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ABSTRACT Internet of Things is advancing, and the augmented role of architecture in automating processes
is at its vanguard. Mission-critical applications are becoming a vital category of future IoT applications, and
due to the advancements in the 5G, the design of mission-critical application overcome a big hurdle. Mission-
critical applications must be reliable, and the output should be known in advance. Therefore, to model such
application, architecture is considered the cornerstone. One of the major requirements is the flexibility of the
operation and the adaptability to new devices. In this paper, an optimal orchestration mechanism is proposed
to automate the processes in a conventional multi-device and multi-task mission-critical architecture for
flexible and scalable operations. The central goal of this paper is to threefold; first, to model tasks in such a
way to maximize the flexibility in the operation plane. Secondly, to design a strongly correlated pair which
has maximum relation and thus the chance to hit the task on the devices will be potentially maximized and
also the idle time among operations is minimal. Lastly, to register devices in a network which is optimal for
the group of this device in terms of correlation. We propose a multi-layer particle swarm optimization for
each of the optimization objectives. Results show that the operation plan is flexible and with scaling up the
problem size, the orchestration is still graceful and within the requirements of mission-critical applications.
The performance of multi-level particle swarm optimization is compared with conventional single-level
particle swarm optimization and it has been learned that the later is not only slower but also less accurate.

INDEX TERMS Internet of Things, task modeling, mission-critical IoT systems, task mapping, task

deployment, service orchestration, task orchestration.

I. INTRODUCTION

Internet of things (IoT) is an established technology now, and
over the past few years, the number of connected devices has
been increased exponentially [1]-[3]. The recent advances
in wireless sensor technology (WSN), real-time IoT, and
5G communication technology makes the job of mission-
critical applications’ designer more comfortable than it ever
is. Mission-critical applications [4] are extensively used in
smart healthcare, smart navigation systems, and robotics,
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to name a few. However, in the past, some of the requirements
of mission-critical systems were making hurdles due to non-
deterministic delays of networks and thus the surety which is
needed in some special cases such as hard real-time missions
could not be implemented as a result [5]-[7]. With recent
breakthrough in 5G technologies, many research studies are
surfaced which ensure safe profiles for network communica-
tion delays [8], [9].

Mission-critical applications are being revamped to fit in
the paradigm of the IoT. A significant shift in the design
of these applications is the power to control them remotely.
In typical mission-critical application, the communication
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TABLE 1. General Characteristics of Mission-critical l1oT systems.

Attribute
Dependability

Description

These applications should be trusted and
tested. The more the users trust the system,
the more it will be dependent on it.

The system must be safe to use, and this must
be ensured in the design phase.

In mission-critical IoT systems, different in-
teractions are being made with heteroge-
neous devices; thus, it must be ensured to
have a proper firewall to protect from mali-
cious attacks.

If the correctness of a system not only de-
pends on the accuracy of the results but also
on the timely response.

One of the crucial attributes of mission-
critical IoT systems to enable the connection
of the different nature and design of physical
things.

Mission-critical application can achieve the
size of hundreds of distributed things, and
thus one of the design attributes has to be
the easy provisioning of new devices, i.e., the
scalability.

The system must adapt to the changing con-
text, and thus, the process must be made
flexible to change.

The system can be made in such a way
that the components of the system could be
reused.

Safety

Security

Real-time
systems

Heterogeneity

Scalability

Context-
awareness

Reusability

was done on machine to machine (M2M) level, and due
to the invariant network delays, the application layer proto-
col such as HTTP was not trusted which made the remote
control impossible. In addition to the remote control, there
are some other crucial requirements of mission-critical IoT
applications which have been summarized in table 1. These
characteristics demand a distinctive look at the design and
architecture of the application. In recent studies, the design
considerations of the mission-critical system are highlighted.
For instance, in [4] the authors propose a model-driven
approach as a go-to approach considering the attributes
whereas in [10], the do-it-yourself (DIY) approach is pro-
posed to be the recommended way for the design of these vital
categories of IoT applications. Nevertheless, the architecture
of the mission-critical applications still holds a pivotal role in
their advancement in the right direction.

The concept of orchestration [11], [12] is often guided with
the discussion of architecture. The processes and the data
flow from one component of the system into the other systems
is often known as orchestration if it involves some degree
of autonomy. However, only autonomy is not enough when
the requirements of the applications are changing and truly
dynamic in nature, e.g., in the case of mission-critical appli-
cations. Having said that, autonomy must be accomplished
in an optimized way. For instance, considering the scalabil-
ity, real-time systems, and context-awareness characteristics
of mission-critical applications, one of the optimized ways
of orchestration is to maximize the flexibility, optimal task
assignments, and scalability. A mere orchestration will auto-
mate this aspect without caring much on the other possible
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solutions which may be the better from the ones currently
being orchestrated. Therefore, considering mission-critical
applications, the optimized orchestration is of paramount
importance.

In this paper, we propose a novel architecture for mission-
critical IoT applications which approaches the orchestration
mechanism in an optimized way to for flexible and scalable
operation plan. Owing to the fact that characteristics of the
mission-critical application must be considered in the design
of the architecture, the paper considers the context-awareness
and scalability characteristics to maximize the scalability and
flexibility of the operation plans. The flexibility is the mea-
sure of the distance of the critical path time of the operations.
For instance, if there is 50 hours time leading to the critical
path, it would mean that another operation can be added
if the time falls with 50 hours. Thus maximizing this time
can maximize the flexibility in the operation plan. Another
part of the optimized orchestration is the allocation of tasks
in such a way to lead to the lowest idle time and fastest
response. If the devices in the operation plan are highly
correlated, it will be more likely that the request made will
target the related devices in the group. One final orchestration
is the optimal design of devices within a network. It will
lead to the lowest response time as this will maximize the
intra-network request to minimize the inter-network requests.
For this, multi-purpose optimization, we introduce a multi-
level particle swarm optimization. Each level addresses one
objective and provides the optimal results to the next level.

