; however, a few of widely used func-
tions provide a wide range of diverse properties in term of
Pareto front. Through these test functions, a new proposed
technique’s effectiveness can be validated.
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FIGURE 3. Graphical results of ZDT1 function of MOPSO, MOCSO, and proposed MOBSO and MOHBSCA.

TABLE 2. Appliances used in simulations.

In this study, to validate the MOBSO and MOHBCO,
we have selected ZDT1 with convex Pareto front, ZDT2 with
non-convex Pareto front, ZDT3 a function with discontinuous
front values and ZTD4.

The graphical results in Figs. 3-6 show Pareto fronts
obtained by the MOBSO and MOHBCO, which are com-
pared with existing MOPSO and MOCSO algorithms. The
curve lines in these figures get through meta-heuristic tech-
niques (i.e., MOPSO,MOCSA,MOBSO andMOHBCO) are
compared with the true Pareto front. The true Pareto front
is taken form [37] During the experimental results, a prema-
ture convergence rate is being observed in case of MOPSO,
which shows that MOPSO is trapped in local optima.
Whereas, MOCSO techniques non-dominated solutions

sets converge on very few points as can be envisioned in
Fig. 3-Fig. 6. The Fig. 6 illustrates that the convex Pareto
front with function ZDT4 for MOPSO is away form the
true Pareto front where as proposed techniques front line
is very close to the true line. Further, Mean Square Error
(MSE) values for all four studied test functions are also
calculated and given in Table 3. These results depict that
MOPSO outperforms for the ZDT1 convex Pareto front
whereas, it performs worse for ZDT4. For discontinuous
Pareto set ZDT3, MOBSO shows high performances com-
paratively. Furthermore, study proves that with increasing
number of dimensions of search space performance of exist-
ing techniques MOPSO and MOCSO degrades as shown
in Table 3.
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FIGURE 4. Results for the ZDT2 for all four optimization techniques.

FIGURE 5. ZDT3 bench-mark test results for proposed MOBCA and MOHBSCSO, and existing techniques
MOPSO and MOCSO.

B. DAY-AHEAD SCHEDULING WITHOUT COORDINATION
Here, we discuss the results of simulations conducted for
day-ahead scheduling. Our aim is to minimize the dis-
tance between objective and scheduled power load curve
which ensures the minimization of electricity cost, appliance
waiting time and PAR. The trade-off between cost and PAR
is shown in Fig. 7.

Fig. 8 illustrates the power consumption pattern of each
hour and objective load curve. It is clear from Fig. 8, MBH-
BCO scheduled load curve is closer to the objective load
curve during the On-peak hours than the others techniques
using all the taken electricity rate.

RTP has high price during the hours 8:00am to 2:00pm,
Fig. 8(a) shows that during the peak pricing hours, scheduled
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FIGURE 6. Bench-mark test function ZDT4 results for proposed and existing techniques.

FIGURE 7. Trade-off between cost and PAR.

load of MBPSO, MBCSO and MBBSO is high; however,
MBHBCO maintains the load below the objective load line.

Whereas, Fig. 8(b) shows that ToU has high rates during
7:00am to 5:00pm, and 7:00am-10:00am. These are shoulder-
peak hours and all the scheduling schemes have load profiles
greater than objective load curve which somehow increases

the electricity cost during these hours as shown in Fig. 10(b).
11:00am- 4:00pm are critical hours of CPP, it has highest
price rates on this time interval as demonstrated in Fig. 8(c)
and the aggregated scheduled load by all the scheduling
schemes is beneath the objective load curve. It is also noted
that the distance between the scheduled load and the objective
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TABLE 3. Summary of results for MSE.

load curve is greater during the hour 8:00am as compared
to other hours, it is because of maximum number of non-
schedulable appliances which are turned ON by the user.

