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ABSTRACT The Golden code has full-rate and full-diversity. However, its applications are limited because
of the very high detection complexity. The complexity of sphere decoding depends on the size of signal
set, M2, and the depth of search. Meanwhile, the complexity of fast essentially maximum likelihood (ML)
detection is still O(M2) for M -ary quadrature amplitude modulation (MQAM). In this paper, we propose
two reduced complexity detection schemes, fast essentially ML with detection subset and sphere decoding
with detection subset. Two theoretical bounds on the average bit error probability for the Golden code with
MQAM are also formulated in this paper. Simulation results demonstrate that both the fast essentially ML
with detection subset and sphere decoding with detection subset agree well with the formulated theoretical
bounds and can achieve the error performance of the conventional fast essentially ML detector and sphere
decoding.

INDEX TERMS Fast essentially ML detection, golden code, QR decomposition based detection, reduced
complexity detection, sphere decoding.

I. INTRODUCTION
Nowadays there is an ever-growing demand to increase
data transmission rate and improve communication reliability
in wireless communications. Multiple-input multiple-output
(MIMO) techniques can be used to increase data transmission
rate and/or improve communication reliability. In MIMO
systems, there is a trade-off between rate and reliability in
terms of the diversity-multiplexing gain [1]. The Golden code
is a linear dispersion space-time block code (LD-STBC) with
two transmit antennas [2]–[4] and achieves full-rate and full-
diversity. It has also been shown to exhibit attractive proper-
ties in terms of cubic shaping and non-vanishing minimum
determinant due to its algebraic structure [3]. The optimality
of the Golden code was studied in [4]. The Golden code
has also been considered for index [5], [6] and media-based
modulations [7]. An important application of the Golden
code is the IEEE 802.16e WiMAX standard [8]. Despite its
well-known advantages, extensive application of the Golden
code is limited due to the extremely high complexity imposed
by maximum likelihood (ML) detection. Specifically, this
is because the Golden code transmission matrix contains
four complex-valued symbols, resulting in an ML detection
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complexity which is proportional to O(M4), where M is the
modulation order.

In order to reduce the ML detection complexity, a fast
ML decoding algorithm has been proposed in [8]. [8] proved
that the Golden code is fast-decodable. Furthermore, [8] pre-
sented an efficient implementation of the ML detector with a
worst-case complexity proportional toO(M2.5). Based on [8],
an efficient decoding technique based on the dimensionality
reduction of the search tree in sphere decoding was proposed
in [9]. The worst-case complexity of the proposed scheme
in [9] is O(M1.5). However, the error performance suffers
a 1 dB signal-to-noise ratio (SNR) loss compared to optimal
decoding. In [10], a fastest-known near-ML decoding scheme
was proposed. In this decoding scheme, the output of the
zero-forcing filter is passed through a likelihood-based relia-
bility metric calculator. Symbols deemed reliable are directly
decoded from the received signal. The symbols deemed unre-
liable are decoded via a reduced dimensional ML decoder
or near-ML decoder. The near-ML decoder greatly reduces
computational complexity; however, there is a possibility that
more than two symbols are unreliable. Hence, the compu-
tational complexity for more than two unreliable symbols
remains very high.

Based on the structure of the Golden code, a fast
essentially ML detection scheme was proposed in [11].
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The fast essentially ML detection scheme partitions four
complex-valued symbols into two pairs of symbols. Given
one pair of symbols, the likelihood maximization func-
tion can be easily solved. The detection complexity of the
fast essentially ML algorithm is O(M2). However, the fast
essentially ML detection algorithm [11] is only applica-
ble for low-order modulation. For high-order modulation,
M ≥ 16, the detection complexity remains impractically
high.

Sphere decoding is a detection algorithm that achieves
near-ML error performance. The detection complexity of
sphere decoding depends on the cardinality of the signal set
and the depth of search [12]. In [13], reduced complexity
sphere decoding has been proposed to decode the Golden
code. The proposed reduced complexity sphere decoding
in [13] focused on reducing the search depth. However, detec-
tion complexity remains relatively high.

Based on the above, it is evident that if the size of the set of
the given pair of symbols is reduced, then the detection com-
plexity of the fast essentially ML detection algorithm in [11]
and sphere decoding in [12], [13] may be further reduced.
This motivates us to propose two reduced complexity detec-
tion schemes for Golden code systems, fast essentially ML
with detection subset, which is based on the fast essentially
ML detection of [11] and QR decomposition, and sphere
decoding with detection subset. The two proposed reduced
complexity detection schemes greatly reduce the detection
complexity. For example, with a four receive antenna Golden
code system, the complexity of the proposed fast essentially
ML with detection subset is only O(2× 42) and O(2× 4.52)
for M -ary quadrature amplitude modulation (MQAM) with
M = 16 and M = 64, respectively. Furthermore, the
cardinality of signal set in the conventional sphere decod-
ing is reduced from M2 to 39.1 and 86.2 for 16QAM and
64QAM, respectively. To the best of the authors’ knowledge,
no other reduced complexity detection algorithms have been
investigated in the literature for Golden code systems. Fur-
thermore, two theoretical bounds on the average bit error
probability (ABEP) for the Golden code systemwithMQAM
are also presented in this paper.