The contribution of this paper is as follows:

« Implements an optimized orchestration mechanism to
allow more flexible and scalable operation plan.

« Introduces surplus time optimization, which is the quan-
titative measure of flexibility and scalability.

« Introduces device correlation utility to measure the rel-
evancy of devices within a group of operation plan and
thus decreases the idle time.

o Implements network commutative correlation index,
which measures the correlation of devices inside a net-
work and thus boosts the response time.

o Finally, implements a multi-level particle swarm opti-
mization to optimize the various stages of orchestration.

The remainder of the paper is structured as follows.
Section 2 presents the literature review and highlights the
relevant contributions in mission-critical IoT architectures
and optimization. Section 3 illustrates the system model
for the architecture which designs optimized orchestration
mechanism. Section 4 overviews the mathematical formu-
lation of the system and derives the objective functions
for each level of the optimization. Section 5 portrays the
design of the architecture and multi-level particle swarm
optimization. Section 6 discusses the implementation envi-
ronment and hardware being used in this paper. Section 7 dis-
cusses the results and evaluates the performance of the
system with a single-level particle swarm optimization.
Section 8 concludes the paper and highlights the future
directions.
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Il. RELATED WORK

With the current revolution in the IoT, the number of con-
nected devices is in the order of billions. With this evo-
lution, the shift is moved from conventional consumer-
based applications towards mission-critical applications [10].
In consumer-based applications such as smart home, relia-
bility is not of significant importance whereas in mission-
critical applications such as remote surgery, reliability and
deterministic behaviour of the application must be known
before the deployment in real environment [13]. Many efforts
have been made in conventional mission-critical applications
and machine-to-machine communication, and as a conse-
quence, very sophisticated solutions are around for quite
some time [14], [15]. The problem is that in mission-critical
IoT application, the communication is not only machine-
to-machine but also user-to-machine and machine-to-user.
In other words, the communication has to be performed on the
application layer as well as on the device-to-device layer as
in case of machine-to-machine communication. The mission-
critical IoT application is the upgraded form of conventional
mission-critical application with allowing communication at
application layer [4], [16].

Nevertheless, the requirements of these application
demand determinism and guarantee before deploying in areal
environment. In previous IoT-based mission-critical research
studies, the focus was towards effective communication to
achieve ultra-low latency and also the deterministic profile of
communication medium. These studies are still fundamental
in a sense that without a reliable communication medium,
allowing mission-critical IoT communication is considered a
big hurdle. With the recent advancements in 5G technology
and network slicing, the communication delay is ultra-low
and a safe maximum bound can be ensured [6], [16]. Com-
munication is the single fundamental requirement of mission-
critical applications, but there are other requirements that also
equally contribute to these applications. As mentioned in the
Introduction section, some of these requirements are safety,
scalability, adaptability and real-time compliance. Therefore,
there is a clear gap in the literature to address some of these
requirements in addition to the communication networks
optimization.

The concept of orchestration is used in designing opti-
mal service provisioning in IoT application in general.
This concept often comes around after the popularity of
service-oriented architecture and has been used in many
studies [17]-[19]. In earlier approaches, the orchestration
was considered as a single centralized executable process
running on cloud. However, with the advancement in the fog
technologies, the orchestration became more of a distributed
nature. Nonetheless, it remains the fundamental process in
traditional as well as modern IoT application [20]. The work
done so far on the orchestration are focused on automatic
provisioning of services, and there is a recent shift towards
task-level orchestration [10]. Orchestration at the task level
will make the application more flexible, and the service which
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is composed of tasks will be more dynamic and smarter [10].
Moreover, it will be more lightweight, which is the need
of nowadays fog computing architecture. Considering the
requirements of mission-critical application orchestration at
task level suits best to and therefore used in this paper.

In mission-critical IoT applications, task orchestration
refers to the dynamic generation of tasks, mapping them on
the virtual objects and scheduling the time of the allocation
optimally. Task management in IoT and Wireless Sensor
Networks have attracted some literature studies; however, all
of the studies focus on one thing or another and consequently,
there is no major work which considers task orchestration.
For task orchestration modelling of tasks is very vital. Sim-
ilarly, in modelling the load of the system, the resources
associated with the application can also be taken into consid-
eration, and consequently, the modelling should be smarter
given the limited characteristics of IoT resources [5]. The
studies in [21]-[23] deals with the allocation of tasks in such a
way that the resources are utilized in an optimized manner and
also the load are balanced on all edge nodes. loT _ProSe [24]
framework extends this further to consider the challenge
of task allocation in mobile nodes. Task mapping, on the
other hand, is somewhat unfamiliar in the IoT domain but
a variety of efforts have been made in WSN and distributed
systems. The main challenge in the mapping is to reduce the
time of mapping and inter-process communication and static
traversal of resources for tasks which consume time and CPU
clocks as well [25], [26]. Mapping can do this well before
time, and the constrained power will not be consumed in a
work that can potentially be performed before deployment.

Another challenge in orchestration is the optimal selection
of processes. The mere automation of processes sometimes
leads to poor results; therefore, the selection of the optimal
route is necessary. As the role of orchestration is many-fold,
therefore it is a typical case of a multi-objective problem.
When there are more than a single objective for an opti-
mization problem, and some of the work can be parallelized,
the recommended approach is to use multi-level optimization.
It achieves better fitness than single-level optimization and
at the same time is a more efficient approach. There are
a variety of instances in the literature in which multi-level
optimization is preferred over a single-level optimization for
a specific problem space [27]-[29]. For instance, in [27],
the authors propose a hybrid of genetic algorithm and PSO
for a supply chain model using a bi-level optimizer. Similarly,
Garg and Sharma [30] back the same idea and propose the
solution of a multi-objective problem using fuzzy nonlin-
ear programming to achieve a more adaptable and flexible
solution. In contrast to a hybrid approach, there are some
instances as well where a multi-objective problem is solved
with a single algorithm by deploying it either recursively or in
a pipeline architecture in more than single-level [31], [32].
Yeh [31] proposed a two-stage discrete particle swarm opti-
mization for optimal redundancy allocation in the series
system. Similar efforts have been recently made to propose
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optimization in multi-level and found to have to achieve better
results than mono-level optimization [33]-[35].

