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ABSTRACT Deep reinforcement learning (RL) holds considerable promise to help address a variety of
multi-agent problems in a dynamic and complex environment. In multi-agent scenarios, most tasks require
multiple agents to cooperate and the number of agents has a negative impact on the training efficiency of
reinforcement learning. To this end, we propose a novel method, which uses the framework of centralized
training and distributed execution and uses parameter sharing among homogeneous agents to replace partial
calculation of network parameters in policy evolution. The parameter asynchronous sharing mechanism and
the soft sharing mechanism are used to balance the exploratory of agents and the consistency of homogenous
agents’ policy. We experimentally validated our approach in different types of multi-agent scenarios. The
empirical results show that our method can significantly promote training efficiency in collaborative tasks,
competitive tasks, and mixed tasks without affecting the performance.

INDEX TERMS Multi-agent, reinforcement learning, neural network, parameter sharing, MADDPG,
training efficiency.

I. INTRODUCTION
In recent years, deep reinforcement learning (DRL) has been
very active, which is selected as one of the MIT Technology
Review 10 Breakthrough Technologies in 2017. The break-
throughs mainly include deep Q-network(DQN) for Atari
games [1], [2] and strategic policies combined with tree
search for the game of go [3], [4]. DQN solves problems
with high-dimensional observation spaces. Deep determinis-
tic policy gradient(DDPG) [5] addresses problems with con-
tinue observation and action spaces. Other notable examples
of utilising DRL include learning robot control strategy from
video [6] playing video games [7], indoor navigation [8] et al.
Most of these studies belong to single agent reinforcement
learning.

Nevertheless, in reality, multi-agent systems(MAS) are
applied in a variety of fields such as robotic teams [9], dis-
tributed control [10], collaborative decision [11], etc. [12]
and [13] have done some impressive work in the research of
high-order MAS.

In multi-agent scenarios, it is very difficult to pre-design
behaviors for agents when the environment is complex and
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changing over time. The agents learn new policies online,
which is helpful to improve the performance of the agents
gradually [14]. Reinforcement learning can realize the evo-
lution of policy through interaction between agents and the
environment. So far, the multi-agent reinforcement learning
community presented perhaps the most expressive progress
towards autonomous learning in MAS [15]. To extend rein-
forcement learning to MAS, the core challenge is to specify
a multi-agent learning goal [16], because the return of an
agent is influenced by other agents, and cannot be maximized
independently. By combining reinforcement learning with
game theory, many algorithms of multi-agent reinforcement
learning (MARL) are formed, for example, Team-Q [17],
Distributed-Q [18], [19] et al for fully cooperative tasks;
Minimax-Q for fully competitive tasks; Nash-Q [20], [21],
WoLF-PHC [22], [23] for mixed tasks. But these algorithms
cannot address the problem of multi-agent credit assignment.
Agents cannot use their own reward function separately.

Recently, deep learning has been applied to MARL, which
leads to a crossed area—deep MARL. This area integrates
the development of deep learning, game theory, and rein-
forcement learning(RL). Recent works focus on solving non-
stationarity [24], communication problems [25]–[27] and
credit assignment [28], [29]. It’s remarkable that recent works
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have proposed a centralized critic decentralized actor model,
in which critic networks update their parameters by joint
actions and states, but each agent acts according to local
observations and receives returns based on its own reward
function separately [24], [30].

However, in the course of training, It is necessary to com-
pute the network parameters for each agent at every time step,
which reduces the training efficiency of the method. In this
work, we combine the existing work [24] with parameter
sharing, and propose a new method to improve the training
efficiency. In ourmethod, firstly, we classify agents according
to their reward functions. Secondly, only one agent’s param-
eters are calculated for each policy evolution in the same
class of agents. Finally, other agents in the same class share
parameters to realize policy evolution. In order to solve the
problem of exploration-exploitation trade-off, asynchronous
parameter sharing and parameter soft sharing are adopted
in our method to control the degree of parameter consis-
tency among agents in the same class. We evaluate our
method in the testbed of multi-agent particle environment,
which has been used in works [24]. The empirical results
show that in cooperative scenario, cooperative and compet-
itive scenario and scenario mixed with cooperative, compet-
itive and communication, our method significantly improves
the training efficiency without affecting the performance of
agents.

The rest of the paper is organized as follows. In section II
related work is discussed, followed by some background
knowledge in section III. We present the main approach in
section IV and report experimental results in section V. Con-
clusion is put in section VI.

