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ABSTRACT Traffic loads in any 802.11 WLAN are distributed unevenly. This imbalance implies that some
access points (APs) suffer from traffic congestions, while others are underutilized. The unbalanced load
distributions cause annoying packet delay and throughput degradation which is unacceptable in current
and future networks. A load-balancing algorithm should solve two challenges. The first is to accurately
identify the APs’ loads to timely find traffic imbalances. And the second is to associate clients with APs
to achieve optimal proportional fairness intelligently. Network metrics such as throughput, delay, jitter, and
client amount cannot be used individually to accurately identify APs’ loads, because of the complexities
of wireless communications. Which metrics to use and how to combine those network metrics to represent
AP load are controversial. For intelligent association control, handoff delay (time to move a station from
an AP to another) may last for 6 seconds. If the algorithm designers do not consider this delay in their
optimization processes, unnecessary re-associations generated in their algorithm will offset the optimization
profits. In this paper, we propose novel learning-based methods to monitor the network load to discover real-
time load unbalances. We also model the load balancing problem as a utility maximization problem in which
costs caused by handoff delay are considered. Then we utilize discretized linear programming theory and
general assignment problem theory to solve it. We also compute the approximation ratio of our algorithm.
We implement the whole load balancing system and evaluate the performances which show that our method
outperforms a state-of-art algorithm in terms of throughput by up to12.7%, and it outperforms the received
signal strength indicator (RSSI) based method by up to 28.13%.

INDEX TERMS Load balancing, association control, load monitoring, general assignment problems.

I. INTRODUCTION
Traffic load in an 802.11 wireless LAN (WLAN) is unevenly
distributed because clients are free to associate with any
desired knownAP. This imbalance implies that someAPs suf-
fer from traffic congestion, while the others are underutilized.
The clients associated with overloaded APs will suffer from
lower throughput, longer delays, or longer jitters. Global load
balancing algorithms are needed for reasonably distribut-
ing network traffic to avoid these unnecessary performance
degradations. However, global scheduling in a distributed
802.11 WLAN is difficult [1], [2].

The associate editor coordinating the review of this manuscript and
approving it for publication was Muhammad Omer Farooq.

Software-defined networking (SDN), which enables the
controller to manage the whole network in a centralized
way, can be extended to implement global load balancing
algorithms [2]–[4]. In a software-defined wireless network
(SDWN), accurate and prompt load monitoring and logical
handover (re-associations) can avoid the performance degra-
dations. The essential problems for load balancing are load
monitoring and handover.

Accurately monitoring the load of an SDWN is diffi-
cult. First of all, there is no standard definition of when an
AP is considered overloaded. Furthermore, there is also no
easy way to obtain information about loads from APs [1].
Even if we can obtain all the desired metric measurements,
each of them can only reveal the interesting behavioral
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aspects of the network [5]. Previous research [5] also points
out that the right metrics should be intelligently combined to
represent the load of an AP. The word ‘‘right’’ means there is
a subset of metrics that can dominate the AP load. However,
the contents of this subset are currently controversial. Also,
our work in this paper shows that queue-related metrics have
strong relationships with AP load. At last, the load of an
AP may be affected by interfering signals from other devices
that work on ISM bands, such as Bluetooth, Zigbee, and
micro oven [6], [7]. When the content of the subset is con-
firmed, we can model the AP load.

Even if the metrics are specified, it is still challenging to
build a single unified load model. The relationships between
the AP load and these metrics are complex. Besides, various
metrics are naturally interdependent of each other [8], for
example, signal strength ratio (SNR) and RSSI are highly
correlated.

Machine learning method is a feasible way to combine
these metrics. Fuzzy logic methods are used to determine
AP load: combining signal strength and packet error in [9];
combining signal strength and traffic rate in [10]. However,
the subset they chose is not comprehensive, which limits the
performances of the machine learning methods.

In this paper, we implemented a load balancing system.
This system has accurate load monitoring and logical cor-
relation control algorithms. At first, we implement sample
modules in the kernel of OpenWRT [11] to obtain compre-
hensive real-time network metric measurements, especially
the queue-related ones. Then, we utilize a clustering algo-
rithm to cluster and label these real-time data. The labeled
data are classified by decision tree algorithms. The generated
decision trees are transmitted periodically to the APs.We also
implement custom SDN actions to parse and run these deci-
sion trees on APs. A decision tree can tell its AP whether it
is overloaded by observing current network states, and the
APs then message the controller their states. Next, when the
amount of overloaded APs exceeds the threshold, our algo-
rithm product a new handover assignment. We implement the
handover processes by using the CAPWAP-based [12] light
virtual access point (LVAP) of 5G-empower [13].

The association control is designed to associate the clients
with the APs to maximize the sum of the logarithms of the
actual rates (rates allocated minus handoff cost) of clients.
Achieving maximum utility in a WLAN is NP-hard [14].
We transform the initial problem (nonlinear programming)
to discretized linear programming (DLP). The DLP is solved
to obtain a fractional association solution (for example,
{0.1, 0.9, · · · , 0.8}), and then, each item of the solution is
rounded to an integral value.

Finally, we conduct practical experiments on our extended
5G-empower platform [13] to verify the performance of our
methods.

Overall, the key contributions of this paper are as follows:
1) Based on the comprehensive measurement study of

network load in WLAN, we proposed a learning-based
load monitoring method. Our method can adapt to

the dynamics of WLANs. Moreover, our method can
be used in real-time applications because it is imple-
mented on the AP to obtain the AP load instantly.
We believe these works have implications for all play-
ers in the mobile Internet ecosystem.

2) We formulate the association control problem, which
aims at high throughput, optimal proportional fairness
among users and minimum resource guarantees, under
a complex WLAN traffic. These factors are necessary
and significant for load balancing applications. To the
best of our knowledge, the association control scheme
taking account of all these factors has not been reported
yet in the literature.

3) We model the association control problem as a utility
maximization problem. Our algorithm can be divided
into two sub-algorithms. The first sub-algorithm is a
Linear Programming relaxation based-algorithm that
yields a fractional solution. The second sub-algorithm
is an extended general assignment problem (GAP)
algorithm which rounds the fractional solution into the
binary solution. And, we derive the approximation ratio
of our algorithm.

4) Our work shows that queue-related network metrics
have strong relationships with AP load, this is helpful
for the other load balancing researches in WLAN.

The paper is organized as follows: we generalize the related
works in §II. In §III we introduce the implementation of our
load balancing framework. In §IV, we introduce our works
on network metrics sampling and AP load modeling. In §V,
we analyze the association control problem and propose
an association algorithm with a good approximation ratio.
In §VI, we evaluate our algorithms and system; the results
show that they work well.

II. RELATED WORK
We focus on the definition of network load, the formulation
of delay-related network utility, the analysis of algorithm
and the implementation of load balancing application in this
paper. So, we introduce the related work from these four
aspects mentioned above.

A. AP LOAD DEFINITION
Load monitoring is vital for load monitoring applications.
Load monitoring modules are implemented to quantify the
AP loads by monitoring, processing, and computing network
metrics measurements. However, there are no standard def-
initions of the AP load. Which metrics to monitor and how
to combine these metrics are urgent problems. Based on the
used metrics and how the metrics are combined, we category
related works about AP load definition into three classes.

Some researches, especially the early ones, utilize a single
metric as the AP load. Table 1 shows the details of these
researches. Research work [5] points out that each metric can
only reveal the interesting behavioral aspects of the link. And
research work [1], [5] points out that multiple metrics should
be intelligently combined to yield an accurate representation
of the AP load.
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TABLE 1. Metrics used to model the AP load in previous researches.