Ill. SYSTEM MODEL

In this section of the paper, a detailed system modelling
of the proposed work has been illustrated. As described
in earlier sections, one of the prime goals of the mission-
critical applications is the design and architecture of these
applications should be in compliance with their requirements.
For instance, some of the requirements are low latency for
real-time communication and scalability to support networks
at large-scale. Therefore, architecture must consider these
requirements. In this paper, the focus is to design an archi-
tecture which is robust, efficient and flexible. It has been out-
lined in recent studies that task-level design and orchestration
is a commendable approach, unlike traditional service-level
approach, which is a not so-flexible approach. Consequently,
this paper follows these recent suggestions and design the
architecture, whose main design block is a task. In task-
level architecture, tasks are generated based on the mission
requirements, and afterwards, the tasks are mapped on the
devices and scheduled to find the order which meets the
real-time requirements. Finally, the tasks are allocated in the
designated footprint decided by the scheduler.

In this, the task-level orchestration is used in an optimal
way to maximize the flexibility in the scheduling, tasks map-
ping and device registry for the optimal network. Figure 1
shows the overall block model of the proposed approach. The
proposed approach follows a top-down methodology. The
mission requirements are supplied by end-users. The applica-
tion parses the requirements and generates tasks using natural
language processing techniques. These tasks are supplied to
the next layer in which the tasks are modified for optimal flex-
ibility, the detail of which will be illustrated in the subsequent
section. Once the tasks are optimized, the next layer deals
with deploying these tasks in such a manner which leads to the
best scheduling plan. For this, the device pairing is performed
in an optimal way to maximize the correlation. In the next
layer, the devices are registered in such a network which leads
to maximum network utilization and maximum efficiency.
Once these 3-layer optimization performed, the tasks are then
allocated and monitored. In the next section, the mathematical
formulation is discussed, and the detailed methodology of
multi-layer optimization is illustrated.

IV. MATHEMATICAL FORMULATION OF MULTI-LAYER
OBJECTIVE FUNCTIONS
In this work, we use a multi-layer optimization scheme to
optimize orchestration processes. As described, the architec-
ture revolves round of tasks. Consider we have a set of tasks
which are performing some mission-critical operations on
edge nodes. The list of symbols used in this paper is described
in table 2.

Consider a set of tasks t having 71, 12, 73..T, respon-
sible for mission operations on physical devices D =
Dy, Dy, D3, ...Dy. A micro-tasks put is a sub-task which is
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TABLE 2. Summary of symbols and notation used in different algorithms.

Symbol Description

Ti ith task

UTij Micro task j which belongs to task 7;

VO; ith Virtual object which is the virtual repre-
sentation of physical devices

D; ith Device

D;O, The rth operation performed by ith device

uTijd Duration of 7

WTij8t Start time of p7;;

uTijspt Surplus time (The time till which the micro-

task can be delayed) of pu7;;
Tidie Idle time of scheduling footprint

prijweft Worst-case finish time of 7

uTij ft Finish time of p7;;

ONS Optimal Network Selection objective

¢(D1, D2..Dy) Device Correlation among D1 to Do,

cCI Commutative Correlation Index of the net-
work of devices

Op Operation plan of set of devices

part of the operation performed by a task. For instance,
if report-temperature is taken as one instance of a task,
then get-temperature and send-temperature are two dis-
tinct micro-tasks. Consequently, a task t; has micro-
tasks wrt(, uto, LT3, ...uT,. A task can be allocated on
one virtual object VO; or on a set of virtual objects
VO, VO, VO3, ...VOy;.. However, a micro-task must be allo-
cated on only a single virtual object. A micro-task is
called device operation when allocated on a physical device.
In other words, device operation is micro-task in execution,
ie., utj = D;O,. Finally, the operation of a task must
be executed in ascending order. For instance, pt1; must be
executed before pt1> . We define the following constraints
before digging in detail of optimization on each layer.

utij = > (hasAttributes){d;;, weftij, stj, ftij, sptij}
T, = > (requires){LT; 1, (LTi2, UTi3, .- ATk}
D,, = > (performs){D,,0¢, D,,01, D,,03, ...D,,0,}
O, = > (definedBy){D1, D2, Tigie, Corr}

Similarly, a micro-task is equivalent to device opera-
tion or simply operation when it is in execution state.

nto0 = DiyOo = O,

Based on the above-mentioned assumptions, the first job
of the architecture is the optimal design of micro-tasks. For
this, the proposed architecture computes a function which
incentivizes the rearrangement of micro-tasks in a way which
would lead to maximum surplus time. The part of this opti-
mization is to assign start time and finish time in such a way
to increase the surplus time spt. The surplus time function is
given by:

n
SPTu =Y spt; (1)
i=0

where SPTu is the utility of surplus time in a given tasks
arrangement. The surplus time, as described earlier, is the
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FIGURE 1. System Block Representation.

time till which a particular operation can be delayed. The spt
of a micro-task (. 7;; is given by

sptij = weftip — dj 2)

where spt;;, wefty; and d;; are the surplus time, worst-case
finish time and duration of 11 7;; respectively. The final time is
the instant at which the execution of a particular micro-tasks
ends and is given by

Jtij = stij + djj A3)

where ft;;, st;; and d;; are the final time, start time and duration
of ut;; respectively. To assign a start time, the optimizer will
make sure the tasks must be executed in the order they are
created. For instance, if a task ‘“Record Temperature” has two
micro-tasks “getTemp” and “reportTemp”, the start time of
the reportTemp must be greater than or equal to the final time
of getTemp, i.e., stjj > ftjj_1.