The remainder of this paper is organized as follows: in
Section II, the system model of the Golden code is presented.
In Section III, we formulate two theoretical bounds on the
ABEP of the Golden code for MQAM. We then present
the two reduced complexity detection schemes based on
detection subset in Section IV. In Section V, we analyze the
computational complexity of the proposed detection schemes
and draw comparison with fast essentially ML detection and
the conventional sphere decoding. The numerical results are
demonstrated in Section VI. Finally, the paper is concluded
in Section VII.
Notation: Bold lowercase and uppercase letters are used

for vectors and matrices, respectively. [·]T , (·)H , | · | and
‖ · ‖F represent the transpose, Hermitian, Euclidean and
Frobenius norm operations, respectively. D(·) is the con-
stellation demodulator function. (·)−1 is the inverse. E{·} is

the expectation operation. det(·) denotes determinant. j is a
complex number.

II. SYSTEM MODEL
Consider a Golden code system with NT = 2 transmit
antennas and NR receive antennas, NR ≥ NT [4]. Information
bits are grouped into four bit streams, bi = [bi,1 bi,2 · · · bi,r ],
i ∈ [1 : 4], r = log2M , where M is the modulation order.
Each bit stream bi is then mapped onto a constellation point xi
of MQAM, xi ∈ �M , where �M is the signal set of MQAM
signals. The Golden code transmission matrix is given by [2]:

X = [X1 X2] =
[
x11 x21
x12 x22

]
, (1)

where x11 = 1
√
5
α(x1 + x2θ ), x22 = 1

√
5
ᾱ(x1 + x2θ̄ ), x12 =

1
√
5
α(x3 + x4θ ) and x21 = 1

√
5
γ ᾱ(x3 + x4θ̄ ), with θ = 1+

√
5

2 ,

θ̄ = 1 − θ , α = 1 + jθ̄ , ᾱ = 1 + j(1 − θ̄ ) and γ = j.
It is assumed that E{|xi|2} = ε�, i ∈ [1 : 4]. Let x11 ∈ �G,
where �G is the signal set of x11. Then Appendix A shows
that x12 ∈ �G, x21 ∈ �G and x22 ∈ �G. For convenience we
regard xij, i, j ∈ [1 : 2], as Golden symbols.
The received signal in time slot i, i ∈ [1 : 2] is given by:

yi = H iX i + ni, (2)

where yi ∈ CNR×1 is the signal vector received in the ith,
i ∈ [1 : 2] time slot. H i = [hi,1 hi,2] is the channel
gain matrix corresponding to the ith time slot with CNR×1

column vectors hi,1 and hi,2. ni ∈ CNR×1 is the additive
white Gaussian noise (AWGN) vector for the ith time slot.
The entries of hi,j and ni are independent and identically
distributed (i.i.d.) complex Gaussian random variables (RVs)
distributed as CN (0,1) and CN (0, 2ε�

ρ
), respectively. ρ

2ε�
is

the average SNR at each receive antenna.

III. PROPOSED BOUNDS ON ABEP ANALYSIS OF THE
GOLDEN CODE
To the best of the authors’ knowledge, the error performance
analysis of the Golden code system has not been reported
in the open literature. In this section, two bounds on the
ABEP are formulated. We refer to these bounds as bound A
and bound B. Bound A is based on the transmission of the
equivalent single symbol xi, where xi ∈ �M , and bound B
is based on the transmission of the equivalent single pair of
Golden symbols xij, where xij ∈ �G.

A. BOUND A

Let X̂ =
[
x̂11 x̂21
x̂12 x̂22

]
, then the conditional pairwise error proba-

bility (PEP) P(X → X̂ |H1,H2) is defined as the transmitted
codeword matrix X which is detected as X̂ at the receiver.
Appendix B shows that the bounded PEP corresponds to the
assumption that at high SNR only one symbol is detected
with errors, while the remaining three symbols are detected
correctly. There are two cases for this assumption:
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Case 1: Suppose x2 is detected with errors, while xj,
j ∈ [1, 3 : 4] are detected correctly. Then (2) may be
simplified as:

zi = gi1x2 + ni, i ∈ [1 : 2], (3)

where g11 =
1
√
5
αθh1,1 and g21 =

1
√
5
ᾱθ̄h2,2. Let σ 2

1 =∣∣∣ 1
√
5
αθ

∣∣∣2 and σ 2
2 =

∣∣∣ 1
√
5
ᾱθ̄

∣∣∣2. The entries of g11 and g21 are

i.i.d. complex Gaussian RVs distributed as CN(0, σ 2
1 ) and

CN(0, σ 2
2 ), respectively.