AP load is also modeled as mathematical formulations
of multiple network metrics. In [17] load is defined as
T =

∑M
k=1 Tk , where M is the number of users, Tk = Si/r

where Si is the size of data arriving for user i and r is the trans-
mission rate of user i and AP j, this means the total amount
of time needed for current arriving data. In [18], the load is
defined as on_state_time/(off _state_time+on_state_time)∗
packet_size∗number_of _stations/inter_arrival_timewhich
means the data arriving rate. Research work [19] defined mac
efficiency to evaluate an AP association decision. The user
mac efficiency which is defined as

ai =
supi + s

down
i

min{1, ui + di}ri,ai
,

where Supi is the estimated up-link throughput of client i,
Sdowni is the estimated down-link throughput of client i, ui is
the up-link traffic probability while di is the one for down-
link, ri,a is the optimal data rate between client i and AP a.
Mac efficiency means the time needed for user i to transmit
its down-link and up-link data. Also, in this paper, the author
proposes and solves an algorithm that maximizes the mac-
efficiency-based utility function.

Machine learning is also used for load definition. In [9],
the fuzzy logic method is used to combine signal quality and
packet errors to get the AP load. In [20], the fuzzy logic
method is also used to combine signal strength, packet error,
and traffic rate to get the AP load.

B. HANDOFF DELAY HANDLING
As another essential problem of load balancing, associa-
tion control aims to intelligently associate clients with APs
to achieve optimal proportional fairness in a network of
APs [14], [21]–[23]. For associations between practical APs
and stations, handoff delays may last for 6 seconds [24]. If the
corresponding costs of handoff delays are not considered
when computing new associations, the outputs may contain
some unnecessary associations with profits less than their
handoff losses. Similar problems are considered in [24]–[26];
the author of [25] decreases the losses caused by channel
switching delay using two methods: increasing the dura-
tion between two schedules to diminish losses and increas-
ing wireless interfaces to guarantee connectivity. The author
of [26] utilizes a Markov decision process (MDP) to model
the throughputs (contain handoff cost) of all possible asso-
ciation schedules and get the optimal schedule. The one-AP-
multiple-interfaces architecture is used in [24] to alleviate the

handoff costs. For a one-AP-multiple-interfaces architecture,
each client can associate with multiple APs, and handoff
becomes a process that idles current associations and acti-
vates new associations without large time cost. These three
methods have drawbacks when used to solve the handoff cost
problem in this article; it is not practical to add a wireless
interface to a deployedWLAN, and if the controller’s compu-
tational load is supportable, then the MDP is a better choice.

C. THE PROBLEM FORMULATIONS AND ALGORITHM
ANALYSES
Most of the load balancing optimizations in WLAN are
NP-hard [14], [24]. A greedy algorithm is given in [24],
but they do not prove the time complexity of their algo-
rithm. The author in [27] analyzes the complexity of their
inter-packet delay minimization problem, and utilizes the
approximate algorithm in [28] to solve it. To model the load
balancing problem as utilization maximization problems is
another scheme. The load balancing utilization maximization
problem itself is a general assignment problem. So, the author
in [14] first transforms their initial non-linear problem to
be a linear problem and then utilizes the GAP algorithm
proposed in [29] to get the final solution. We consult the
non-linear to linear transformation in [14], but our problem is
different from theirs, and we use our customized assignment
(rounding) algorithm.

D. THE IMPLEMENTATIONS
Before the appearance of SDWN, it is not easy for a controller
to manage the handover behaviors of the wireless termina-
tion points. Control and Provisioning of Wireless Access
Points (CAPWAP) protocol can help the controller to do
these works. CAPWAP is a protocol that enables an access
controller (AC) to manage a collection of wireless termina-
tion points [12]. Authors of project ODIN [3] implement the
CAPWAPprotocol in their light virtual access points (LVAPs)
to enable support seamless handovers. Another open-source
SDN platform, 5G-empower proposed in [13] also imple-
ments the LVAP based on the click [45], and 5G-empower
supports seamless handovers too. The following two load
balancing researches are implemented on 5G-empower. The
authors of the research work [40] propose an SDN-based
solution for joint user association and channel assignment.
Their channel assignment aims to get the maximal number of
channels that can be used concurrently. Their user associa-
tion process monitors the average channel occupancy across
all the APs. If a significant difference between the average
channel occupancy and any occupancy ratios of the APs
is found, a user re-association process is triggered for the
affected AP. The re-association algorithm selects a neigh-
bor AP and migrates clients to it if the average occupancy can
be decreased. The authors of the research work [33] consider
the mobility statistics and throughput statistics in two of their
load balancing algorithms. Instead of monitoring and finding
the overloaded AP and then triggering handover processes,
their algorithm runs periodically to evenly distribute clients
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FIGURE 1. Overview of our load balancing platform.

among the APs. We extend the 5G-empower platform to
support our AP-based load monitoring application, and then
we implement our algorithms on the extended 5G-empower
platform.

III. OVERVIEW OF TRIGGER-BASED DYNAMIC
LOAD-BALANCING PLATFORM
In this section, we introduce the design of our load balanc-
ing platform. The introductions describe how our platform
monitors network loads and how it acts when network traffic
should be redistributed.

We implement a load balancing platform in this paper,
which is shown in Fig. 1. This platform consists of two parts,
and it has six functions. The two parts are the data plane part
and the logic plane part. The six functions are rate control,
data sampling, load monitoring, association control, overload
diagnosing, and related factors exploration. Rate control, data
sampling, and load monitoring work on the data plane part,
and the other three functions work on the logic plane part.
Custom messages are used for data and messages transmis-
sion between the data plane and logic plane, and there are
two kinds of custom messages: monitoring messages and
control messages. We introduce these items in the following
paragraphs.

A. DATA PLANE PART
We utilize the OpenFlow [46] protocol to convert commer-
cial APs into virtual switches (data planes). The OpenFlow
protocol needs two software tools: OpenWRT and Open
vSwitch [47]. OpenWRT is an open-source project for the
embedded operating system based on Linux. OpenWRT con-
verts commercial APs into Linux devices. Open vSwitch run-
ning on OpenWRT can convert the APs into virtual switches
and enable them to support the OpenFlow protocol. With the
OpenFlow protocol, the SDWN can be created.

Rate control, data sampling and load monitoring work on
the data plane part and we introduce them in the following
paragraphs.

TABLE 2. Categories, sources and sample rates of sampled information.

1) RATE CONTROL
We focus on TCP traffic in this paper. For TCP, windows
play an important role in rate control. There are three kinds of
windows for TCP (except BBR [48]): the congestion window
(CWND), the send window, and receive window (advertised
window in packets). The send window controls the data rate;
it must be smaller than the congestion window and the receive
window. Receive window can be modified on APs. So, if we
can get the congestion window, we can modify the receive
window to be a lower value which smaller than the congestion
window to limit the data rate (send windowmust smaller than
this modified value). Fortunately, authors of research work
in [49] propose a machine learning method that can infer the
congestion window on APs. We use this method in this paper
to control data rates.

2) DATA SAMPLING
We sample all the network metrics that may affect wireless
data communications. These measurements are comprised of
channel information, link information, beacon information,
queue information, packet information, and dropped packet
information. The locations where we implement sampling
modules and the corresponding sampling rates are listed
in Table 2. The precision of these measurements is high. The
link, channel, and queue information is sampled every 4 ms.
Beacon information varies slowly, so we sample it every
0.1 seconds. High precision samples cause a large amount of
data that needs to be transmitted to the controller in real-time,
so some redundancy reduction methods are used to remove
the redundancies.
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TABLE 3. Metrics chosen for learning.

Table 3 lists the sampled and computed network statistics.
These metrics are statistics computed from real-time sampled
data from APs.

Some details about these metrics are explained as follows:
1) Packets are mainly dropped by queue algorithms and

the Mac80211 driver. Drops by the queue algorithms
are called congestion drops, and those dropped by the
Mac80211 are called noncongestion drops.