To illustrate this optimization mechanism, we take the
example of temperature, humidity and particulate matter
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Sensors and
Actuators

TABLE 3. Overview of the list of micro-tasks and their initial attributes.

Device Provides Agent Network ID Symbol

1D

BME280 | Temp, Humid, | Raspberry| 192.168.12.1 Dl
Pressure

SM21021 | PM10, PM2.5 Arduino 192.168.12.2 | D2

BMP280 | Temp, Humid, | Raspberry| 192.168.12.2 | D3
Pressure

sensors as indoor quality monitoring devices. Table 3
overviews the list of devices connected with different IoT
agents and the tasks they provide.

Based on the devices, and IoT service description the tasks
and micro-tasks generated are shown in table 4 alongside their
initial attributes. The duration d and worst-case finish time
wcft are the constraint attributes which must be considered
whereas other attributes can be assigned in such a way to lead
to maximum surplus time spt.

Sample problem: For instance, a task 71 is defined as
utio and uty and task 7, is defined as putyo and 1.
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TABLE 4. Overview of the list of micro-tasks and their initial attributes.

purID | d | weft | st | ft | spt | 7ID | pu7 Name
1.0 119 o217 1 Get Temperature
1.1 1| 10 214 ]6 1 Report Temperature
2.0 2| 12 3 5 1 2 Get Humidity
2.1 4 | 11 2 16| 4 2 Report Humidity
3.0 6 | 14 1 717 3 Get PM2.5
3.1 3 10 3 6 | 4 3 Report PM2.5
o [1 J2 [3 Ja [5 Je 7 J8 o LEAD
D1 o10 | 6
021 |
D2 020
o11 [
D1 021 | [ 8
o10 | |
D2 o11
020 |
D1 010 8
021 I
D2 o11 [
020 | [
D1 021 | [ 8
o10 | |
D2 020 [
o11

FIGURE 2. Gant-chart of the different arrangement of micro-tasks in a
given operation plan.

The values taken for wcft and d is taken from table 4.
Similarly, an operation plan O,1 for instance is equivalent
of device 1 D; and operation plan Opl is defined as the
equivalent of device 2 D,. Each respective operation plans
has defined as follows:

Dy € {D10o, D201}
or simply
Dy € {O10, 021}
Similarly, operation plan 2 has the following plan.
Dy € {D101, D200}
or simply
Dy € {O11, O}

For the above-mentioned sample problem, the different
operation plans with the different micro-tasks arrangement
are listed in table 5. For operation plan of D and D, Oy
and Oy lead to highest surplus time of 18 for D, whereas O1g
and O3 lead to highest surplus time of 13 for D1. However,
these selected pairs are not correlated with each other, and
therefore, it has to be arranged in such a way that it leads to
maximum correlation and minimum lead time and this is the
job of the second layer optimization of the architecture.

In the second layer, the objective is to find the operation
plans of the devices, which lead to maximum correlation.
The correlation between devices is a function of lead time.
If the lead time is minimum, the correlation will be maxi-
mum, and the scheduling footprints will be more scalable.
Figure 2 illustrates the Gant chart of the different combination
and the resultant lead time of every pair.
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TABLE 5. Re-arrangement of micro-tasks (operations) in a given
operation plan and its effect on surplus time.

Operation Plan | >°7  spt; | prname st ft spt
etTem 0 1 8

D1(010,021) | 13 2 p

repHumid 2 6 5

getHumid 0 2 10
D2(020,011) | 17

repTemp 2 3 7

repHumid 3 7 5
D1(021,010) | 6 u

getTemp 7 8 1

repTemp 0 1 9
D2(011,020) | 18 -

getHumid 1 3 9

getTemp 0 1 8
D1(010,021) | 11 -

repHumid 4 8 3

repTem 1 2 8
Da(O11,000) | 16 L

getHumid 2 4 8

repHumid 2 6 5
D1(021,010) | 7

getTemp 6 7 2

getHumid 0 2 10
D2(020,011) 12

repTemp 7 8 2

Although, the optimal arrangement for D; is (O19, O21)
and for D5 is (011, Oyp) but the lead time of this pair is higher
than the pair D1(O19, O21) and D3(O29, O11) and thus the
later pair is more correlated than the one highest individual
surplus time. Therefore, not only the surplus time is impor-
tant, but we must also have an orchestration system in which
devices with strong correlation must be selected to implement
a task. The correlation function between devices is computed
based on a utility function DCU which is given by:

C = maximizeDCU (D1, D3, ...Dy,) 4
The DCU is computed as follows.
1
DCU(Dy, Dy) = —— 5
(Dx, Dy) T Tome Q)

where Tjg is the idle time in a given scheduling plan and is
given by

n

Tiare =) st(uty) — fi(uy) (6)

i=0
For the sample problem in the above-mentioned para-
graphs, the device correlation is computed in table 6. It shows
the idle time 774, and DCU for every operation plan in a
given device pair. The first device pair has a very strong
correlation of 0.5 as compared to other pairs. This is due to the
lowest idle time. The same pair also generates the lowest lead
time, which can be proved from the Gantt chart in figure 2.
Consequently, the optimal pairing of the device can enable a
very low idle and lead time and very high surplus time which
would mean the scheduling and task allocation is not only
flexible and scalable but also very efficient. If surplus time
is low, then any change in the scheduling plan may make

140927



IEEE Access

S. Ahmad et al.: Toward the Task-Level Optimal Orchestration Mechanism in Multi-Device Multi-Task Architecture

TABLE 6. Re-arrangement of micro-tasks (operations) in a given operation plan and its effect on DCU.