Case 2: Suppose x1 is detected with errors, while xj,
j ∈ [2 : 4] are detected correctly. Then (2) may be simplified
as:

zi = gi2x1 + ni, i ∈ [1 : 2], (4)

where g12 =
1
√
5
αh1,1 and g22 =

1
√
5
ᾱh2,2. Since

∣∣∣ 1
√
5
α

∣∣∣2 =∣∣∣ 1
√
5
ᾱθ̄

∣∣∣2 and
∣∣∣ 1
√
5
ᾱ

∣∣∣2 = ∣∣∣ 1
√
5
αθ

∣∣∣2 the entries of g12 and g22
are i.i.d. complex Gaussian RVs distributed as CN(0, σ 2

2 ) and
CN(0, σ 2

1 ), respectively.
The equivalent models of error performance analysis in

either (3) or (4) can be regarded as the transmission of
either x1 or x2 over non-identical fading channels with fad-
ing variances σ 2

1 and σ 2
2 , respectively. Hence, the maximal

ratio combining (MRC) technique with non-identical fading
channels [14] can be used to derive the error performance of
the above equivalent model.

Based on the exact symbol error probability of MQAM in
Equ. (8.10) in [14], and the approximated expression of the
Gaussian Q-function using the trapezoidal rule, bound A on
the ABEP of MQAM Golden code systems may be derived
as:

pe ≥
a

n log2M

[
1
2

2∏
k=1

(
2

2+ βkbγ̄

)NR
−

(a
2

)
×

2∏
k=1

(
1

1+ βkbγ̄

)NR
+ (1− a)

n−1∑
i=1

2∏
k=1

(
ui

ui + βkbγ̄

)NR
+

2n−1∑
i=n

2∏
k=1

(
ui

ui + βkbγ̄

)NR ]
, (5)

where n ≥ 6 is the number of summations for convergence,
γ̄ =

ρ
2ε�

, a = 1 − 1
√
M
, b = 3

M−1 , β1 = σ 2
1 , β2 = σ 2

2 and

ui = 2 sin2 ( iπ4n ).

B. BOUND B
In subsection A, bound A is derived based on the assumption
that at high SNR only one symbol is detected with errors,
while the remaining three symbols are detected correctly.
In this subsection, we will derive bound B based on the
assumption that at high SNR only one pair of Golden symbols

is detectedwith errors, while the other pair of Golden symbols
is detected correctly.

Suppose that the pair of Golden symbols (x11, x22) is
detected with errors, while the other pair of Golden symbols
(x12, x21) is detected correctly, then (2) may be simplified as:

zi = hi,ixii + ni, i ∈ [1 : 2]. (6)

Let Xp = (x11, x22), where p is the decimal index of the pair
of Golden symbols Xp, p ∈ [1 : M2]. Then bound B on the
ABEP for the Golden code system is defined as:

pe ≤
1
M2l

M2∑
p=1

M2∑
p̂ 6=p

e(p, p̂)P(Xp→ X p̂), (7)

where P(Xp → X p̂) is the pairwise error probability (PEP)
that the transmitted Golden symbols Xp is detected as X p̂ at
the receiver. l = log2M

2 and e(p, p̂) represents the number
of bit errors for the associated PEP event.

Since both x11 and x22 convey the same information,
we also regard x11 and x22 as a type of space-time labeling
diversity (STLD) [15]. The PEP P(Xp → X p̂) of STLD has
been derived in [15], which is given by:

P(Xp→ X p̂) =
1
2n

[
1
2

(
1+

γ̄

4
d1

)−NR (
1+

γ̄

4
d2

)−NR
+

n−1∑
k=1

(
1+

γ̄

4
d1
vk

)−NR (
1+

γ̄

4
d2
vk

)−NR ]
,

(8)

where d1 =
∣∣x11 − x̂11∣∣2, d2 = ∣∣x22 − x̂22∣∣2, vk = sin2( kπ2n )

and as earlier n ≥ 6 is the number of summations for
convergence.

IV. REDUCED COMPLEXITY DETECTION SCHEMES FOR
THE GOLDEN CODE
The optimal detection for the Golden code is ML detec-
tion. However, the complexity of ML detection is propor-
tional to O(M4). There are two near-ML error performance
detection schemes for the Golden code: fast essentially ML
detection [11] and sphere decoding [12]. The complexity of
the fast essentially ML detection is proportional to O(M2),
while the complexity of sphere decoding also depends on the
cardinality of the the Golden symbols, M2. As stated earlier,
we may reduce the complexity of the detection scheme if we
reduce the size of the set of the given pair of symbols. Hence,
in this section, we focus on reducing the signal detection size
for a given pair of Golden symbols. We firstly present the
conventional sphere decoding for theGolden code, then based
on the fast essentially ML detector [11] and QR decompo-
sition, we propose a reduced complexity detection scheme
for fast essentially ML by employing a detection subset.
Finally, we propose a reduced complexity detection with
sphere decoding based on detection subset.
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A. SPHERE DECODING OF GOLDEN CODE
Sphere decoding is an algorithm which can achieve the error
performance of ML detection. Sphere decoding for general
MIMO systems has been documented in detail in [12]. In this
paper, we firstly adapt the sphere decoding in [12] to decode
the Golden code.

Based on the QR decomposition of H i in (2), we have:

H i = QiRi, i ∈ [1 : 2], (9)

where Qi is a unitary matrix and Ri =
[
R1
i R

2
i

]T
, where

R1
i is an upper-triangular matrix with 2× 2 nonnegative real

diagonal elements and R2
i is a zero matrix with (NR − 2)× 2

dimension.
Substituting (9) in (2), and multiplying both sides by QHi ,

we have:

zi = RiX i + n̂i, i ∈ [1 : 2], (10)

where n̂i = QHi ni and zi =
[
z1i z

2
i

]T
= QHi yi. z

1
i is a vector

with 2 × 1 dimension and z2i is a vector with (NR − 2) × 1
dimension.