II. RELATED WORK
In the domain of MARL, there is much work on how
to improve the efficiency of agent training. By combining
transfer learning(TL) with reinforcement learning, knowl-
edge reuse can be realized to accelerate agent learning pro-
cess, such as inter-agent learning through the teacher-student
model [31] and introducing human knowledge [32] in the
training process. Some work improves the training efficiency
of agents by sharing parameters or gradients [25], [33] among
agents. But these algorithms are different from our methods:
(1) they do not use centralized critic decentralized actor
model; (2) they do not solve the problem of multi-agent credit
assignment.

In recent work, the framework of centralized training and
decentralized execution is adopted. In [34], the actor-critic
methods are investigated for decentralized execution with
centralized training. However their critic condition on local
observations and single-agent actions. Markov property of
MAS is difficult to guarantee.

Multi-agent DDPG(MADDPG) [20] adopts centralized
critic decentralized actor model, which trains a separate
centralized critic for each agent via joint observations and
actions. So the Markov property of MAS is guaranteed.
Each agent has its own reward function by decentralized

actor, which addressed the multi-agent credit assignment.
We combine parameter sharing with MADDPG and propose
MADDPG-PS algorithm.

Our approach is based on MADDPG, but the differences
are that, (1) we do not need to calculate the network param-
eters of all agents in each policy evolution, (2) we use
parameter sharing among similar agents to update network
parameters, (3) we use asynchronous parameter sharing and
soft parameter sharing to encourage agents to explore in the
early stages of training.

III. BACKGROUND
A. MULTI-AGENT REINFORCEMENT LEARNING (MARL)
Using reinforcement learning to solve multi-agent problems
can avoid the difficulties brought by the pre-design of agents’
behaviors, and can realize the evolution of policies through
the interaction between agents and environment, so that the
performance of agents and MAS can be improved gradually.

In multi-agent scenarios, the policies of all agents are
evolving. In the perspective of any agent, the environment
is unstable. So MARL faces not only the dimension disas-
ter of traditional reinforcement learning and the problem of
exploration-exploitation trade-off, but also the challenges of
learning goals setting and learning instability. As there is no
limit on the number of agents in MAS, improving the training
efficiency of agents is also an important field in the research
of multi-agent problems.

The Markov decision process(MDPs) of single agent can
be generalized to multi-agent scenarios. The standard MDPs
is defined as < S,A1, . . . ,An,R1, . . .Rn,T , γ >, where n is
the number of agents, S is the set of multi-agent environment
states, Ai, i = 1, . . . , n are the sets of actions available to
the agents, yielding the joint action set A = A1 × · · · × An,
T : S × A × S → [0, 1] is the state transition probability
function, and Ri : S×A×S → R, i = 1, . . . , n are the reward
functions of the agents. Since we are using a model-free
MDPs, the transfer function is unknown.

B. MADDPG
Multi-agent DDPG(MADDPG) method is a generalization of
DDPG to MARL. Similar to DDPG, agenti takes action ai
based on their own observations si of the environment and
calculate returns based on its own reward function Ri(s, a).
This decentralized execution of MADDPG enables agents
to set different reward functions according to tasks, thus
effectively solving the problem of specifying learning goals
in multi-agent scenarios.

In MADDPG, critic is trained with joint actions
{a1, . . . , an} and joint observations {s1, . . . , sn}, which guar-
antees the markov property of MAS and the convergence of
policy evolution.

MADDPG ignores the existence of homogeneous agents.
In the training process, every training step needs to calculate
the network parameters of each agent, which reduces the
training efficiency.
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IV. OUR APPROACH
A. MADDPG-PS
In the training process of MADDPG method, every pol-
icy evolution needs to calculate the derivation and gradient
descent to update all each agent’s network, which consumes
computing resources, reduces the training efficiency of agents
and increases the training time.

In this part, a new method MADDPG-PS is proposed,
which can effectively improve the training efficiency while
maintaining the same performance as MADDPG method.
Our MADDPG-PS method combines the MADDPG method
with the parameter sharing mechanism to reduce the compu-
tational complexity of the network parameters of the agents
in the policy evolution, thereby reducing the training time and
improving the training efficiency of the agent.

In most multi-agent environments, the number of agents is
much larger than the number of tasks, and usually one task
corresponds to multiple agents. In reinforcement learning,
different tasks represent different training goals of agents
which is expressed in the form of reward function. Agents
with the same reward function are homogeneous agents.
When all agents are homogenous agents, we can directly use
MADDPG-PS; when there are heterogeneous agents, we can
first classify the agents and then use MADDPG-PS in each
class. The homogeneous agents still have different behaviors
because each agent receives different observations.

For each policy evolution, only one agent’s network param-
eters are calculated during homogeneous agents. Other homo-
geneous agents update the network parameters by sharing
parameters to avoid calculating the parameters of each agent’s
network, so as to improve the training efficiency and shorten
the training time.