Operation Plan | S spt; | prname | st ft spt | Trdie DCU
etTem 0 1 8
D1(010,021) | 13 : p
repHumid 2 6 5 1
(0-0) + (2-1) + (0-0) + (2-2) =1 37 =05
getHumid 0 2 10
D2(020,011) | 17
repTemp 2 3 7
repHumid 3 7 5
D1(021,010) 6
getTemp 7 8 1 1
3-0)+ (7-7) + (0-0) + (1-1) =3 113 = 0.25
repTemp 0 1 9
D2(011,020) | 18
getHumid 1 3 9
etTem, 0 1 8
D1(010,021) | 11 2 p
repHumid 4 8 3 1
(1-0)+ @D+ (1-1)+(2-2)=4 i+ =0.20
repTemp 1 2 8
D2(011,020) | 16 -
getHumid 2 4 8
repHumid 2 6 5
D1(021,010) | 7 pT p 7 2
t
getiemp (2-0) + (6-6) + (0-0) + (7-2) =7 = =0.12
etHumid 0 2 10
D2(020,011) | 12 £
repTemp 7 8 2

the surplus time into negative, which would mean the task is
dropped. Consequently, the scheduling footprint is said to be
non-scalable and not in line with the requirements of mission-
critical IoT applications.

It has been highlighted in many literature studies that reli-
ability of mission-critical applications not only depends upon
the sound architecture and design of scheduling but also on
dependent on network delays. Owing to this fact, a group of
devices if correlated will likely be hit in the same request and
if they reside in the same network, the delay will be lesser than
if they reside on a different network. Thus, to decrease the
network latency, the device registered on the network must be
highly correlated. The third optimization layer is the optimal
selection of devices for the network registry.

The objective of the optimized network is to find a set of
devices which contributes to highest cumulative correlation
index (CCI). The objective function is to maximize CCI. The
CCI of a network is given by:

n k

CCI =) (DCU; + DCUj) 7
i=0 j=0

Based on the above objective function, the job of the opti-
mizer in the third layer is to find an arrangement of devices
within a network to maximize the CCI. For instance, for the
devices D1, D, and D3 in table 3. The optimal DCUs are
computed based on the second layer optimizer and based on
them; the network CCI is computed, as shown in table 7. The
CCI for the network in the second row, i.e., (D1, D3, D) is
maximum and is considered the optimal network for a given
operation plan. Having said that, this network will always
lead to the most flexible scheduling plan and the most scalable
orchestration. Moreover, due to the highest CCI, the lead time
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TABLE 7. Re-arrangement of devices in different networks and its effect
on CCL

Network Plan DCU; DCU; CCI

(D1, D2, D3) DCU(D1,D2) = | DCU(D2,D3) = | 0.7
0.2 0.3

(D1, D3, D2) DCU(D1,D3) = | DCU(Ds,D3) = | 09
0.5 04

(D27D17D3) DCU(D27D1) = DCU(Dl,Dg) = 0.6
0.1 0.5

(D2, D3, D1) DCU(D2,D3) = | DCU(D3,D1) = | 0.8
0.3 0.5

(D3, D1, D2) DCU(Ds3,D1) = | DCU(D1,D2) = | 0.8
0.5 0.3

(D3, D2,D1) | DCU(D3,D2) = | DCU(D2,D1) = | 0.5
0.3 0.2

and idle time will be the lowest making it the most efficient
plan out of all the arrangements.

V. DESIGN OF OPTIMAL ORCHESTRATION
ARCHITECTURE

In this section of the paper, a detailed design of the pro-
posed optimal orchestration system is described. The prime
job of this architecture is to allow efficient and scalable
mission-critical communication. The flow of the architec-
ture is described in figure 3. First off, all modules of the
architecture are bootstrapped, and the libraries required for
mission analysis are initialized. The mission analyzer module
processes the requirements and tokenizes the information
into mission objects. The mission objects are parsed, and the
process responsible for generating tasks are instantiated. The
list of tasks based on mission analyzer tokens is created and
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FIGURE 3. Functional Flow of Proposed Architecture.

persisted in tasks repository. The same tasks are supplied to
optimal tasks plan which incentivizes the arrangements of
the operations within a task in such a way to maximize the
surplus time. The objective function to compute the surplus
time is provided to the level 1 optimizer. The optimal tasks
plan are provided to the next level of the optimizer, where the
operations of the tasks deployed on the devices are optimized
to form an optimal operation plan. The device correlation is
computed, which forms the objective function for this level.
Once the optimal operation plans for devices are found with
level 2 of the optimizer, the same information is provided to
form a network of devices in which the devices have more rel-
evancy with each other. Based on this optimal orchestration,
the tasks are allocated with the computed operation plans and
the mission is monitored.

The flow of the sequence of operations among various
processes of the orchestration is illustrated in figure 4. IoT
devices are registered with edge nodes typically a Raspberry
PI with an IoT server acting as a gateway for external world
application and physical things. A typical IoT device has a
name, the port to which it is connected, an identifier which
is unique for it, a location [latitude and longitude], type of
device whether it is an actuator or a sensor or a hybrid device
having both capabilities and finally, the data it senses. Once
the device is registered to the edge node, the same information
is passed to the device virtualizer where it is represented in the
cyber domain in the form of a virtual object. A virtual object
is the digital counterpart of a physical IoT device as defined
in many recent research studies. The task generator modules
tasks and micro-tasks based on mission requirements and the
set of these generated entities are passed to the device-mapper
and task allocator. The device-mapper also receives virtual
objects from the device virtualizer, and couple it with devices
to make an initial operation plan. At this point, the operation
plan and the arrangement of micro-tasks are not optimized,
and hence, the lifeline of the first level of the optimizer is
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instantiated. The role of the optimizer in this level is to find
an arrangement of micro-tasks [operations] which maximizes
the surplus time. Once the optimal surplus time is achieved,
it is passed alongside the device operation plan to find the
optimal correlation among devices in an operation plan. The
role of this optimizer is also to maximize the correlation of
devices based on the objective function defined in earlier
sections. Finally, the number of devices, the operation plan
and the optimal SPT-based task arrangement are passed to
the third level of the optimizer to find the optimal network
by maximizing the CCIL. The mechanism to compute CCI is
already illustrated in earlier sections. Once the optimization
is performed, the optimal orchestration plan is shared with
the edge node. The edge node, in turn, forwards it to task
allocator, which allocate the operation inside the tasks to
devices. The devices are being operated and finally monitored
for the correct operation.