Based on (10), the sphere decoding of the Golden codemay
be formulated as:∥∥∥z11 − R1

1X1

∥∥∥2
F
+

∥∥∥z12 − R1
2X2

∥∥∥2
F
≤ r2, (11)

where r is the radius of sphere decoding.
Let pi = z1i − R

1
i X i, where pi actually is a function of X i,

then (11) can be written as:

2∑
j=1

∣∣p1,j∣∣2 + 2∑
j=1

∣∣p2,j∣∣2 ≤ r2, (12)

where pi,j is the jth entry of pi.
The upper-triangular matrix R1

i results in that p1,1 is a
function of x11, p1,2 is a function of x12, p2,1 is a function
of x22 and p2,2 is a function of x21. Typically, when j = 2 we
have: ∣∣p1,2∣∣2 (x11)+ ∣∣p2,2∣∣2 (x22) ≤ r2, (13)

Note that both x11 and x22 in (13), convey the same
information.

Now sphere decoding searches x11 and x22 to meet the
constraint in (13), where x11 ∈ �G and x22 ∈ �G. That
is, |p1,2|2 (x11) + |p2,2|2 (x22) lies inside a hyper-sphere of
radius r .

After x11 and x22 are found to meet the constraint in (13),
we then have:∣∣p1,1∣∣2 (x12)+ ∣∣p2,1∣∣2 (x21) ≤ r2 − |p2|2 (x11, x22) , (14)

where |p2|2 (x11, x22) =
∣∣p1,2∣∣2 (x11)+ ∣∣p2,2∣∣2 (x22).

Also note that both x12 and x21 in (14), convey the same
information.

Again sphere decoding searches x12 and x21 to meet the
constraint in (14), where x12 ∈ �G and x21 ∈ �G.

B. PROPOSED FAST ESSENTIALLY ML WITH
DETECTION SUBSET
The complexity of detection for the above sphere decoding is
proportional to Ld , where L is the cardinality of �G, and d
is the depth of search. In the MQAM Golden code system
L is large, since L = M2. In this subsection, we propose
a reduced complexity detection, fast essentially ML with
detection subset, which is based on the fast essentially ML
detector in [11] and QR decomposition. There is a primary
difference between the proposed detector and the fast essen-
tially ML detector in [11]. The fast essentially ML detection
scheme exhaustively searches the pair of symbols, while the
proposed detector only searches a small subset of the symbol
pairs. In the following discussions, we firstly present the fast
essentially ML detection scheme of [11] and then present the
proposed fast essentially ML with detection subset. The fast
essentially ML detector [11] is summarized below.

The received signal given by (2), may be written as:

y1 =
1
√
5
αh1,1(x1 + x2θ )+

1
√
5
αh1,2(x3 + x4θ )+ n1,

(15.1)

y2 =
1
√
5
γ ᾱh2,1(x3 + x4θ̄ )+

1
√
5
ᾱh2,2(x1 + x2θ̄ )+ n2.

(15.2)

Let

Y =
[
y1 y2

]T
, G1 =

1
√
5

[
αh1,1 αh1,2
ᾱh2,2 γ ᾱh2,1

]
,

G2 =
1
√
5

[
αθh1,1 αθh1,2
ᾱθ̄h2,2 γ ᾱθ̄h2,1

]
, S =

[
x1 x3

]T
,

C =
[
x2 x4

]T and N =
[
n1 n2

]T
.

Then (15.1) and (15.2) can be written as:

Y = G1S+ G2C + N . (16)

Ignoring noise N in (16), the pair S of symbols can be
estimated, given the pair C of symbols:

S = (GH1 G1)−1GH1 (Y − G2C). (17)

Alternatively, the pair C of symbols can be estimated, given
the pair S of symbols:

C = (GH2 G2)−1GH2 (Y − G1S). (18)

The condition to choose either (17) or (18) depends on
det(GH1 G1) > det(GH2 G2) or det(GH1 G1) < det(GH2 G2) [11].
If det(GH1 G1) > det(GH2 G2), (17) is used to estimate S given
the pair C of symbols. Otherwise (18) is used to estimate C
given the pair S of symbols.
Note, in [11] either (17) or (18) will be used in the fast

essentially ML detection scheme based on det(GH1 G1) >

det(GH2 G2) or det(GH1 G1) < det(GH2 G2). However, it is
recommended that both (17) and (18) are used in the proposed
reduced complexity detection scheme.
The complexity of (17) or (18) is O(M2) because ML

detection needs to exhaustively search the entire set of Golden
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symbols [11]. For high-order modulation,M ≥ 16, the above
detection complexity remains very high.

Next, we present the proposed reduced complexity detec-
tion scheme.