Electricity price of each hour is shown in Fig. 10 which
is a direct reflection of Fig. 8, these figures reveal that the
high energy consumption onOn-peak hours increases the cost
significantly. Figs. 10(a)- (b) illustrate that the electricity cost
during the On-peak and Off-peak hours has almost the same
pattern; however electricity load during On-peak hours is low
as compared to Off-peak hours, this is because of double
prices during On-peak hours. Fig. 10(c) reveal that prices
during On-peak hours are high as compared to the Off-peak
where load during these hours is low as shown in Fig. 8(c).
The reason for this behaviour is that the price during the
On-peak hour is 10.8 times greater than Off-peak hours.
Additionally, Fig. 10 shows that the electricity consumption
cost of scheduled load is less than the unscheduled load
during the On-peak hours which shows that the overall elec-
tricity cost decreases after scheduling the electric appliances
as illustrated in Table 4. This table demonstrates thatMBCSO
has reduced up to 21% of total electricity cost, whereas,
MBPSO, MBBSO and MBHBCO reduce 18%, 15% and
18%, respectively as compared to unscheduled cost for RTP.
For ToU tariff, among all scheduling techniques, MBBSO
and MBHBCO outperformed with 22% and 23% decrement
in electricity bill than unscheduled load cost, while MBPSO
and MBCSO reduce the electricity cost up to 20% and 22%,
respectively. Moreover, 77% highest reduction in electricity
cost is observed for MBPSO as compared to the cost of
unscheduled load. Moreover, 71%, 60% and 69% cost is
reduced by MBCSO, MBBSO and MBHBCO, respectively.

The reduction of PAR is elucidated in Table 5. It reveals
that the proposed technique MBHBCO outperforms the
other techniques: MBBSO, MBPSO and MBCSO. Results
in Table 5 shows PAR 6.58 for MBHBCO, this opti-
mization technique has decreased 19% PAR, on the other
hand, MBPSO, MBCSO, MBBSO decrease 3%, 11% and
6% for RTP, respectively. For ToU price tariff, best per-
formance is shown by MBHBCO by reducing 27% in
PAR, whereas, MOPSO reduces 12%, MOCSO and MBBSO
reduce PAR 23% and 4.7%. Results for CPP show 18.98%
reduction in PAR by hybrid scheme than unscheduled PAR,
MBPSO, MBCSO, MBBSO reduce 2%, 1.2% and 3.7% of

FIGURE 8. Hourly power consumption details without real-time
rescheduling along with three different pricing signals.

PAR, respectively. PAR of optimization techniques is almost
same for RTP and CPP because at 7:00am most of non-
schedulable appliances are turned ON by user, this behaviour
can be seen in Fig. 8.
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FIGURE 9. Effect of real-time rescheduling on power consumption for
each hour during a day along three pricing signals.

It has been discussed in previous sections that the home
energy management is a multi-objective problem and there
is always a trade-off between electricity bill minimiza-
tion and appliances waiting time and PAR and electricity
bill minimization. Somehow, we try to optimize the system
by using Pareto optimal method; however, still user must

FIGURE 10. Per hour electricity cost details without real-time
rescheduling along with three different pricing signals.

pay some cost in terms of waiting time while reducing the
electricity bill. Fig. 12 illustrates group wise average waiting
time for all three price tariffs. Fig. 12(a) demonstrates that
MBHBSC, one of the proposed techniques has minimum
average waiting time of 3 hours and the MBPSO technique
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TABLE 4. Total cost of a day for day-ahead scheduling with and without
coordination, and coordination based real-time scheduling for three
different price tariffs.

TABLE 5. Calculated PAR of a day for day-ahead scheduling with and
without coordination, and coordination based real-time scheduling.

shows 3.5 hours of highest waiting time. It can be visualized
form this graph that there is not much difference between
the waiting times of all scheduling techniques. For ToU
pricing scheme, the highest waiting time is 3.5 hours, which
is of hybrid technique and lowest waiting time 3.2 hours
is obtained by MBBSO technique as shown in Fig. 12(b).
Using CPP, the highest average waiting time of appliances
is 3.4 hours by MBHBSC scheduler, where it is 3.3 hours by
MBPSO and MBCSO which is minimum waiting time.

The overall discussion shows that the proposed hybrid
technique outperforms other techniques except in term of
waiting time, whereMBHBCOhas good results for ToU only.
It is also analysed that whatever pricing technique is adapted,
it does not affect the performance of our proposed multi-
objective technique. This is because of our strategy to hybrid
the technique that would effectively search and target global
and local search space.