A. DESIGN OF MULTI-LEVEL OPTIMIZER

In order to optimize the problem, we have divided the solu-
tion into different sub-problems. Particle swarm optimization
(PSO) is used as a base algorithm. PSO is based on the meta-
heuristic class of optimization algorithms. It is first intro-
duced by Kennedy and Eberhart. PSO works by generating
particles equal to the size of problem variables. Each particle
p has a position x(p) € R” and a velocity v(p) € R” in the
solution space. Apart from position and velocity, Pbest and
Gbest are also used. Pbest is used for personal best, which
is the best solution locally for a particular particle, whereas
Gbest is the global best solution for every particle. Variables
such as ¢y, c2 and w are used as the local best solution learning
rate, the global best solution learning rate and the particle
inertia, respectively. Finally 1, e WV 0 <r;,mm < 1.

In the start, particles are positioned on a purely random
basis in the solution search space. Initial speeds are also
assigned to each particle. Every particle is associated with
three metrics; the current position which represents the cur-
rent solution in search space, the velocity which determines
which way the particle will move in the search space and
lastly, the performance, which is the cost value of the objec-
tive function and in terms of fitness. The movement of the
particle is based on the following two equations; equation (8)
computes the velocity and equation (9) move the particle to
the next position in search space.

v(p) = wv(p)+ciri(Pbest(p) —x(p))+cara(Gbest(p)—x(p))
®
x(p) = v(p) + x(p) &)

For multi-level optimization, the global problem of optimal
orchestration is divided into three sub-problems; SPT opti-
mization, DCU optimization and CCI optimization. Multi-
level PSO (MLPSO) is designed as a new solution algorithm
which uses PSO in the backend. The use of multi-level opti-
mization approach follows three main rules; first, the opti-
mization path is split into multiple sub-path in their respective
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FIGURE 4. Sequence of Operations within the optimal orchestration architecture.

sub-space, the results collected in each sub-path is provided
as an input parameter to the next level, and finally, the eval-
uation is performed at each respective level is also summed
up to find the overall evaluation. This is has been illustrated
in figure 5. It has been shown that on level 1 plane, the par-
ticles are moved to the global best position of that plane.
The optimal solution is provided to the next level (immediate
top plane) where the same optimization performed for the
input from level 1 output and a new objective function. The
same process is repeated to the next level at the topmost
level. In this paper, the first level deals with surplus time
optimization, the second level is device correlation utility
optimization, and the third level is cumulative correlation
index optimization for optimal network selection.

VI. IMPLEMENTATION ENVIRONMENT

In this section of the paper, the implementation environment
of the system is described in details. The technology stack
for this work is selected on a careful look of the recent
trend in research and development. Python is a programming
language which offers a variety of benefits not even for appli-
cation developers but also for researchers who are looking for
optimal architecture. The IoT server deployed on Raspberry
PI is programmed in a Python-based web framework named
Flask. Flask is very lightweight and is the preferred choice in
many research studies due to its modularity and on-demand
instantiation of libraries. For MLPSO, PySwarm library is
enabled, which provides a variety of swarm intelligence opti-
mization algorithms in which PSO is one of them. For result
analysis Bootstrap 3 and HTMLS5/CSS3 are used to visualize
them in a client application such as Chrome. Additionally,
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FIGURE 5. lllustration of Multi-level PSO and Particle movement.

we use MySQL for the persistence of data, TexTBlob library
for natural language processing and tokenization and jsPlumb
for drag-and-drop features, which is needed to intuitively
visualize the correlation among different objects in the mis-
sion plane. The summary of the technology stack used is
shown in table 8.

On the embedded hardware end, we mainly use three sen-
sors already discussed in table 3 and actuators such as LED
and Fan for notification and monitoring. We used two distinct
hardware Raspberry and Arduino. The Nova Dust sensor is
an analogue sensor, so it is convenient to connect it with
Arduino to avoid the need for any extra hardware for analogue
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TABLE 8. Technology Stack of Proposed Architecture.

Technology

Description

TABLE 9. Multi-level PSO paramters as a fair compromise between time
and accuracy.

System Specifications

Operating System

Programming Language

PC, Raspberry PI and Arduino
Windows 10 for PC Server, Raspbian for
Edge Raspberry PI

Python Flask, JavaScript, HTML, CSS

Optimization Algorithm PSO

Optimization Package Python PySwarm

Mission Analysis Package  TextBlob

Libraries Bootstrap 3, Jinja 3, jsPlumb for map-
ping

Server Flask Server

Database MySQL

Client Chrome and Firefox

Core Programming Lan-  Python 3

guage

IoT Devices Temperature Sensor, Humidity Sensor,
Wind Sensor, Fan Actuator and LED

actuator

v )
Q Data St: PCS )
C_ Data Staging ( erveq}/
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FIGURE 6. Embedded Hardware for Implementation of Optimal
Orchestration.

to digital conversion. The other two sensors are connected
with Raspberry PI as they can provide data in digital format,
and thus, Raspberry is a viable option. The implementation
hardware is pretty simple but is enough to demonstrate the
optimal orchestration on real mission-critical applications.
Figure 6 shows the setup. The conceptual setup is mapped
on the corresponding devices with dotted arrows. On the left
side is the Raspberry PI-based edge node while o the right-
hand side is the Arduino edge node. It has devices such as
dust sensor, MQ-2 CO, sensor and BME280 sensor.