Fig. 1 is the consumption time of MADDPG and
MDDPG-PS method in a network parameter update.
In Fig. 1 agentni represents class n and number i agent in
the same multi-agent scenario; tn represents the time required
to complete the calculation of updating the parameters of a
single agent’s network in the n class.

FIGURE 1. Time Consumption in a policy evolution in MADDPG and
MADDPG-PS.

When using MADDPG, the time spent in a policy
evolution is

tmaddpg = mt1 + lt2 + · · · + ktn (1)

When using MADDPG-PS, the time spent in a policy
evolution is

tmaddpg−ps =
n∑
i=1

ti, (2)

where, m, l, k represents the number of agents in different
classes. We can conclude that

tmaddpg−ps < tmaddpg. (3)

In the early stage of training, the agents is exploring the
environment, and has not yet formed an effective policy.
At this time, if the policies of the homogeneous agents are too
consistent, it will limit the exploratory ability of the agents,
thus affecting the training effect.

So in the initial stage of training, parameter asynchronous
sharing mechanism and parameter soft update mechanism are
introduced to encourage agents to explore in the initial stage.
With the evolution of policies, the consistency of network
parameters of homogeneous agents is gradually enhanced.

Fig. 2 is the framework of MADDPG-PS. MADDPG-PS
adopts the framework of centralized training and decen-
tralized execution. Centralized training ensures the markov
property of the whole multi-agent environment and the con-
vergence of method. Decentralized execution enables us to
design reward functions for different agents in the same
scenario.

The array (s, a, r, s′) is stored in the experience replay
buffer, where s = {s11, . . . , snk} represents a set of local
states that each agent faces; a = {a11, . . . , ank} represents
a set of actions taken by each agent according to the local
state it faces; r = {r11, . . . , rnk} represents a set of rewards
for each agent acting according to the local state it faces;
s′ = {s′11, . . . , s

′
nk} represents a set of the next local states

that each agent faces after taking action; a′ = {a′11, . . . , a
′
nk}

is generated by each agent’s target actor network according
to s′ in order to calculate Qtarget .
When training, agentij is randomly selected from agents in

the same class. Critic network of agentij uses observations set
s11, ..., snk and actions set a11, ..., ank generated by all agents
to fit Q value, and updates the parameters of actor network by
equation (4). µij(aij|oij) represents the deterministic strategy
of using actor network fitting.

∇θijJ (µij) = Es,a∼D[∇θijµij(aij|oij)∇aijQ
µ
i (s, a)|aij=µij(oij)]

(4)

The critic network parameters are updated by equation(5).

∇θ ′ij
L(θ ′ij) = Es,a,r,s′∼D[(Qµ

i (s
′, a|θ ′ij)− Qtarget )

2 ∂Q
µ
i

∂θ ′ij
] (5)

Qtarget = rij + γijQµ
′

(s′11, . . . , s
′
nk , a

′

11, ..., a
′
nk )|a′ij=µ′ij(o′ij)

(6)

where µ′ = {µθ ′′11 , . . . , µθ ′′nk }, θ
′′
ij represents the parameters

of the target critic network. The pseudo-code is shown in
appendix.
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FIGURE 2. The framework of MADDPG-PS.

B. PARAMETERS ASYNCHRONOUS SHARING AND
SOFT SHARING MECHANISM
In the DQN method, the target network is set up to break the
correlation during training data. The target network has the
same structure as the main network, but the parameters are
different. The parameters of the main network are assigned
to the target network after updating n steps, or the parameters
of the main network are assigned to the target network with a
certain weight.

In our MDDPG-PS method, we adopt a similar parame-
ter sharing mechanism for homogeneous agents. The main
purpose is to solve the problem of exploration-exploitation
trade-off, which is different from the purpose of updating the
parameters of the target network in the DQN method.

In the last section, we theoretically analyze the conver-
gence of homogeneous agents to the same policy. Therefore,
we encourage agents to fully explore the environment in the
early stage of training, and guide agents to converge to the
same strategy in the later stage of training.

For this purpose, we adopt parameters asynchronous shar-
ing mechanism and parameters soft sharing mechanism in
training.

In the training process, parameters are shared to other
homogeneous agents according to the weight W in N
timesteps at intervals, and exploration-exploitation trade-off
is addressed by adjusting N and W.

V. EXPERIMENTS
A. EXPERIMENTAL SETUP
1) MULTI-AGENT ENVIRONMENTS
We introduced three multi-agent environments shown in
Fig. 3 including collaborative tasks, competitive tasks, and
mixed tasks. These three scenarios are used in [24], [35],
which are multi-agent environments exposed on github by
OpenAI [36].