Furthermore, if we have a look on the per day cost of elec-
tricity in unscheduled case for three price tariffs: RTP, ToU
and CPP, their cost is 1991 cents, 1730 cents and 6946 cents
respectively. The unscheduled and the scheduled costs reveal
that ToU is more economic than RTP.Moreover, if we analyse
PAR which directly helps in reducing the cost, specially in
case of RTP, where the load of each hour decides the price
for the next hour.

In order to further authenticate the performance of the
proposed techniques, we find the confidence interval of 95%
for electricity cost and PAR. The upper and lower values

FIGURE 11. Effect of real-time rescheduling on electricity bill for each
hour during a day along with three pricing signals.

in Table 6 show the probability of true mean values between
upper and lower values. The difference between upper and
lower values shows the fluctuation in the results (i.e., max-
imum fluctuation with maximum difference). The table
shows the different behaviour of optimization techniques for
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TABLE 6. 95% confidence interval for different performance parameters.

TABLE 7. Effects of coordination based real-time scheduling on different performance parameters.

different situations. Minimum difference in upper and lower
values of electricity cost is 15% with hybrid scheme for RTP.
Whereas, for ToU, the minimum difference of 7% is observed
withMBCSO andMBBSO; further, theMBPSO outperforms
for CPP. In case of PAR, similar behaviour is observed. For
RTP rates, MBCSO shows the highest performance, where
MBBSO outperforms for ToU and CPP.

C. REAL-TIME SCHEDULING WHILE
ASSIMILATING COORDINATION
Here, we discuss how the user’s run-time interrupt effects
the overall electricity consumption cost, PAR and waiting
time. In the previous section, it is clearly elaborated that one
of the system’s objective is real-time scheduling according
to the user’s demand. When user requests to switch ON an
appliance, a request is sent to the scheduler to reschedule the
priority appliances.

Fig. 9 illustrates per hour power consumption pattern after
real-time scheduling. For the simulation purpose of the real-
time scheduling, we generate some interrupts randomly for
the 24-hour time-slot where already defined schedule will
be updated. We generate random interrupts during different
hours in a day. In this way, minor difference is recorded
and cannot be ignored. Somehow, as a result of real-time
rescheduling, an increase or decrease in cost, PAR and wait-
ing time is noticed and is given in Table 7. Fig. 9(a) for RTP
signals shows the difference from Fig. 8(a) during 3:00am,
9:00am, 1:00pm, etc. Whereas, for ToU, Fig. 9(b), shows
the difference from Fig. 8(b) during 4:00am, 8:00am, etc.,
moreover, CPP reveals the difference at 2:00am, 6:00am, etc.,
in distinction to 8(c). The power load profile consequences
manifest in Fig. 11 and Table 4 and 5. Table 7 shows that the
cost is decreased by 1.65% using MBHBCO while consid-
ering the coordination for RTP. Furthermore, the percentage
difference between with and without coordination for ToU is
observed as 2.02% decrease in electricity bill for MBPSO,

0.28% and 0.8% by MBCSO and MBHBCO, respectively.
Whereas, 0.92% increase in electricity cost is observed for
MBBSO. Total electricity cost for CPP according to different
scheduling techniques is also shown in Table 7 which shows
0.07% minimum decrease in electricity cost by MBPSO
scheduler. Whereas, highest decrease in cost is observed by
MOHBCS which is 0.99% than that of without incorporation
of real-time scheduling or coordination. After coordination,
the overall cost is reduced; however, an increase in PAR
is observed. As Table 7 illustrates that for RTP, MBCSO
shows 5% decrement in cost. On the other hand, it has 11%
increase in PAR which is highest one. This reveals the trade-
off between cost and PAR. Similar behaviour is observed for
ToU price tariff as depicted in Table 7, it has 4.73% higher
increase in PAR with coordination. Whereas, 1.31% increase
is observed by MBBSO in case of CPP.