2) There are five queues for the OpenWRT-based APs,
with almost no data in queues 1, 2, and 4. Data are
mainly transmitted in queue 3, and some data are
transmitted by queue 5 when a high arriving data rate
happens.

3) Expected_throughput are computed by Mac80211.
4) There are four kinds of channel utilities in this paper:

time_busy, time_rx, time_tx, and time_scan. time_busy
is a measure of how much time channel is in use during
the last 1000 milliseconds. time_rx is a measure of how
much time the current AP is receiving data during the
last 1000 milliseconds. time_tx is a measure of how
much time the current AP is transmitting data during
the last 1000 milliseconds. time_scan is a measure of
howmuch time current AP is scanning channels during
the last 1000 milliseconds.

3) LOAD MONITORING
In a typical SDWN, a controller controls several wired con-
nected APs, the wireless termination points are connected
with these APs. The data transmission performance is impor-
tant for SDWN, and re-associations are needed when the
traffic is severely uneven. We implement the load monitoring
module to characterize the AP’s data transmission perfor-
mance and trigger re-associations. The details of the load
monitoring module will be introduced in §IV.

4) CUSTOM MESSAGES AND ACTIONS
We implement the monitoring messages carry real-time sam-
pled data to collectors and the controller; we extend the
monitoring message in 5G-empower to do these works.
We also implement a control message to transmit the

generated decision trees to the APs and feedback the
transmission results. The overheads of these messages are
described in §IV. We also implement custom actions to pro-
cess the control messages and maintain trees (create, insert,
delete, update, search.).

B. LOGIC PLANE PART
The logic plane is the ‘‘brain’’ of our platform. As shown
in Fig. 1: association control, overload diagnosing, related
factors exploration, real-time data receiving, and data prepro-
cessing are working on it. We will introduce these functional
modules in the following paragraphs.

1) DATA RECEIVING AND PROCESSING
Typical SDWN will produce large amounts of data samples
that should be processed and transmitted in real-time to other
functions. It is challenging to guarantee time performance
when the scale of the WLAN is big enough to cause abun-
dant computational loads. There are several kinds of com-
putations. For example, maintaining data to compute link
statistics, packet statistics, channel statistics, packet statistics;
merging these statistics to be useful data items, and prepro-
cessing these data items. To guarantee time performance,
we code all the data receiving modules with the C language,
and apply numerous optimization methods in these modules.

2) ASSOCIATION CONTROL
Based on Algorithm 2, association control computes new
associations for all the clients when the amount of overloaded
APs exceeds a threshold. The details of association control
will be described in V.

3) OVERLOAD DIAGNOSING
This function is designed to diagnose the overload reasons,
i.e., to find the patterns of network metrics when overloaded
events happen. Additionally, decision trees that recognize
network state on APs are the outputs of this function; the
details will be introduced in §IV.

4) RELATED FACTORS EXPLORATION
This function is designed to explore the relationships between
AP load and metrics, and Table 3 lists the results. The metrics
without effects (on load) will be removed from information
sampling. The details will be introduced in §IV.

IV. LOAD MONITORING
Load monitoring tells the administrator whether the AP is in
the overloaded state in which throughput degradation, delay
increasing, and jitter increasing will happen. Load monitor-
ing is to forecast or deduce the data transmission states by
observing current network metrics. The value of load belongs
to a load state set, which is a set of labeled states. And our
load monitoring method is based on a set of rules. These
rules output the AP load value after the current network
measurements are inputted. This section aims to get these
rules.
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TABLE 4. The details of the collected data.

A. LARGE-SCALE MEASUREMENT STUDY
We deployed 8 APs in the fourth-floor of Zonghe building
of the Harbin Institute of Technology and 12 APs in the
library of the Harbin Institute of Technology. We did not set
passwords for these APs, and all the potential users nearby
can utilize our APs to access the Internet for free. The metrics
in Table 3 are sampled when there exist users in our networks.
This data sampling program lasted for about two months.
We collected about 607.3 GB data. The details of these data
are listed in table 8.

Except for these historical training data, our system gener-
ates real-time training data when running too. We utilize all
the data for the analysis in §IV-B and §IV-C.

1) THE PREPROCESSING PROCESSES
The main challenge for our load monitoring is data pre-
processing. This challenge comes from the following three
aspects: a)

1) Different sample rates of the data. Different kinds of
have their varying rates. Mac80211’registers update
different wireless information at different rates. Queue
statistics fluctuate in the OpenWRT system when data
bursts happen. The packet dropping information can be
triggered by congestion or non-congestion events. Bea-
con information updates every 0.1 seconds. Therefore,
we sample these data with different rates as described
in Table 2.

2) The out-sequencemeasurement problem, i.e., the trans-
mission delays of data samples between different APs
to the controller are not the same.

3) The class imbalance problem. The number of samples
belongs to different classes are vastly different.

To solve the sample rate and out-sequence problem, we add
the µs level time label to each data sample. We also imple-
ment data cache for each data source and re-sample the data as
we need to obtain real-time training data items. We solve the
imbalance problem with re-sampling methods. For example,
the data amounts for class A, B, C and D are 3000, 4000,
5000 and 7000; we will sample only 3000 items randomly
from set B, C, and D.

B. THE RELATIONSHIPS BETWEEN THE AP LOAD AND
THE DATA TRANSMISSION PERFORMANCES
Two typical data transmission performances of the APs,
the throughput statistics, and the queue statistics (which
determines the delay and jitter performances), have
qualitative relationships with the other network metrics

measurements. As the prediction of the data transmission
performance, the AP load should also have qualitative rela-
tionships with the network metrics measurements. And when
the AP is in the overloaded state, some of its network metric
measurements should also be in the overloaded state. So,
we label the raw training data by the K-means method and
then learn the qualitative relationships by the decision tree
method. The analysis above is the logic of this section.

First of all, the AP load should be modeled with multiple
network metrics. As described in §II, a single network metric
is not accurate to be used as the AP load. Moreover, which
network metrics should be chosen to model the AP load are
controversial; this is also described in §II. At last, it is difficult
to model the AP load as a single unified function. The natural
interdependences among the network metrics are difficult to
handle when modeling the AP load [8].

Since the AP load should be modeled with multiple net-
work metrics; we show that there exist qualitative relation-
ships between the throughput and related network metrics.
Firstly, the throughput has strong monotonic relationships
with the other network metrics, and it can be predicted by
them. Secondly, previous research [8] points out that the
Kendall index between delay and channel utilization is as
high as 0.886, and the corresponding information gain (IG)
is 0.1708. Kendall and IG are complementary. The Kendall
score quantifies the monotone relationships, and the IG quan-
tifies how well we can predict the object item [8]. In this
section, we also implement experiments to show the quali-
tative relationships between the queue backlog and the other
network metric measurements, and the relationships between
the throughput and the other network metric measurements.

The feature selection in this paper is based on the
Kendall correlation and IG values. We remove the
expected_throughput, time_scan, and inactive_time features
from the training set because their Kendall correlation and
IG is too small (approach to zero) when computing with
throughput. The rest of the features in Table 3 are used in
following K-means and decision tree algorithms.

For throughput prediction, we classify the throughput into
four classes and predict them by using the decision tree
algorithmwith other metric measurements. The resulting pre-
cision, recall, and F-score of each class are shown in Table 5;
the mean and standard deviation (SD) of the cross-validation
score (CS) are also shown in this table. The F-score for this
4-class classifier is acceptable [8], [51]; additionally,
the results of the cross-validation scores indicate that there
exist strong qualitative relationships between the throughput
and the other network metric measurements.

For queue backlog prediction, we classify the backlogs
into four classes and predict it by decision tree with the
other metrics. The results are as in Table 5. The results are
similar to those of throughput prediction, i.e., there exist
strong qualitative relationships between the queue backlog
and the other network metric measurements.