The first scenario is cooperative navigation, which is a
collaborative task. In this scenario, including N agents and
N landmarks, N agents must occupy all landmarks without
avoiding collisions.

The second scenario is predator-prey, which includes com-
petitive tasks and cooperative tasks, including N good agents,
M adversarial agents, and two obstacles. The good agent
moves faster and avoids the impact of adversarial agent.
Adversarial agent moves slower and always tries to hit the
good agent. The obstacle blocks the path of the agents.

The third scenario is cooperative-competitive chasing,
which includes collaborative task, confrontation task, and
communications. This scenario includes N good agents,
M adversarial agents, a food, and a foggy area. Good agents
move faster and hunt foods and avoid being bumped by
adversarial agents. The adversarial agent closely follows the
good agent. When the agent enters the foggy area, other
agents cannot obtain its information. There is a leader in the
adversarial agents that can get information about all agents
and can communicate with other adversarial agents to help
chase good agents.

2) HYPERPARAMETER
Four networks of the same structure are set up for each
agent, which are actor, critic, target-actor, and target-critic.
Each network has 2 fully connected layers with 64 units per
layer. The learning rate l is 0.01 and the discount factor γ
is 0.95. The target network parameters are updated once every
100 steps of training, and the target network soft update factor
p is 0.01.

Parameter sharing between homogenous agents, using
parameter asynchronous sharing mechanism and parameter
soft sharing mechanism. During the initial stage of training,
the parameters are shared to other homogenous agents once
every 100 steps, and gradually decrease with the increase
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FIGURE 3. (Left)Cooperative navigation (middle) predator-prey (Right)cooperative-competitive chasing.

FIGURE 4. Averaged episode reward of MADDPG and MADDPG-PS in cooperative navigation(left), predator prey(middle), and cooperative competitive
chasing(right).

of training episode. The soft parameters sharing factor α
between homogeneous agents is 0.95.

B. RESULT AND ANALYSIS
In order to evaluate the performance and training efficiency
of the MADDPG-PS algorithm, we tested it in three dif-
ferent scenarios: cooperative-navigation, predator-prey and
cooperative-competitive chasing. The computer we used for
experiments whose cache is 8G, CPU is core i7, and operating
system is Ubuntu 16.04. The code is implemented based on
python3.5 with Tensorflow 1.12.0 [37], Gym 0.10.9 [38] and
multi-agent particle environment.

In each scenario, we trained agents using the MADDPG
and MADDPG-PS methods, respectively. Every averaged
reward curve is computed 6 times with a continuous error
bar, illustrated in Fig. 4 and Fig. 7. To evaluate the training
efficiency, we calculated the average time spent per 1 × 103

episodes based on the total time of training, as illustrated in
Fig. 5 and Fig. 7.

1) WE EVALUATE THE PERFORMANCE OF MADDPG-PS
We set up these three scenarios. In cooperative-navigation, we
set three agents and three landmarks, and use the MADDPG
method and the MADDPG-PS method to train the agents
respectively. In predator-prey, there are three adversarial
agents and one good agent. The good agent always uses
MADDPG, and the three adversarial agents use MADDPG

FIGURE 5. The average consumption time of MADDPG and MADDPG-PS
in cooperative-navigation(left), predator-prey(middle), and
cooperative-competitive chasing(right).

and MADDPG-PS separately. In cooperation competition
chase, there are two good agents and four adversarial agents.
The adversarial agents have always used MADDPG and the
good agents use MADDPG and MADDPG-PS separately.

Fig. 4(left) illustrated that the MADDPG-PS and
MADDPG methods have the same performance in
cooperative-navigation. Fig. 4(mid) illustrated that the two
different methods have no impact on performance of
adversarial agents in predator-prey. As illustrated in the
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FIGURE 6. The average consumption time of MADDPG and MADDPG-PS
in cooperative-navigation with different number of agents.

Fig. 4(right), there is no difference in the performance of the
two methods in cooperation competition chase.

In the above three scenarios of different tasks, the per-
formance of the MADDPG-PS method is no different from
MADDPG method. The main reason is that in a multi-agent
environment, homogenous agents have the same reward func-
tion which directs agents to evolve the same policy. Parameter
sharing between homogenous agents does not affect the evo-
lution of agents’ policy, so the performance of MADDPG-PS
after final convergence is almost the same as the MADDPG
method.