Based on the Golden code matrix in (1), we have x11 =
1
√
5
α(x1 + x2θ ), x22 = 1

√
5
ᾱ(x1 + x2θ̄ ), x12 = 1

√
5
α(x3 + x4θ )

and x21 = 1
√
5
γ ᾱ(x3 + x4θ̄ ). We can easily obtain:

x1 =

√
5
µ

(
θx22
ᾱ
−
θ̄x11
α

)
, (19.1)

x2 =

√
5
µ

(x11
α
−
x22
ᾱ

)
, (19.2)

x3 =

√
5
µ

(
θx21
γ ᾱ
−
θ̄x12
α

)
, (19.3)

x4 =

√
5
µ

(
x12
α
−
x21
γ ᾱ

)
, (19.4)

where µ = θ − θ̄ .
If x11, x12, x21 and x22 are known then x1, x2, x3 and x4

can be estimated using (19.1) to (19.4). x11, x12, x21 and x22
can be estimated based on QR decomposition, which will be
explained below.

QR decomposition has been discussed in Subsection A.

Let z1i =
[
z11i z12i

]T , R1
i =

[
r11i r12i
0 r22i

]
. From (10), xij,

i, j ∈ [1 : 2] can be estimated as:

x̂12 = z121 /r
22
1 , (20.1)

x̂11 =
(
z111 − r

12
1 x12

)
/r111 , (20.2)

x̂22 = z122 /r
22
2 , (20.3)

x̂21 =
(
z112 − r

12
2 x22

)
/r112 . (20.4)

The error performance of the above detection using (19.1)
to (19.4) and (20.1) to (20.4) is degraded, therefore the pro-
posed fast essentially ML with detection subset, is based on
the above detection together with both (17) and (18). Thus,
in the proposed detection scheme, wemay form signal subsets
based on the estimations from (19.1) to (19.4) and (20.1)
to (20.4), then use these signal subsets to replace the whole
signal sets in (17) and (18), in order to substantially reduce
detection complexity.
Definition 1: Given an ith symbol xi, an ith sym-

bol detection subset1 (SDS) is defined as �(xi, δ) ={
xj, |xj − xi|2 ≤ δ, j ∈ [1 : M ]

}
.

For example, if the SDS only contains the nearest neigh-
bors, then the average cardinality L̄ is 4 and 4.5 for 16QAM
(δ = 4) and 64QAM (δ = 4), respectively. For M ≥ 16, the
detection complexity in (17) or (18) can be greatly reduced if
the SDS is used to replace the entire signal set.

Hence, the proposed reduced complexity detection scheme
is summarized as follows:

1Note, based on Definition 1, the worst-case subset cardinality is M for
the fast essentially ML with detection subset.

Initialization: Construct an SDS for each symbol xi,
i ∈ [1 : M ].
Step 1: Perform QR decomposition and calculate zi based

on (10), i ∈ [1 : 2].
Step 2: Estimate x11, x12, x21 and x22, using (20.1) to

(20.4).
Step 3: Estimate xi, i ∈ [1 : 4], using (19.1) to (19.4).
Step 4:Determine

[
x̂1, x̂2, x̂3, x̂4

]
, given x2 ∈ �(x2, δ) and

x4 ∈ �(x4, δ) using:

S̃(C) = (GH1 G1)−1GH1 (Y − G2C),

Ŝ = D(S̃(C)), (21.1)[
x̂1, x̂2, x̂3, x̂4

]
= min

x2∈�(x2,δ)
x4∈�(x4,δ)

{‖Y − (G1Ŝ(C)+ G2C)‖2F },

(21.2)

and, determine
[
x̂1, x̂2, x̂3, x̂4

]
, given x1 ∈ �(x1, δ) and x3 ∈

�(x3, δ) using:

C̃(S) = (GH2 G2)−1GH2 (Y − G1S),

Ĉ = D(C̃(S)), (22.1)[
x̂1, x̂2, x̂3, x̂4

]
= min

x1∈�(x1,δ)
x3∈�(x3,δ)

{‖Y − (G1S+ G2Ĉ(S))‖2F }.

(22.2)

Then, given d24min, the minimum distance calculated in
(21.2), and d13min, the minimum distance calculated in (22.2),
we choose x̂1, x̂2, x̂3 and x̂4 from (21.2) if d24min < d13min,
otherwise we choose x̂1, x̂2, x̂3 and x̂4 from (22.2).

C. PROPOSED SPHERE DECODING WITH DETECTION
SUBSET
The detection complexity of the proposed fast essentially ML
with detection subset is only O(2 × L̄2). Since L̄ < M ,
a reduction in complexity is evident compared to the fast
essentially ML detector of [11]. This motivates us to replace
the whole signal set with the subset in (13) and (14) in sphere
decoding. In this subsection, we propose a sphere decoding
algorithmwith detection subset. The detection subset is given
in Definition 2.
Definition 2: Given a pair of Golden symbols, Xp =

(x11, x22) or Xp = (x12, x21) in the conventional Golden
code. A detection subset2 of Xp is defined as �

(
Xp, δs

)
={(

x̂11, x̂22
)
,
∣∣x11 − x̂11∣∣2∣∣x22 − x̂22∣∣2 ≤ δs, x̂11, x̂22 ∈ �G

}
.