VII. RESULTS

In this section of the paper, the results of the different
processes in mission-critical optimized orchestration is dis-
cussed. We use MLPSO for the optimization of surplus time,
device correlation utility and network cumulative correlation
index. The parameter of MLPSO is summarized in table 9.
Each level has a small number of particles which gets multi-
plied with the next level to produce almost a million recursive
solutions. Therefore, it is vital to have a fair compromise
between the consumption time to find the best solution and
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Level No. of particles No. of Generations
1 24 50

2 72 80

3 91 100

the accuracy of the solution, which is shown in the aforemen-
tioned table.

The learning factor ¢; and ¢ is taken as 1.23 and
1.31 respectively whereas the inertia coefficient w is taken
as 0.81. The results of the different level function are shown
in figure 7. The cost of each level optimization is shown
in respective subfigures. The first subfigure portrays surplus
time optimization. The cost is maximized with each iteration
as the objective is to maximize the cost. The number of
particles is taken as 50, and the number of iterations is taken
20 for level 1. The surplus time is 2 in the start, and the
optimizer repeatedly checks for best solution by moving the
particles in the optimal direction. The rate of finding the best
solution is very fast in the initial iterations, but as the solution
is getting closer to the optimal solution, the rate of change
is decreased drastically. This is why the slope of the graph
is approaching O after iterations 13. The optimal solution
shows a total of 22.7 seconds for the input tasks. In level 2,
the optimal solution of the level 1 is provided as discussed
earlier in the design section. The number of iterations is also
added up to 40 in contrast to 20 in level 1. The optimizer takes
the tasks and their surplus time and find the optimal device
correlation. The correlation is based on the idle time in the
operation plan. DCU is the inverse of idle time, and the graph
shows that the idle time is decreasing with each iteration, and
thus the overall DCU is maximized, which is the objective
of PSO on level 2. Here also the rate of finding the best
solution is high, but when the particles are reaching closer to
the global best solution, the rate of change is approaching 0.
In level 2, the optimal DCU is recorded as 0.6. The optimal
task arrangement, coupled with highest correlated devices,
are provided to the next level. Subfigure 7(c) shows the third
and final level of PSO. In this layer, the network is optimized
based on CCI value. The higher the CCI value, the more
optimal, will be the solution.

In this level, the iterations are 80 for the same 50 particles.
The algorithms traverse different order of devices in the
networks and compute the CCI value and place it in gbest.
In the next iteration, it checks whether the current value is
better than gbest if it is, it replaces it with gbest, and this
process goes on till it finds the optimal best solution. The
graph reflects a steady increase in the CCI on each iteration
and the value is maximum on iteration number 76, after which
it remains the same. Table 1 shows the result of every 8"
iteration of level 3 PSO to form an optimal network.

For evaluation, we compared the proposed multi-level
PSO with a single-level PSO. In single-level PSO, we have
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FIGURE 7. MLPSO-based Optimization Result for Each Level.

implemented the same objective using a single cost function.
The single-level optimization by intuition is supposed to be
slow due to executing the objective sequentially. The exper-
iments are carried out, and it was found that the single-level
optimization is not only on the slower end but also found to
have less accuracy — the optimal cost which the single-level
optimizer achieve always falls lower than the multi-level.
Since the objective of the paper is maximization, therefore,
the fitness of the single-level is always less. The significance
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TABLE 10. Allocation of micro-tasks (operations) on devices in Optimized

network.

OP No. Device 1 Device 2 CCI
80 HUTY-IAT7-[UT10-J4T8~ HT6-T7-UT10- 4TS~ 0.79
WT1-pTa-[ATo-}iT5- TQ-[AT5=J4T1-[iT3-

[T6- T3 WT2-[1T4

72 HT4- W T7-[UTQ-4T3- WT6-pT7-pT10-p78~ | 0.7
HT5-(AT8-[T1- A T2~ WTQ-JAT5=[T1 4T3~
HT6-HT10 HT2-[T4
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WT8=4T3- [ T54T9- T1-JAT3 {4 T5-[4T2-
WT1-pT2 WT4-pTS

40 WTT-JT10-[T6-HT4- 10~ JT6 - LT4- LT 0.31
WTQ-|TR-[T3-iT1- WT8-IUT3-4T5-4To-
UT5-pT2 WT1-p1T2
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HT6-HUT3 HT7-KT3

of multi-level optimization is illustrated in table 11. Iteration
column represents the iteration number and the correspond-
ing level. For instance, iteration 10-3 denotes 10th iteration of
level 3 optimization. The corresponding sequential iteration
number for single-level optimizer is 10 « 1 + 10 * 2 +
10 %3 = 60.

The solution is found to be more slower and also is not
achieving the same level as the multi-level PSO does. For
instance, the highest value of cost for level 1 is 21 in contrast
to 17 in single-level. The CPU time is also on the lower end.

As described in Introduction and Related Works sections,
task-level orchestration refer to processes on task level rather
than conventional service level. Automating process at this
granular level is more flexible than on service level, and
compliant with the demand of mission-critical IoT applica-
tions. For this, the processes of orchestration is simulated
with and without optimization to signify the contribution of
this work. We have simulated task generation and analyzed
surplus time with multi-level PSO. Task mapping on devices
to make an optimal operation plan is also optimized and
finally the network in which devices are registered are also
optimized with optimal task deployment. The results are
portrayed in figure 8.
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TABLE 11. Comparison of the results of Multi-level PSO with Single-level
PSO.