Now, we learn that delay, jitter (determined by the queue
backlog) and throughput have strong qualitative relationships
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FIGURE 2. Decision tree generated on the controller and running on the APs.

TABLE 5. Performances of the 4-class throughput and backlog classifiers.

with the other network metric measurements. As the metric
to represent the delay performance, jitter performance, and
the throughput performance of data transmission, the AP load
must also have qualitative relationships with the network
metric measurements.

C. TRAINING SET LABELING AND LEARNING
Because of the qualitative relationships, when an AP is in
the ‘‘overloaded’’ state, most of the metrics should have
either significantly high values or significantly low values.
Therefore, we utilize clustering algorithms on historical data
to characterize the classes of network states. Among the
output classes, the one with extreme ‘‘bad’’ values must be
the ‘‘overloaded’’ state. As in the experiments of throughput
and queue backlog, a four-class solution is suitable for the
AP load. In [8], network delays are categorized into four
classes: ‘‘EX fast’’, ‘‘fast’’, ‘‘slow’’, and ‘‘EX slow’’. Analo-
gously, we categorize the AP load into four classes: ‘‘light’’,
‘‘well’’, ‘‘heavy’’ and ‘‘overloaded’’. Among these four load
states, the only one we need is ‘‘overloaded’’.

We utilize the K-means algorithm to cluster the pre-
processed datasets. We remove the expected_throughput,
time_scan, and inactive_time features from the training
set because their Kendall correlation and IG is too small
(approach to zero) when computing with throughput and
queue backlog. So, the rest of the features in Table 3 are used
in the following K-means, decision tree, and random forest

algorithms. The outputs of clustering are high-dimensional
vectors and challenging to be recognized. The decision tree
algorithm can aid in distinguishing them.

When computing the decision tree of the AP load,
we only utilize the latest 10000 items of the training data,
i.e., the window size is 10000. Historical data will offset
the importance of the latest training data if all the data
are used. We employ this window in the learning processes
in §IV-D and §VI. Based on the learning processes,
we noticed that the generated decision trees were relatively
stable. The window size decides this stability; large windows
emphasize the historical experiences while small windows
care more about the network dynamics. The rationality of this
window size will be explored in our future research works.

The decision tree is generated and update 1time/s. The
newly generated training items are added to the data set
to learn the new decision tree. The new tree is transmitted
to the APs by the control messages and updated by our
custom APIs.

D. PERFORMANCE EVALUATION OF THE DECISION-TREE
BASED LOAD MONITORING ALGORITHM
As an example, we draw a 4-depth decision tree as in Fig. 2.
There are only several metrics shown in this figure; this is
because the height of the tree is limited by space. The scale
of the practical decision trees that run on AP has higher depth.
The decision tree puts important metrics near the root; metrics
close to the root have more effect on AP load. From Fig. 2,
we find that the backlog of queue 3 and channel busy time are
the two most important metrics. The time_rx, bytes_5, and
sta_amount impact low-level branches. Other radio factors
that do not show up play a relatively less important role for
AP load.

To explore the qualitative relationships between AP load
and the metric measurements, we drop the data of ‘‘well’’
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TABLE 6. Kendall index and IG index between AP load and network
metrics.

and ‘‘heavy’’; and label the ‘‘light’’ and ‘‘overloaded’’ ones.
We compute the Kendall value and IG value over the AP load
with the remained data. The results of the features with
significant values are shown in Table 6. These results indicate
that the queue backlog, channel utilization, arrive rate of
the queue, and the transmit rate of the queue have strong
qualitative relationships with the AP load.

It is easy to understand that backlog_3 acts as the most
critical metric for characterizing the AP load. The third queue
is the primary data queue in OpenWRT, and the backlog
only appears when data burst happens and data can not be
transmitted timely. Also, the backlog means the packets are
undergoing extra queuing delays. Except for the backlog of
queue 3, the channel utilization (time_busy in this article) is
more important than the other metrics. This result is similar
to the conclusion in the research work [8], which shows that
channel utilization is the most critical metric for character-
izing the packet delay. Of course, the queue-related metrics
measurements are not used in [8]. The throughput perfor-
mance (bytes_3 in this article) is one of data transmission
performances, so it is reasonable that the throughput acts the
third important metric is also reasonable.

As a contrast method to the decision tree algorithm, we also
utilize the random forest algorithm to learn the qualitative
relationships between the AP load and the network metric
measurements. Table 7 lists the performance comparisons of
the decision tree and random forest algorithms. Although the
amount of classes is four, the precisions are acceptable [51].
The performances of the random forest algorithm are slightly
better than the ones of the decision tree algorithm.

The SSE (Error Sum of Squares) is used to evaluate the
performance of the clustering algorithms. The smaller the
SSE value, the closer the data points are to their centroids,
and the better the clustering effect. One way to reduce
SSE is to increase the number of K, but this violates the orig-
inal intention of our clustering. In order to improve the per-
formance of the K-means algorithm. We conduct a K-means
(K = 2) process on the cluster with the largest SSE to divide
it into two clusters. Then we merge the two clusters with the
smallest SSEs into one cluster.

E. DECISION TREE ALGORITHM ON THE APS
We choose the decision tree algorithm as the classification
method for two reasons. The first is it can explore and draw

TABLE 7. The AP load prediction performances of the 4-class classifiers.

the relationships between network metrics and these classes.
Besides the Kendall and IG indexes, the output of the decision
tree can also be seen as quantitative relationships between
AP load and network metrics. The second is the decision
tree rules are a set of if-else items that can be implemented
on APs. Load monitoring on APs significant for promptly
deducing or predicting the overloaded states.This method
avoids the transmission delays of both the data samples and
the feedback results.

Algorithm 1 The Load Monitoring Algorithm
Require: None (no inputs).
Ensure: Load states.

while 1 do
ret[] = recvfrom(skfd, ...);
fstate = get_state(ret);
load = bst_search(fstate);
if load == ‘‘overloaded’’ then
message_controller();

else
usleep(100);

end if
end while

The decision tree is transmitted from the controller to
the corresponding AP. We implement a parsing function to
decode received information and create the decision tree on
the AP. After the decision tree is implemented on the AP,
the primary challenge of load monitoring is on how to obtain
the network metric measurements. The decision tree is run-
ning in the user space, while the data sampling modules are
running in the kernel space. We chose the socket communica-
tion approach to transmit the network metric measurements,
i.e., the recvfrom(...) function in Algorithm 1. The algorithm
periodically formats the network metric measurements and
input them into the searching function of the decision tree,
and the output is the AP load. The algorithm will message the
controller if the result is ‘‘overloaded’’. Algorithm 1 describes
the load monitoring processes.

F. THE OVERLOADS OF LOAD MONITORING
We analyze the overheads of data sampling in the network.
The overheads of data sampling comes from two aspects: the
sampling overhead, and transmission overhead. We sample
network states by using global variables, the overhead of
sampling comes from the functions that maintain these global
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variables. We observed that the utilization of NetGear 4300’s
CPU is under 12% when AP is in full load state. Table 2
lists the sampled measurements, and it shows that link info,
channel info, and queue info have the highest sample rate.
We now calculate the total data rate for all the real-time
data samples. Let z is the number of stations associated with
the AP. x is the varying frequency for the queue process. y is
the number of neighbors APs. η is the retransmission ratio.
The sample rates are listed in Table 2. The data length for
each sample element of these data are (link, 64B), (channel,
64B), (beacon, 32B), (drop, 48B), (queue, 48B). The data rate
of sampling data rs is as the following

rs =
(64 ∗ z+ 64+ 48 ∗ x) ∗ 250+ 32 ∗ 10 ∗ y+ 48 ∗ η

1024
= 15.625z+ 15.625+ 11.7186x + 0.315y+ 0.0468η.