For example, for NR = 4, if we set δs = 16 for 16QAM
and δs = 28.8 for 64QAM, then the average cardinality L̄s
of Golden symbols is reduced from 162 and 642 to 39.1 and
86.2 for 16QAM and 64QAM, respectively.
The proposed sphere decoding with detection subset is

summarized as follows:
Initialization: Construct detection subset for each pair of

Golden symbols, Xp = (x11, x22) and Xp = (x12, x21), xij ∈
�G, i, j ∈ [1 : 2].

2Note, based on Definition 2, the worst-case subset cardinality is M2 for
the sphere decoding with detection subset.
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Step 1: Perform QR decomposition and calculate zi based
on (10), i ∈ [1 : 2].
Step 2: Estimate x11, x12, x21 and x22, using (20.1) to

(20.4).
Step 3: Find detection subset for pairs of Golden symbols,

(x11, x22) and (x12, x21).
Step 4: Perform sphere decoding with detection subset

based on (13) and (14).

V. COMPLEXITY ANALYSIS
In this section, we discuss the detection complexity for the
proposed detection schemes.

For the detection complexity analysis of sphere decoding
we focus on the size of signal set to be searched. The conven-
tional sphere decoding exhaustively searches the entire signal
set. The size of signal set to be searched for the conventional
sphere decoding is M2, while the size of signal set to be
searched for the proposed sphere decoding with detection
subset is L̄2s . For example, with NR = 4 the size of signal
set for the proposed sphere decoding with detection subset is
only 39.1 and 86.2 for 16QAMand 64QAM, respectively. It is
easily seen that the detection complexity is greatly reduced.

Next, we discuss the detection complexity for proposed
fast essentially ML with detection subset. The computational
complexity is formulated in terms of floating point operations
(flops) [16]–[18], where each addition, subtraction, multipli-
cation, or division counts as a single flop.

A. COMPLEX OPERATIONS OF STEP 1
H i is an NR × 2 matrix. Performing a QR decomposition,
we require 8NR − 16

3 flops for each i via the Householder
algorithm [16]. Computation of (Qi)

Hyi in (10), for i ∈
[1 : 2]. Qi is an NR × NR matrix, while yi is an NR × 1
vector. This requires N 2

R multiplications and NR(NR − 1)
additions for each i. The overall number of flops for Step 1 is:
σStep1 = 4N 2

R + 14NR − 32
3 .

B. COMPLEX OPERATIONS OF STEP 2
Step 2 estimates x11, x12, x21 and x22 based on (20.1)-(20.4).
The overall number of flops for Step 2 is then: σStep2 = 8.

C. COMPLEX OPERATIONS OF STEP 3
Estimating each xi needs two multiplications and one addi-
tion. The overall flops of Step 3 is: σStep3 = 12.
d. Complex operations of Step 4:
In this step, we are required to compute (21.1), (21.2)

and (22.1), (22.2). Since the complexity imposed by
the computation of (21.1), (21.2) or (22.1), (22.2) is
identical, we may analyze (22.1) and (22.2). In (22.1),
since the constellation demodulator function represents a
one-to-one mapping [16], [17], only the computation of
(GH2 G2)−1GH2 (Y − G1S) imposes complexity. The number
of flops for (GH2 G2)−1GH2 (Y − G1S) is (44NR + 9). Note,
we have employed an LU decomposition to find the inverse
of the matrix A [18]. The detail derivation is in Table 1.

TABLE 1. Complexity analysis of (GH
2 G2)−1GH

2 (Y − G1S).

TABLE 2. Complexity analysis of (22.2).

Given x1 and x3, the number of flops for (22.2) is
(20NR − 1). The detail derivation is in Table 2.
Since the average cardinality is L̄ the overall number of

flops for Step 4 is (20NR − 1)L̄ + 44NR + 9.
The overall number of complex operations imposed by the

proposed reduced complexity detection is expressed as:

σproposed = 4N 2
R + (20L̄ + 58)NR + 29− L̄ −

32
3
. (23)

Based on the above calculation of flops, the overall number of
flops for the fast essentially ML detection algorithm in [11]
can be calculated, and is expressed as:

σfML = 20M2NR + 44NR −M2
+ 9. (24)

Define the percentage of complexity reduction for the pro-
posed reduced complexity fast essentially ML detection
based on detection subset compared to the fast essentiallyML
detection algorithm [11] as:

β =
σfML − σproposed

σfML
× 100. (25)

Suppose the SDS only contains the nearest neighbors, the
average cardinality L̄ is 4 and 4.5 for 16QAM and 64QAM,
respectively, when NR = 4. In comparison to the fast
essentially ML detector in [11], for NR = 4 the proposed
fast essentially ML with detection subset results in a 94.5%
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and 99.6% complexity reduction for 16QAM and 64QAM,
respectively.

where A = GH2 G2, B = (GH2 G2)−1GH2 and D = Y −G1S.
where E = G1S, F = G2Ĉ(S), andW = Y − (E+ F).

VI. NUMERICAL RESULTS
In this section, we firstly present a guideline of using the
theoretical bounds for selection of detection subset, and then
present the simulation results.

A. SELECTION OF SDS
In this subsection, we discuss how to use the theoretical
bounds as a guideline to select detection subset for the pro-
posed detection schemes.