2) WE EVALUATE THE TRAINING EFFICIENCY
OF MADDPG-PS
In the above three scenarios, we calculated the average time
consumed by training per 1000 episodes. As shown in Fig. 5,
the average training time of MADDPG-PS in cooperative-
navigation is reduced by 13.5%, in predator-prey by 17.1%,
and in cooperative-competitive chasing by 14%. Compared
with MADDPG, MADDPG-PS has higher training effi-
ciency. The main reason is that without violating the principle
of convergence of homogeneous agents to the same strategy,
the MADDPG-PS method utilizes parameter sharing among
homogeneous agents to replace the calculation of network

parameter updating for each agent in MADDPG, which saves
computing resources and improves training efficiency.

3) WE VERIFY THE EFFECTIVENESS OF MADDPG-PS
WHEN THE NUMBER OF AGENTS CHANGES
In cooperative navigation, the number of agents is set to 2,
4 and 5. MADDPG and MADDPG-PS are used for training
separately. Fig. 4(left) illustrated that the performance of
MADDPG-PS is basically the same as that of MADDPG.
However, when the number of MADDPG-PS agents is
2,3,4 and 5, the average training time per 1000 episodes
is reduced by 5.8%, 13.5%, 19.9% and 22%, as shown
in Figure 6. In cooperative navigation, there is only one
class of agents, and all agents are homogeneous agents.
MADDPG-PS algorithm mainly relies on parameter sharing
among homogeneous agents to improve training efficiency,
so its effectiveness is mainly related to the number of homo-
geneous agents. The more homogeneous agents are, the more
efficient the training of MADDPG-PS is compared with that
of MADDPG. Conversely, if there is only one agent in each
class, the training efficiency of MADDPG-PS is exactly the
same as that of MADDPG.

VI. DISCUSSION
We have shown that in multi-agent scenarios with dif-
ferent relationships (e.g., cooperation, competition, etc),
MADDPG-PS method can reduce the training time of agents
under the premise of ensuring the training effect, through
parameter sharing among homogeneous agents. And its effec-
tiveness is also mainly related to the number of homogeneous
agents. In the same scenario, the same reward function will
guide the homogenous agents to finally converge to the same
strategy. The parameter asynchronous sharing mechanism
can avoid the network parameter update calculation for each
agent under the premise of ensuring the agent exploration,
which is the theoretical guarantee for improving the training
efficiency. The sharing of parameters among homogeneous
agents does not change the evolution direction of their strate-
gies. This is the theoretical guarantee of MADDPG-PS per-
formance. The strategy fitting ability of the neural network
is proportional to the task complexity of the agent. The more
the number of hidden layers and nodes per layer, the stronger

FIGURE 7. Averaged episode reward of MADDPG and MADDPG-PS in cooperative-navigation with different number of agents.
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the strategy fitting ability of the neural network, but the
computational load of updating the network parameters also
increases. In the multi-agent scenarios with complex tasks,
it is significance to study the training efficiency of agents.
MADDPG-PS theoretically guarantees that the number of
networks requiring parameter update calculation is less than
MADDPG. So our method is more efficient than MADDPG
under the same hardware condition.

VII. CONCLUSION
Based on experimental results we claim that in multi-agent
environment, MADDPG-PS method can improve training
efficiency by sharing parameters among homogeneous agents
without affecting training performance. According to the net-
work structure of DDPG, each agent has a target-critic net-
work, a target-actor network, a critic network, and an actor
network. In our view, there are two future work: (1) analysis
of the impact of sharing only part of the network parameters
(e.g., the target network) on the agent; (2) analysis of the
influence of adding noise to the transmitted parameters on
agent exploration is analyzed.

APPENDIX
See Algorithm 1.

Algorithm 1 MADDPG via Parmeters Sharing
Initialize environment, agents network parmeters
for episode = 1 to max episode do
forstep = 1 to max step do
each agent k, ak = µxk
x’,r← (a1 . . . , an) atstatex
replay buffer D← (x,a,r,x’)
for class = 1 to sum class do

for each class, agent i = random(agentclass)
sample minibatch (x,a,r,x’) from D
update the critic network ∇θijL(θ ′ij) =
Es,a,r,s′−D[(Qµ

i (s
′

11, . . . , s
′
nk , a11, . . . , ank/θ

′
ij)

−Qtruget )2
∂Qµ

∂θ ′ij
]

update the actor network ∇θijJ (µij) =
Es,a ∼D[∇θijµij(aij|oij)∇aijQ

µ
i (s11, . . . , snk , a11,

. . . , ank )|aij = µj(oj)aij=µj(oj)]
if every n episodes then
for agent in class do
net var(agent) = net_parmeters(agent /) ∗a
+ net parmeters(agent)∗(l-a)

end for
end if

end for
end for

end for
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