Suppose z = 10, x = 1, y = 20 and η = 0.3, rs =
189.9076 kByte/s. The realistic rate for the data samples
is much lower than rs, which is because of three reasons.
The first is our redundancy minimization module. This mod-
ule compares the current data item with the previous one.
Present data item will not be transmitted if they are the same,
and the receiver side will recover it by using the past data
item. The second is that the queue statistics infrequently
change when there is no data burst. So, there is not much
queue info that needs to be transmitted. The third is that
the coherence time is longer than 4 ms (1000 / 250), dur-
ing the coherence time, the channel information and link
information are assumed to be constants. The coherence time
for 802.11 WLAN is approximately 25.3885 ms when the
velocity of the client is 1 m/s [50]. Even if rs is 189.9076 kB,
it is also sustainable in Ethernet. Moreover, when the number
of clients increases, we could also set multiple data collectors
to receive and preprocess the data samples.

V. ASSOCIATION CONTROL
When the load-monitoring algorithm alerts a network traffic
load imbalance, the loads should be distributed efficiently
and fairly among APs of the network to obtain high QoE
performance. The efficiencies and fairness of the network are
usually defined as utilities. To maximize the overall utilities
of IEEE 802.11 WLAN is NP-hard [14], and it is challenging
to design an algorithm with an acceptable approximation
ratio. In this section, we introduce how we model the load
balancing problem as a utility-maximization problem and
how we solve that problem using an approximation method.

The notations are summarized in Table 8. We consider an
SDWN in which a controller controls multiple wired associ-
ated APs. The set of APs is denoted as A = {a1, a2, . . . , am},
where m = |A| is the amount of APs. Each AP accesses the
Internet via Ethernet and provides wireless access services to
associated clients via the 802.11 protocol. The set of clients is
U = {u1, u2, . . . , un}, where n = |U | is the amount of clients.
Variable rj is the data rate of client j. Binary variable xij = 1 if
client j is associated with AP i and 0 if they are not associated.
Fractional variable yij ∈ [0, 1] denotes the fraction of time

TABLE 8. Notations used in this paper.

client j occupies the channels for transmission. Combinations
of xij and yij are the outputs of the AP selection algorithm.

Before introducing association control, we first introduce
some instructions about how the association algorithm runs.

1) Trigger: The AP announces the controller when the
output of its decision tree is ‘‘overloaded’’. When
the amount of overloaded APs exceeds a threshold,
a trigger is generated. If there is a trigger, the con-
troller should consider running the association control
algorithm.

2) Interval of algorithms: The minimal interval between
two re-associations is set to T1. If there is a trigger at
time t , and the time when the last association control
algorithm ran is tb, and if (t− tb) ≥ T1, this new trigger
will be applied. Run the association control algorithm
to generate new associations otherwise.

3) New association: We assume that xij changes when
outputs (new associations) of the association control
algorithm arrive at the APs.

4) Rate control: We guarantee yij by controlling the client
data rate; the process is introduced in §III.

5) Minimum channel usage: We assume yij ≥ β, i.e., each
client can obtain channel occupancy time at least β.

For client j, the current schedule is xij(t), and the schedule
in the next period is xi′j(t + 1); if i′ 6= i, then a handoff cost d
will be caused. Thus, the utility of client j is:

bj = xij
(
yijRij − d + xij(t)d

)
, (1)

where Rij is the theoretical data rate computed with the
Shannon-Hartley equation [52]. The independent variables of
Shannon-Hartley equation are SINR and bandwidth collected
by the sampling module.

The utility of the whole WLAN is

forigin =
∑
j∈U

∑
i∈A

rj log bj. (2)

To maximize forigin is the utility-maximization problem of
efficiencies and fairnesses (UMPEF); and UMPEF has been
proven to be NP-hard in [14] when the handoff cost d is zero.

Obviously, UMPEF is also not convex when d 6= 0 . Thus,
traditional methods that solve the convex problem and then
round the fractional solutions to binary values are not suitable
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for UMPEF. However, UMPEF still belongs to the general
assignment problems. As explained in [29], the key to the
general assignment problem is to find a proper method to
solve the origin problem and then utilize rounding methods
to round these fractional values back into binary values.
A feasible way for UMPEF is trying to solve it by discretized
linear programing and then round the solution into an binary
one.

The first step of the approximation is to move xij out of the
log function. Because xij ∈ {0, 1} , and

∑
i∈A xij = 1, we have

the following equation:

log
∑
i∈A

xij
(
Rijyij − d + xij(t)d

)
=

∑
i∈A

xij log
(
Rijyij − d + xij(t)d

)
. (3)

Here, the utility item Rijyij−d is larger than 0, this is because
the object of optimization is to maximize the total utility, thus
a client changes its associated AP only when the loss is less
than the gain. Thus, the objective function (2) changes to

fnlp(x, y) =
∑
j∈U

∑
i∈A

rjxij log
(
Rijyij − d + xij(t)d

)
. (4)

Add the constraints to (4), and we have the following:

max fnlp(x, y) (5)

s.t.
∑
i∈A

xij = 1, ∀j ∈ U (6)∑
j∈U

xij = 1, ∀i ∈ A (7)

∑
j∈U

yijxij ≤ 1, ∀i ∈ A (8)

∑
i∈A

xijRij ≥ β, ∀j ∈ U (9)

yij ∈ [0, 1], ∀i ∈ A,∀j ∈ U (10)

xij ∈ {0, 1}, ∀i ∈ A,∀j ∈ U . (11)

As the third instruction in the previous paragraph, the associa-
tion between an AP and each of its corresponding clients lasts
for the entire scheduling period; we utilize constraint (7) to
represent this constraint. Constraint (8) means the access time
allocated to all the associated clients should be less than 1.
Constraint (9) arises because theminimum throughput should
be guaranteed for each client’s applications, and it is logical
for data flows of applications to have aminimum data rate; for
example, a video stream of 20 KB/s will make you crazy. This
nonlinear programming (NLP) optimization is also difficult
to solve because it imposes an integral constraint on xij.
Although this NLP is challenging to be solved, resources

should be fairly allocated to different clients as fairness is
considered when problem formulation even when there is
only one AP. If there is only a single AP, this nonlinear
programming problem can be solved by the Lagrange mul-
tiplier method. In this solution, the AP divides the channel
occupancy time based on proportional fairness and data rates

of clients. In addition, even if |A| 6= 1, the AP also allocates
channel occupancy time based on proportional fairness and
data rate.

Lemma 1: If |A| = 1, then y1j =
rj+rj

∑
j∈U

K
R1j∑

j∈U rj
−

K
R1j
, where

K = d ∗ xij(t)− d.
Proof: Substituting m = 1 into constraint (7) and (8),

and we have x1j = 1 and
∑

j∈U y1j ≤ 1; substituting these
two into (5) and utilizing the Lagrange multiplier method,
we have the following:

∑
j∈U

rj log
(
R1jy1j + K

)
− λ

∑
j∈U

y1j − 1

 . (12)

The partial derivative of (12) with respect to y1j is

rjR1j
R1jy1j + K

= λ. (13)

Solving this function, we can obtain yij as follows:

y1j =
(
rjR1j
λ
− K

)
1
R1j
. (14)

Taking the partial derivative of (12) with respect to λ, we have
the following: ∑

j∈U

y1j = 1. (15)

Substituting y1j in (14) into (15), we have the following:

∑
j∈U

((
rjR1j
λ
− K

)
1
R1j

)
= 1. (16)

Solving (16), we can obtain λ as the following:

λ =

∑
j∈U rj

1+
∑

j∈U
K
R1j

. (17)

Substituting (17) into (14), and we have the following:

y1j =
rj + rj

∑
j∈U

K
R1j∑

j∈U rj
−

K
R1j
. (18)

�
From the structure of (18), we can see for a fixed integral

solution, channel occupancy time allocation is proportional
to fairness with respect to rj if K = 0. The allocated chan-
nel occupancy times are not affected by handoff cost d for
the clients that do not change AP. However, new associated
clients will be affected by handoff delay.