Iteration Multi-Level PSO Single-Level PSO
Cost Time (s) Cost Time (s)

10-1 21 0.1 17 0.7
20-1 23 0.5 19 1.2
10-2 0.3 1.1 0.1 4.2
20-2 0.5 22 0.3 6.6
30-2 0.56 35 0.35 10.2
40-2 0.58 4.1 0.45 12.1
10-3 0.2 0.6 0.09 15.2
20-3 0.28 1.5 0.1 22.1
30-3 0.32 73 0.15 28.2
40-3 0.38 12.5 0.21 38
50-3 0.44 214 0.23 41.2
60-3 0.52 25.1 0.29 51.5
70-3 0.57 31.2 0.37 66.2
80-3 0.58 36.2 0.41 79.2

Figure 8 portrays the simulation of tasks and the arrange-
ment with mere automation and optimal automation. The sim-
ulation is purely software-based, and the loop iterates till 740.
For each iteration, the respective operation is performed with
optimization using multi-level PSO and without optimization
by just computing the respective metrics. The results are
recorded in a file for both cases. Subfigure 8(a) illustrates
the first case of task generation and surplus time analysis
based on the arrangement of tasks. The vertical axis shows
the surplus time. Without optimization, the surplus time is
always lower than the optimized way of task generation. The
red line is always above the blue line, which depicts there is
always a subtle difference of surplus time with and without
optimization. The surplus time is always in the range of 22 to
25 seconds, but without optimization, it is around 16 seconds
on average.

Subfigure 8(b) the task mapping on devices to form an
operation plan. In the case of task generation, the difference
between optimized and non-optimized orchestration was not
subtle, but in the second level, the difference is quite visible.
The operation plan modelling is the most crucial process
in orchestration. If the operation plan is optimal, the task
deployment will be efficient, and the idle time of the CPU
will be minimum, and thus, more tasks can be added without
any deadline-miss. The clear gap between the two lines of
the graph illustrates the significance of optimization, which
would mean a subtle amount of idle time and efficiency is
optimized.

The last subfigure 8(c) portrays the task deployment on
the optimal network. The CCI of each network is given with
and without optimization. There is some overlap of the lines
within the graph, but the network CCI with optimization is
more than without optimization.

From these results, it has been signified that orchestration
at the task level in an optimal way can greatly unearth the
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FIGURE 8. MLPSO-based Optimization Result for Each Level.

flexibility which can be easily overlooked if the orchestration
is done in an ad-hoc manner. Consequently, the paper goal
is a step forward for the realization of mission-critical IoT
application by proposing an optimal orchestration architec-
ture, which was clearly felt in previous studies.

VIil. DISCUSSION

A. CONTRIBUTION TO STATE-OF-THE-ART METHODS

This paper proposed a design for mission-critical IoT applica-
tions based on their unique set of requirements. The proposed
approach is not only flexible and efficient but can also scale
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well with the addition of more devices pairs. The proposed
orchestration is flexible as in each level as it optimizes the
path of schedule by maximizing the gap of the scheduling
footprints with the critical path. This gap allows further
changes in the schedule and also the addition of new devices.
The less this gap is, the tighter will be the schedule and
consequently adding a single device pair can affect the real-
time behaviour of mission-critical IoT applications.

B. COMPLEXITY OF THE PROPOSED ALGORITHM FOR
OPTIMAL ORCHESTRATION

In this paper, we have designed a multi-level optimizer which
considers part of the solution space in each level and applies
the standard PSO algorithm. The general computational com-
plexity of PSO is in the order of O(p(n + C)), where p is the
population size, n is the number of iteration, and C is the cost
function. The proposed approach splits the solution into three
levels. If true parallelism is achieved, the computational com-
plexity of this approach is three times less than the complexity
of standard PSO algorithms for the same cost function.

C. RESULTS ANALYSIS

The results based on the proposed design produces a surplus
time of more than 20 seconds which in the cyber world is
considered high enough to execute more than ten tasks. This
flexibility leads to more robustness of the design, which is one
of the vital requirements of mission-critical IoT applications.
Secondly, the gap between the critical path and scheduling
plan also makes the proposed approach highly fault-tolerant.
In case any device failed, it has ample time to reschedule
the plan and deploy on the next highly correlated device.
The CCI function indicates that the network has devices of
very strong correlation which, in turn, reduces the cross-
network requests. This makes the proposed approach time-
efficient. The design of the optimizer is also better than the
general PSO on each level which makes the choice of multi-
level PSO more appropriate considering mission-critical
IoT applications.

D. LIMITATIONS

In this paper, it is assumed a scheduling pair of two devices,
i.e., sensor and actuator. The proposed design illustrates the
vertical scalability and flexibility when more device pairs are
added. Consequently, it faces some limitations in terms of
horizontal scalability when more devices are added to the
pair. In general mission-critical IoT applications, the devices
work in pair of sensor and actuator, which makes the work in
this paper a valuable contribution to state-of-the-art. Never-
theless, in future mission-critical applications, the proposed
work needs further investigation in terms of efficiency if the
device pairs are scaled horizontally.

IX. CONCLUSION

Mission-critical IoT applications have become a prime cat-
egory of modern IoT applications. Due to the distinctive
requirements of these applications, their architecture plays a
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vital role. In this paper, an architecture is proposed to address
the scalability and flexibility of mission-critical IoT appli-
cation and introduced a multi-level optimized orchestration
mechanism on task-level. The central goal of the optimizer
is to maximize the flexibility of the system and to make it
more scalable for newly added devices. Flexibility is achieved
with a three-level optimizer. The first level optimizes the
arrangement of the task in such a way to lead to maximum
surplus time. The second level arranges devices in a group
which have a stronger correlation than the rest of the possi-
bilities. The final layer optimized the network by registering
devices which lead to maximum correlation among them.
The results of the paper suggested that the optimal opera-
tion plan is flexible and scalable due to the lowest possible
idle time and highest possible surplus time, which has been
defined as quantitative measures of flexibility and scalability.
The results are also compared with single-level optimization,
which has been found to be not only on the slower end but
also could not achieve the same accuracy as multi-level PSO
does.
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