The SDS in Definition 1 depends on δ. Given an MQAM
Golden code the set based on δ can be easily gener-
ated based on the calculation of Euclidean distance. For
example, the set based on δ for 16QAM Golden code is
{0, 4, 8, 16, 20, 32, 36, 40, 52, 72}. The detection complexity
is proportional to the size of δ. Hence, a smaller δ results in a
lower detection complexity. Thus, the objective of selecting
the SDS is to choose a small δ which can achieve the error
performance of the fast essentially ML detection in [11].
Suppose we set δ = 4, the SDS only contains the nearest
neighbors. Then bound A given by (5) on ABEP of MQAM
Golden code system, becomes:

pe ≥
a

n log2M

[
1
2

2∏
k=1

(
2

2+ βkbγ̄

)NR
+

n−1∑
i=1

2∏
k=1

(
ui

ui + βkbγ̄

)NR
+

2n−1∑
i=n

2∏
k=1

(
ui

ui + βkbγ̄

)NR ]
. (26)

The SDS in Definition 2 depends on δs. Similar to the above
discussion, boundB given by (7) onABEP ofMQAMGolden
code system, becomes:

pe ≤
1
M2l

M2∑
p=1

∑
X p̂∈�(Xp,δs)

e(p, p̂)P(Xp→ X p̂). (27)

The evaluated bound A based on (5) and bound A based
on (26) with δ = 4 for 16QAM and 64QAM Golden code
with NR = 4 are shown in Fig. 1.

The theoretical results in Fig. 1 show that the error per-
formance of (26) matches the error performance of (5) when
SNR is greater than 10 dB and 16 dB for 16QAMand 64QAM
Golden codes, respectively. That guides us to set δ = 4 in
the proposed fast essentially ML detection for 16QAM and
64QAM Golden codes with NR = 4.

Similarly, the evaluated bound B based on (7) and bound
B based on (27) with different δs for 16QAM and 64QAM
Golden code withNR = 4 are shown in Fig. 2. The theoretical
results in Fig. 2 show that the error performance of (27) with

FIGURE 1. Comparison of theoretical bounds (5) and (26) showing choice
of δ.

FIGURE 2. Comparison of theoretical bounds (7) and (27) showing choice
of δs.

all δs almost matches the error performance of (7) when SNR
is greater than 15 dB and 21 dB for 16QAM and 64QAM
Golden codes. The results in Fig. 2 also show that there is
no significant difference of error performance with δs = 16
and δs = 28.8 for 16QAM Golden code and δs = 28.8 and
δs = 51.2 for 64QAM Golden code. Taking into account
the detection complexity and the error performance of (27)
to achieve the error performance of (7), we set δs = 16 and
δs = 28.8 for 16QAM and 64QAM Golden code, respec-
tively, in the proposed sphere decoding with detection subset.
Note, the above is explained for the case of NR = 4. For
NR = 3, a similar approach may be used.

B. SIMULATION RESULTS
In this subsection, we present the simulation results for the
proposed sphere decoding with detection subset and the pro-
posed fast essentially ML with detection subset for M = 16
and M = 64 using NR = 3 and NR = 4. For comparison,
we also simulate the conventional sphere decoding and the
fast essentially ML detection in [11], and plot the formulated
theoretical bounds on the ABEP in (5) and (7). The threshold
δ and δs for the proposed fast essentially ML with detection
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TABLE 3. δ and δs for detection subset.

FIGURE 3. Comparison of error performance for 2 × 3, 16QAM and
64QAM Golden code including theoretical bounds.

FIGURE 4. Comparison of error performance for 2 × 4, 16QAM and
64QAM Golden code including theoretical bounds.

subset and the proposed sphere decoding with detection sub-
set are shown in Table 3.

The corresponding average subset cardinalities L̄ and L̄s
of MQAM symbols and Golden symbols are also shown
in Table 3. A Rayleigh frequency-flat fading channel with
AWGN, as described in (2) is considered. It is assumed that
the channel state information is fully known at the receiver.

Table 3 shows that the average subset cardinalities of
MQAMsymbols andGolden symbols decrease as the number
of receive antennas increase. Fig. 3 and Fig. 4 show the
simulation results for 2× 3 and 2× 4 Golden code systems,
respectively.

Simulation results presented in Fig. 3 and Fig. 4 show
that both fast essentially ML detection and sphere decoding
achieve the same error performance. It is further shown that
both fast essentially ML with detection subset and sphere
decoding with detection subset agree with the formulated
theoretical bounds and can achieve the error performance
of the conventional fast essentially ML detector and sphere
decoding.

VII. CONCLUSION
Based on the fast essentially ML detection in [11] and
QR decomposition, a reduced complexity detection scheme
with detection subset for the Golden code with MQAM
was proposed. The proposed scheme matches the error per-
formance of the conventional fast essentially ML detection
and only has a complexity O(2 × 42) and O(2× 4.52)
for 16QAM and 64QAM, respectively. For NR = 4,
the proposed reduced complexity detection scheme results
in a 94.5% and 99.6% complexity reduction for 16QAM
and 64QAM, respectively, compared to the fast essen-
tially ML detection in [11]. A reduced complexity detec-
tion based on sphere decoding with detection subset was
also presented. Two theoretical bounds on the ABEP for
MQAM was further derived and validated by simulation
results.