When |A| > 1, NLP (5) is difficult to be solved because
of the integral constraint on xij. This problem is similar to the
general allocation problem: relax the constraint from xij ∈
{0, 1} to fractional xij ∈ [0, 1] can make the original problem
solvable.
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A. DISCRETIZED LINEAR FORMULATION
For each schedule epoch of NLP (5), we split it into D time
slots and link eij using zijτ time slots; yij = τ/D. A large D =
(1+ δ)

∑
j∈U rj/min{rj|j ∈ U} will be chosen to guarantee

the solution of the discretized linear formulation to converge
to the solution of nonlinear programming (5). By using these
transformations, the origin NLP problem (5) changes to the
following discretized linear formulation:

fdlp(zijτ ) =
∑
j∈U

∑
i∈A

D∑
τ=1

zijτ rj log
(
Rijτ
D
+ K

)
. (19)

The whole discretized linear formulation with constraints
is as follows:

max fdlp(zijτ ) (20)

s.t.
∑
i∈A

D∑
τ=1

zijτ = 1, ∀j ∈ U (21)

∑
j∈U

D∑
τ=1

zijτ = 1, ∀i ∈ A (22)

∑
j∈U

D∑
τ=1

τ

D
zijτ ≤ 1, ∀i ∈ A (23)

∑
i∈A

D∑
τ=1

zijτRij ≥ β, ∀j ∈ U (24)

zijτ ∈ {0, 1}, ∀i ∈ A,∀j ∈ U . (25)

where the conditions are equivalent to conditions of nonlin-
ear programming (5). Constraint (25) is different from (10)
and (11). This is because we use

∑D
τ=1 zijτ to instead of

xij to relax the integral constraint of xij, and
∑D
τ=1 zijτ ≤ 1

corresponds to (11). Obviously yij = τ/D and τ/D ∈ [0, 1],
this corresponds to (10).

Discretized linear programming (20) is easily solved. Sup-
pose the solution of NLP (5) is (x, y), and the solution of DLP
is z; there should be some relationships between (x, y) and z.
In following paragraphs we will analyze these relationships.
Two lemmata will be proposed to show these relationships.
These two lemmas are Lemma 2 and Lemma 35. First,
we introduce Lemma 2.
Lemma 2: For every integer solution (x, y) of NLP (5),

we have

fnlp(x, y/2) ≤ fdlp(z),

where z is a solution of DLP (20) that satisfies (32).
Proof: From the structure of (19) and (32), we can obtain

that z is a solution of fdlp.
To let Lemma 2 be valid, we need the following condition:

yij
1+ δ

+ K ≤ b
τ

D
c + K . (26)

Deducting K on both sides, and we have byijDc/D ≥

yij/1+ δ. Let F = D ∗ yij so that τ = bFc, and we obtain the

following:

bFc ≥
F

1+ δ
. (27)

Thus, if we want Lemma 2 to be valid, inequality (27) should
be valid.
Lemma 3: If δ ≥ 1, then inequality (27) is valid.
Proof: We assume (x, y) is an optimal solution.

By Lemma 1, the optimal yij is as the following:

yij =
rjxij + rjxij

∑
j∈U

K
Rij∑

j′∈U rj′xij′
−

K
Rij
. (28)

If xij = 0, then F = 0, and inequality (27) is valid.
If xij = 1, we will prove that inequality (27) is also

valid. Because K = d − xij(t)d , we can obtain K ≤ 0.
Substituting (28) into F = D ∗ yij and using the condition
K ≤ 0, then we have the following:

F =

(
rj(1+

∑
j∈U

K
Rij
)∑

j′∈U rj′xij′
−

K
Rij

)
∗ D.

Let D =
∑

j∈U rj
min{rj+rj

∑
j∈U

K
Rij
|j∈U}

and we have the following:

F ≥

 rj
(
1+

∑
j∈U

K
Rij

)
∑

j′∈U rj′xij′

 ∗ D (29)

≥

rj(1+
∑

j∈U
K
Rij
)
∑

j∈U rj

min{rj + rj
∑

j∈U
K
Rij
|j ∈ U}

∑
j′∈U rj′xij′

(30)

≥ 1. (31)

Obviously, when F ≥ 1, δ = 1 can guarantee that Lemma 3
is valid. And the proof of Lemma 3 is complete. �
By using Lemma 3, we can prove that (26) is valid, and the

proof of Lemma 2 is complete. �
Now, we have the lower-bound performance of DLP (20),

then, we will compute the higher-bound performance
of DLP (20) in following paragraphs.

We can obtain a solution (x ′, y′) from DLP’s solution z.

x ′ij :=
D∑
τ=1

zijτ , (32)

y′ij :=

∑D
τ=1

τ
D zijτ

x ′ij
, (33)

uij := rj log
(
Rijy′ij + d − dx

′
ij(t)

)
. (34)

It is straightforward that (x ′, y′) is a fractional solution of
NLP (5). We prove that the solution of NLP (5) is no worse
than the solution of DLP (20):
Lemma 4: Let (x ′, y′) is a fractional solution for NLP (5)

that is defined in (32) and (33); z can be derived from (32),
then the following is valid:

fnlp(x ′, y′) ≥ fdlp(z).
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Proof: Substituting (32) and (33) into (34), and we can
obtain

uij = rj log

∑D
τ=1 zijτ

(
τRij
D − d + x

′
ij(t)d

)
∑D
τ=1 zijτ


≥ rj

∑D
τ=1 zijτ log

(
τRij
D − d + x

′
ij(t)d

)
∑D
τ=1 zijτ

.

Substituting uij into fnlp(x ′, y′) =
∑

i,j x
′
ijuij, and we obtain,

fnlp(x ′, y′) =
∑
j∈U

∑
i∈A

x ′ijuij (35)

≥

∑
j∈U

∑
i∈A

x ′ijrj

∑D
τ=1 zijτ log

(
τRij
D − d+x

′
ij(t)d

)
∑D
τ=1 zijτ

.

(36)

By definition of xij and making use of the concavity of the
logarithm function, we have the following:

fdlp(z) =
∑
j∈U

∑
i∈A

D∑
τ=1

rjzijτ log
(
τRij
D
− d + x ′ij(t)d

)

=

∑
j∈U

∑
i∈A

x ′ijrj

∑D
τ=1 zijτ log

(
τRij
D − d + x

′
ij(t)d

)
∑D
τ=1 zijτ

.

Thus, by using (36) we can obtain the following:

fdlp(z) ≤ fnlp(x ′, y′)

The proof is complete. �
Solution (x ′, y′) is recovered from DLP’s solution z. x ′ij is

still a decimal in [0, 1]. It should be rounded to a nearby
binary value. We extend the rounding algorithm proposed
in [29] to do this work.

B. ROUNDING
The GAP can be viewed as the following problems: each job
is to be processed by exactly one machine, and processing
job j on machine i requires time yij and incurs a cost of cij.
Each machine i is available for Ti time units, and the final
objective is tominimize the total cost incurred. A polynomial-
time rounding algorithm proposed in [29] finds a schedule of
cost of at most C , where each machine i is used at most 2Ti
time units.

The GAP is as the following:∑
j∈U

∑
i∈A

uijxij ≤ C (37)

s.t.
∑
i∈A

xij = 1, ∀j ∈ U (38)∑
j∈U

yijxij ≤ Ti, ∀i ∈ A. (39)

Lemma 5: If GAP has a feasible solution, then there exists
a schedule that has

∑
j∈U y

′
ijxij ≤ 2Ti and cost of at most C.