The main target of real-time rescheduling through coordi-
nation is user comfort maximization. From this discussion,
it is clear that there is always a trade-off between different
performance parameters. In this regard, we have discussed
trade-off between total cost and PAR, and waiting time and
cost. Figs. 8 and 9 show that our defined fitness function helps
tomaintain the low electricity load profile during theOn-peak
hours which eventually helps in reducing the electricity bill
and also its balanced nature helps in minimizing the PAR.
Somehow user has to wait for appliance to start working.
Moreover, our next main objective: real-time rescheduling,
enables the system to turn OFF and ON an appliance on the
request of a user. It does not show much fluctuation in cost
and PAR; however, it reduces the waiting time.

D. COORDINATION BASED DAY-AHEAD SCHEDULING
In the previous sections, day-ahead scheduling without coor-
dination and effect of real-time user demand on cost, waiting
time and PAR are studied through simulations. From the
simulation results, it is observed that real-time scheduling
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FIGURE 12. Group wise average waiting time of electric appliances
without coordination.

does not affect the cost and PAR. Further, the simulations
are done for day-ahead scheduling through coordination. The
simulation results show that in coordination based schedul-
ing, users’ demanded load is more close towards the objective
load curve which directly affects the cost and PAR.

It can be clearly seen from Figs. 8, 10, 14 and 15 that
the scheduled load is maintained towards the objective load

FIGURE 13. Coordination effect on average waiting time of group of
electric appliances.

curve, which eventually helps in reducing the electricity
cost and price. Further, it can be observed from Fig. 14 (a)
that other techniques somehow manage to maintain the
objective load line except MBCSO and MBBSO. Whereas,
in case of ToU and CPP tariff, our proposed schemes
MBBSO and MBHBCO outperform MBPSO and MBCSO.
Moreover, the tabular results in Table 4 show minimum
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FIGURE 14. Day-ahead coordination effect on hourly power consumption
along with three different pricing signals.

cost, i.e., 1432 cents for RTP with MBPSO, 1288 cents for
MBHBCO using ToU; whereas for CPP, best performance is
achieved by MBCSO. MBCSO shows minimum PAR 3.44,
3.22 and 3.46 for RTP, ToU and CPP, respectively and shown
in Table 4.

FIGURE 15. Effect of day-ahead coordination electricity cost for each
hour during a day along three pricing signals.

In this research work, the proposed MBBSO and
MBHBCO are designed for HEMS. Due to meta-heuristic
generic behaviour, these presented algorithms can be applied
on any optimization problem. Also, after omitting binary
conversion process, these techniques are also applicable on
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any non-binary optimization problem, as deliberated in exper-
imental results given in Fig. 3-6 and Table 3.

VI. CONCLUSION
This paper proposes the single and multi objective based
models for day-ahead (with and without coordination) and
real-time appliances scheduling. For home load scheduling,
conflicting objectives are: minimization of electricity bill,
waiting time reduction and PAR minimization. This is possi-
bly implemented through non-dominated Pareto front based
solutions that are obtained from the search space provided by
MBBSO and MBHBCO for day-ahead scheduling. To anal-
yse the performance of the proposed schemes, the results
are compared with well-known existing techniques such
as MBPSO and MBCSO. On contrary, the single-objective
problem targets to maintain flexibility in order to incorpo-
rate the coordination. This real-time rescheduling reduces
the waiting time of rescheduled appliances. Additionally,
to check the compatibility and generic behaviour of these
proposed techniques, simulation results are evaluated using
three electricity tariffs namely RTP, ToU and CPP. Simulation
results show that changing pricing schemes do not show any
prominent effect on the system’s performance. On the other
hand, dynamic programming based algorithm is proposed
for day-ahead and real-time scheduling. Results reveal that
coordination based day-ahead scheduling is more effective
in reducing the electricity cost and PAR as compared to
without coordination. Moreover, after rescheduling, fluctu-
ation in PAR and electricity cost patterns is not noticeable,
this is because of balanced scheduling using objective load
curve and coordination using dynamic programming. More-
over, further experiments are also being conducted in order
to validate the proposed algorithms. The comparative study
on four well known bench-mark functions has proven the
effectiveness of proposed techniques. Further, it is observed
that main drawback of MOPSO is premature convergence;
whereas, MOCSO is trapped in global optima. In addition,
the proposed techniques have ability to strive in both local
and global optima.
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