APPENDIX A
From (1), we have:

1
√
5
α(x1 + x2θ ) = β1ejθ1x1 + β2ejθ2x2, (28)

where β1 = 0.5257, β2 = 0.8507, θ1 = θ2 = −31.71750.
Again from (1), we also have:

1
√
5
ᾱ(x1 + x2θ̄ ) = β2ej

(
θ1+900

)
x1 + β1ej

(
θ1−900

)
x2. (29)

For square MQAM modulation, if x1 ∈ �M then ej90
0
x1 ∈

�M . Similarly if x2 ∈ �M then e−j90
0
x2 ∈ �M . So if x11 =

1
√
5
α(x1 + x2θ ) ∈ �G, then x22 = 1

√
5
ᾱ(x1 + x2θ̄ ) ∈ �G.

Similarly, we can also prove x12 ∈ �G and x21 ∈ �G.

APPENDIX B
The signal vector (2) can be rewritten as:

yi = hi,1xi1 + hi,2xi2 + ni, i ∈ [1 : 2]. (30)

The conditional PEP P(X → X̂ |H1,H2) is given by:

P(X → X̂ |H1,H2) = P (
2∑
i=1

‖yi − (hi,1xi1 + hi,2xi2)‖2F

≥

2∑
i=1

‖yi − (hi,1x̂i1 + hi,2x̂i2)‖2F ) .

(31)
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Substituting (30) into (31) based on |a + b|2 ≥ |a|2 − |b|2,
(31) is simplified into:

P(X → X̂ |H1,H2)

= P ( 2
2∑
i=1

‖ñi‖2F

≥

2∑
i=1

‖hi,1(xi1 − x̂i1)+ hi,2(xi2 − x̂i2)‖2F ) . (32)

Let A = ‖h1,1(x11 − x̂11)‖2F + ‖h2,2(x22 − x̂22)‖2F and B =
‖h1,2(x12 − x̂12)‖2F + ‖h2,1(x21 − x̂21)‖

2
F .

Again, based on |a + b|2 ≥ |a|2 − |b|2, (32) is further
simplified into:

P(X → X̂ |H1,H2) = P

(
2

2∑
i=1

‖ñi‖2F ≥ A− B

)
if A ≥ B, (33.1)

or

P(X → X̂ |H1,H2) = P

(
2

2∑
i=1

‖ñi‖2F ≥ B− A

)
if B > A. (33.2)

Since 2
∑2

i=1 ‖ñi‖
2
F ≥ A ≥ A − B, we have

P(2
∑2

i=1 ‖ñi‖
2
F ≥ A − B) ≥ P(2

∑2
i=1 ‖ñi‖

2
F ≥ A). Then

(33.1) can be bounded as:

P(X → X̂ |H1,H2) = P(2
2∑
i=1

‖ñi‖2F ≥ A− B)

≥ P(2
2∑
i=1

‖ñi‖2F ≥ A) if A ≥ B. (34.1)

Similarly (33.2) can be bounded as:

P(X → X̂ |H1,H2)

= P(2
2∑
i=1

‖ñi‖2F ≥ B− A)

≥ P(2
2∑
i=1

‖ñi‖2F ≥ B) if B > A. (34.2)

The bounded P(X → X̂ |H1,H2) in (34.1) is equivalent to
assuming that x12 and x21 are detected correctly, while x11
and x22 are detected with errors.

Similarly, the bounded P(X → X̂ |H1,H2) in (34.2) is
equivalent to assuming that x11 and x22 are detected correctly,
while x12 and x21 are detected with errors.
Suppose that a pair of symbols x11 and x22 are detectedwith

errors, while another pair of symbols x21 and x12 are detected
correctly, then (30) can be expressed as:

z1 = h1,1x11 + n1 = g11x1 + g12x2 + n1, (35.1)

z2 = h2,2x22 + n2 = g21x1 + g22x2 + n2, (35.2)

where g11 =
1
√
5
αh1,1, g12 =

1
√
5
αθh1,1, g21 =

1
√
5
ᾱh2,2 and

g22 =
1
√
5
ᾱθ̄h2,2.

Let X12 =
[
x1 x2

]
and X̂12 =

[
x̂1 x̂2

]
, the conditional

PEP P(X12 → X̂12|h1,1,h1,2) is defined as the transmitted
codeword X12 which is detected as X̂12 at the receiver.

Similar to the derivation of (31) to (34) the conditional PEP
P(X12→ X̂12|h1,1,h1,2) is bounded as:

P(X12→ X̂12|h1,1,h1,2) = P(2
2∑
i=1

‖ñi‖2F ≥ C − D)

if C ≥ D, (36.1)

or

P(X12→ X̂12|h1,1,h1,2) = P(2
2∑
i=1

‖ñi‖2F ≥ D− C)

if D > C, (36.2)

where C = (‖h1,1‖2F + ‖h2,2‖
2
F )|x1 − x̂1|2 and D =

(‖h1,2‖2F + ‖h2,1‖
2
F )|x2 − x̂2|

2.
Again, the bounded P(X12 → X̂12|h1,1,h1,2) in (36.1)

and (36.2) are equivalent to assuming that either x2 or x1
is detected correctly, while x1 or x2 is detected with errors,
respectively.
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