Proof: The proof is in [29]. �

In this paper, we add a constraint (42) to guarantee the
minimum throughput each client can obtain. We prove that
this condition does not impact the time performance of
the rounding algorithm proposed in [29]. This modified
GAP (MGAP) formulation is as the following:

max
∑
j∈U

∑
i∈A

uijxij (40)

s.t.
∑
i∈A

xij = 1, ∀j ∈ U (41)∑
i∈A

Rijxij ≥ β, ∀j ∈ U (42)∑
j∈U

yijxij ≤ Ti, ∀i ∈ A. (43)

Lemma 6: If MGAP has a feasible solution, then there
exists a schedule that has

∑
j∈U yijxij ≤ 2Ti.

Proof: Changing step 2 of the algorithm of theorem 2.1
in [29] from ‘‘Find a minimum-cost (integral) matching M
that exactly matches all job nodes in B(x)’’ to ‘‘Find a
maximum-utility (integral) matching M that exactly matches
all job nodes in B(x) and

∑
i∈A Rij ≥ β’’; other parts of

the proof remain unchanged. Finding ‘‘minimum-cost’’ has
the same complexity as finding ‘‘maximum-utility’’, and
the total complexity remains unchanged. In addition, this
‘‘
∑

i∈A Rij ≥ β’’ will not change the complexity because it
can be done in O(|A|) time. �
Lemma 7: Let (x, y) be a solution of NLP problem (5),

and x̂ is a solution of MGAP (40) whose variable: {xij}, {yij}
and {uij} come from (32), (33) and (34) . Then, we have
fnlp(x, y) = fmgap(x), and fmgap(x̂) ≥ fmgap(x).

Proof: Let uij inMGAP (40) be rj log(Rijyij−d+xij(t)d),
and the aims of both NLP (5) and MGAP (40) are the same.
Let Ti = 1 in MGAP (40), and all the constraints of NLP (5)
and MGAP (40) are the same. Thus, a solution of NLP must
be a solution of MGAP, and a solution of MGAP must also
be a solution of NLP.

The step 2 of the proof ofMGAP (40) is ‘‘Find amaximum-
utility (integral) matching M that exactly matches all job
nodes in B(x) and

∑
i∈A Rij ≥ β.’’ This corresponds to ‘‘Find

a matching M that exactly matches all job nodes in B(x) and∑
i∈A Rij ≥ β.’’ Thus, fmgap(x̂) ≥ fmgap(x). �
We utilize MGAP as our rounding algorithm; as explained

in previous paragraphs, it is an extended version of the general
assignment problem in [29]. Therefore, the association con-
trol in this paper is as algorithm 2; we call it LR (Linearize and
Rounding). The MGAP rounding algorithm is used in step 4
of algorithm LR.

In the following paragraphs, we compute the approxima-
tion ratio for LR.
Theorem 1: The approximation ratio of algorithm LR is 4.
Proof: Let x∗, y∗ be an optimal solution for nonlin-

ear formulation fnlp (5). Let (x, y) be a solution for nonlin-
ear formulation fnlp (5), z is the solution of corresponding
DLP (20). In addition, x̂, ŷ are the solution of fmgap (40).
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Algorithm 2 The Algorithm LR
Require: {RSSI }, {rj}, A, U , d .
Ensure: Solution (x̂, ŷ).

1. Input the RSSI into the Shannon-Hartley equation to
obtain {Rij}.

D =
∑
j∈U

rj/min{rj + rj
∑
j∈U

K
Rij
|j ∈ U}

from real-time statistical data on the controller.
2. Solve discretized linear formulation (20), and obtain zijτ .

3. Compute x ′ij, y
′
ij and uij based on (32), (33) and (34) by

using zijτ .
4. Input (x ′ij, y

′
ij, uij) to the rounding algorithm (40) and

obtain x̂ij. Obtain ŷij by using (28).
5. Handover(x ′ij), where the Handover() function is pro-
vided by the LVAP module in the 5G-empower platform
[13].
if
∑
ŷij > 1 then

6. Set the receive window to ŷij ∗CWNDij/
∑
ŷij, where

the congestion window CWNDij is obtain by using the
method provided in [49]. set_cwnd() function is imple-
mented in the Open vSwitch.

else
7. Set the receive window to ŷij ∗ CWNDij.

end if

By using Lemma 2, we have the following:

fnlp (x, y/2) ≤ fdlp(z), (44)

By using Lemma 35, we have the following:

fdlp(z) ≤ fnlp(x, y). (45)

Based on Lemma 7, we have the following three inequali-
ties:

fnlp(x̂, ŷ) = fmgap(x̂); (46)

fmgap(x) = fnlp(x, y); (47)

fmgap(x̂) ≥ fmgap(x). (48)

Combine (46), (47), and (48); we have the following:

fnlp(x̂, ŷ) ≥ fnlp(x, y). (49)

Set Ti = 1 in this paper; by using (45) we have the following:

fnlp(x, y) ≥ fnlp(x,
y
2
). (50)

Substitute (49) into (50), and we have the following:

fnlp(x̂, ŷ) ≥ fnlp(x,
y
2
). (51)

Combining (50), (51), and
∑

j∈U y
′
ijxij ≤ 2Ti in Lemma 6,

we have the following

fnlp

(
x∗,

y∗

4

)
≤ fnlp(x̂, ŷ). (52)

The proof is complete. �

FIGURE 3. Deployment of APs and clients in the experiments.

VI. EVALUATION
Our evaluation aims to characterize the throughput, delay,
and jitter improvements of our load balancing algorithm.
There are transforming of non-linear programming to linear
programming, rounding, clustering and classification in our
algorithm, so, we named our algorithm LRCC. We compare
our LRCC algorithmwith the traditional RSSI-basedmethod,
and the Wi-Balance method proposed in [40]. The evaluat-
ing objects are throughput, retransmission ratios, and Jain’s
index.

A. EXPERIMENTAL SETUP
We carry out the performance evaluation on a real-world
testbed. The deployment of the experiment is described
in Fig. 3 and this deployment is similar to the one in [40].
ThreeNetGear 4300 routers which act as wireless termination
points (WTPs) run OpenWRT 15.05.01(empower-lede) are
deployed on the second floor of a teaching building. NetGear
4300 equips with the Atheros AR9344 chipset which support
both 2.4 GHz and 5.8 GHz frequency. All the experiments
are using the 5.8 GHz band frequency of the 802.11n pro-
tocol. These three WTPs are connected to a 5G-empower
controller [13]. Ten laptops running Linux that act as the
mobile stations are connected to the WTPs.

1) HANDOFF COST d
We measure the handoff delays of our testbed in IEEE
802.11n WLANs. The process is as follows: station 1 moves
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from AP1 to AP2 and back, and we record its handoff events
and the corresponding system time. We repeat this process
ten times and get the average handoff time. The handoff
time is about 50 ms, and this value is measured to be 59 ms
in [53]. The handoff cost d is set to be the correspond-
ing handoff delay multiple current data rate in our associ-
ation control algorithm, also d is normalized to guarantee(
Rijyij − d + xij(t)d

)
> 0 in (3).

2) INTERVAL BETWEEN TWO HANDOVERS
The interval between two handovers is at least 1 s.When there
is a load balancing event, the association control algorithm
should be triggered. However, the average handoff delay in
our evaluation is approximately 50 ms. Thus, we set the
minimum interval between two handovers to 1 second.

Whether 1 second is suitable is not known from cur-
rent research. The channel switching time is approximately
4.11/0.244 ms in [25], and the author set the interval to 6 ms.
Mobilities of the stations and the channel processes might
determine this interval. The mobilities are not considered
in this article. The channel coherence time is the duration
over which the channel impulse response is considered to
be unvarying. The coherence time for 802.11 WLAN is
approximately 25.3885 ms when the velocity of the client
is 1 m/s [50]. From the aspect of channel coherence time,
we should set the duration to several milliseconds, and from
the perspective of handoff delay, the epoch duration should
be longer than the handoff delay. Therefore, we set the mini-
mum epoch duration to 1 second, and we will perform some
research about this epoch duration in our future work.

3) EXPERIMENT PROCESSES
We do experiment for LRCC, Wi-balance and RSSI-based
method. For each of the evaluated methods, we run the exper-
iment for nine iterations; each test lasts 5 minutes. Table 9
shows the configurations of the nine tests. We reference the
experiment design of Wi-balance [40]. All the stations stay
still and are deployed randomly across the entire floor during
each test except station1. station1 moves following the red
dotted path in Fig. 3 in each test. The WTPs (NetGear 4300)
run OpenWRT, Open vSwith and LVAP as described previ-
ously. The controller runs the 5G-empower runtime suit. The
controller also acts as iperf3 servers, we open ten flows on it,
and each flow corresponds to a client. During tests 1 to 6,
the stations are divided into two groups. Stations 1 to 5
belong to group 1, and the others belong to group 2. Stations
of group 1 transmit with a constant bitrate for 1 minute,
the stations of group 2 transmit 40 seconds and stop for
20 seconds. Then the stations of group 2 transmit with con-
stant bitrate for 1 minute, and the stations of group 1 transmit
40 seconds and stop for 20 seconds. During test 7 to 9, all
the stations transmit with constant bitrate. The outputs of
iperf3 are stored in both server sides and client sides to calcu-
late throughput performance.We also implement a C program
(running on the Laptop stations) that probes and parses infor-
mation of data transmission from the kernel. It is similar to

TABLE 9. Configuration of the measurement campaign.

FIGURE 4. Network-wide aggregated throughput for the TCP traffic
transmissions.

the ‘‘ss’’ command in the Linux system. From this data trans-
mission information, we can obtain the throughput, fairness
and retransmission performances of the clients.

B. EXPERIMENTAL RESULTS
In this paper, we utilize the Jain’s fairness index to quantify
the fairness of throughput performances. The Jain’s fairness
index is denoted by the following equation:

Jain =

(∑
i∈A Ji

)2
m
∑

i∈A J
2
i

, (53)

where Ji represents the metric of AP ai, and m is the amount
of APs. The needless retransmissions and handoff costs
caused by unbalanced load distribution make data transmis-
sion performance worse. Excellent load balancing algorithms
should start necessary handovers and avoid unnecessary ones.

The throughput results are listed in Fig. 4 which shows that
LRCC outperforms Wi-Balance in terms of throughput by up
to 12.7%, and outperforms RSSI method by up to 28.13%.
We observed the RSSI method’s drawbacks during the itera-
tions: handover events only happen on the moving stations,
and these handovers do not change the unbalanced load dis-
tributions. As shown in Table 10, RSSI launches 9.66 han-
dovers, these handovers happened when station1 (laptop 1)
was near to the APs. The Wi-Balance method performs well,
and it starts handover when the difference between channel
utility of an AP and the overall average value. We observed
several handovers of station7 and station10 too except for

VOLUME 7, 2019 136947



S. Lin et al.: Fairness and Load Balancing in SDWN Using Handoff-Delay-Based Association Control and Load Monitoring

TABLE 10. Average number of handovers each iteration.

FIGURE 5. Jain’s fairness index of the throughput achieved by all the
wireless clients for the TCP traffic transmissions.

the ones of station1. However, channel utilization itself is
not throughput nor fairness, and this is why the throughput
performance of Wi-Balance is not the best. When station1
moved to location B, it still connected with AP1 because
the channel utilization kept almost the same when it moved.
The handover should happen when its throughput decreased
evidently at location A, and the communications with low
RSSI has harmed the network performance. Moreover, when
it moved to location C, it sometimes handover to AP3 while
its optimal AP is AP1. The choices of AP3 instead of AP1 are
the unnecessary handovers that can be avoided in LRCC.

The packet retransmission statistics of the algorithms are
shown in Fig. 6. The sending rate decreases if a retransmis-
sion event happens in most of the TCP protocols. An algo-
rithm causes a high retransmission rate will achieve a low
TCP data rate. Statistics in Fig. 6 show that LRCC has the
lowest retransmission rate, and this is not weird. The con-
gestion and non-congestion retransmissions are monitored in
our load monitoring algorithms. Furthermore, the monitored
queue metrics are also signs of the coming retransmissions.
The retransmissions can be predicted by other metric mea-
surements, especially the queue statistic information. One
of our current research projects is to use network metric
measurements to predict future packet retransmissions.

Fairness is a crucial aspect of LRCC, and we consider
fairness when problem formulation. Therefore, there are
no reasons LRCC’s fairness performance is worse than
Wi-Balance and RSSI. The statistics in Fig. 5 also support this
thesis. The global handovers in Wi-Balance and LRCC pro-
duce fairness enhancements. The operations of minimizing
the difference between the channel utilizations are processes
of fairness enhancements in Wi-Balance. LRCC outperforms
Wi-Balance is also because of the necessary handoffs when

FIGURE 6. Network-wide average retransmission ratio for the TCP traffic
transmissions.

station1 arrives at location A and the wrong choice when it
arrives at location C.

VII. CONCLUSION
We design and implement a real-world load balancing appli-
cation for SDWN. The load monitoring and association con-
trol are two main parts for real-world load balancing applica-
tions. The previous research works point out three statements.
Firstly, it is not accurate to use a single network metric as
the AP load. Secondly, the AP load should be modelled with
multiple network metrics. Thirdly, it is challenging to build a
unique unified load model. The machine learning approaches
are proven to be feasible for load monitoring. We implement
sample modules on the APs to get related network metric
measurements for learning. The learning results indicate that
the throughput and queue backlogs have strong qualitative
relationships with the other network metric measurements.
It is well known that the queue backlogs determine the delay
and jitter performance of data transmissions. The throughput,
delay, and jitter determine the data transmission performance
of an AP. So, as a sign of data transmission performance,
the AP load must also have qualitative relationships with the
network metric measurements. Moreover, when the AP is in
‘‘overloaded’’ or ‘‘light’’ state, some of the network metric
measurements are either have significantly high values or sig-
nificantly low values. Therefore, we cluster and label the
training data by the K-means algorithm, and then we class
the labeled data by the decision tree algorithm to get the load
monitoring rules. The precision and recall performances of
the algorithms are acceptable.

The association control problem which is modeled as the
utilization maximization can be treated as a general assign-
ment problem, and it is NP-hard in IEEE 802.11 WLAN.
A general process to solve the general assignment problems
contains two subprocesses. The first is to solve the origi-
nal problem and obtaining a fractional solution. The second
is to round the fractional solution back into binary values.
Without handoff delay, the association control problemwhich
maximizes network utility (defined by throughput gain and
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fairness) can be solved by using convex methods and round-
ing methods. However, handoff loss changes the convex
property of the utility maximization problem. In this paper,
we reference existingmethods of nonlinear programming and
discrete linear programming to get fractional solutions. Then
we extend existing GAP algorithms to round the fractional
solutions back into binary ones. The approximation ratio for
these algorithm processes is 4, 2 for the non-linear-to-linear
transformation, and 2 for the rounding process.

We implement our load monitoring function in Open
vSwitch that runs on the APs. And we integrate the extended
Open vSwitch and the OpenWRT-based sampling modules
into 5G-empower. Then, we evaluate our algorithms on
the extended 5G-empower platform. The experiment results
show that our LRCC algorithm outperforms Wi-balance
method in terms of throughput by up to12.7%, and it out-
performs the received signal strength indicator (RSSI) based
method by up to 28.13%.

We also find that queue-related metrics have strong rela-
tions with AP load. Excellent performances are obtained
when these metric measurements are used to predict the
AP load. Also, as the developments SDN techniques in wire-
less networks, our works in this paper can be easily extended
to enterprise WLAN and cellular networks.
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