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ABSTRACT Crack junction is the crossing or branching point of different cracks in the pavement image.
It represents the branch of transverse crack or longitudinal crack, and describes the interlaced network
of alligator crack. It is a simple yet important factor to characterize the type and severity level of crack.
This paper is motivated to robustly detect crack junctions of any type and size in pavement image,
regardless of the pavement interferences. In this paper, the contrast between the crack junction and pavement
background is first enhanced by removing the large interferences and background. Then, based on the
structure characteristic of crack curves, correlation structure index is proposed to locate candidates of crack
junctions. Actual junctions are extracted among the candidates with the unified ball tensor structure after
the iterative tensor voting. The proposed method is tested with the concrete pavement images of public data
set of SDNET2018 and asphalt pavement images collected by the unmanned aerial vehicle on the highway
G45 in China. Experimental results demonstrate that the proposed method can detect crack junctions with
the correctness of 0.891 and completeness of 0.887. It can be applied to junction detection on concrete and
alligator pavement with different noise and interference, and is promising to classify the crack type and
quantify the severity level.

INDEX TERMS Crack junction, correlation structure analysis, iterative tensor voting, structure
characterization.

I. INTRODUCTION
After the vast investment into the construction of transporta-
tion infrastructure, the post-construction maintenance has
become a crucial problem for transportation agencies around
the world. Due to meteorological weathering, constant over-
loading, sub-base failure, poor drainage, etc., pavement con-
dition deteriorates greatly with such distresses as cracking,
rutting, pothole. To prevent these distresses causing passenger
injury and economic loss, pavement condition survey is con-
ducted regularly to make a timely and appropriate treatment
for the road maintenance. Among these pavement distresses,
crack is one of the most common and harmful distresses.

The associate editor coordinating the review of this manuscript and
approving it for publication was Utku Kose.

Traditionally, the pavement crack condition is investigated
manually. It is dangerous, costly, time consuming, and labor
intensive [1], [2]. With the rapid development of unmanned
aerial vehicles (UAV) and mobile sensing vehicles, it is con-
venient to obtain high-resolution optical pavement images.
Pavement crack condition can be analyzed at the office com-
puter using the collected images, which saves a large amount
of human and material resources.

As seen in Figure 1, crack junction is the crossing or
branching point of different cracks of the pavement image.
It represents the branch of transverse crack or longitudinal
crack. The interlaced network of alligator crack is decided
by junctions. Also, the number and distribution of crack
junctions tell the great details of the crack type, extent, and
severity level. Crack junction also indicates the type and
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FIGURE 1. Examples of the crack junction.

severity level change of pavement crack, which is adopted
and implemented in some protocols for crack classification
and severity level quantification [3]–[9]. They are simple yet
important factor to classify the crack and plays an important
role in reflecting the severity of pavement cracks, especially
for the alligator crack.

However, currently, there is a little literature dedicated to
the study of crack junction. Many researchers are focusing
on crack detection and classification with pavement images.
Some methods of crack detection and classification are
based on crack topology and a priori knowledge [10]–[12].
Ghanta et al. adopted the Hessian matrix to extract crack
direction and classified pavement cracks into three types
based on the direction and the area covered [13]. Arena et al.
focused on crack quantification by crack topology, such as
the orientation, length, width and aspect ratio of the cracks,
which were important to analyze the type and severity of
cracks [14]. Based on genetic programming and percolation
model, Qu et al, presented a robust and effective genetic
algorithm to detect real concrete surface cracks [15]. As the
key points of crack structures, Jiang extracted crack junctions
through iterative morphological thinning and skeleton analy-
sis and then detect the continuous crack curves between these
key points using the minimal path method [16]. On the other
hand, some researchers employed deep learning methods to
detect cracks automatically [17]–[21]. Cha et al. used the
convolutional neural networks (CNN) to identify the concrete
cracks from images. The proposed CNN method showed
robust performance compared to the traditional edge detec-
tion methods (i.e., Canny and Sobel) in the complex back-
ground [22]. Yang et al. applied fully convolutional network
to identify and measure diverse cracks concurrently at pixel
level, which performed robustly under different imaging con-
ditions [23]. Other learning methods, such as support vector
machine, AdaBoost, or recurrent neural network [24]–[26],
also performed well for crack detection and classification.
However, for the machine learning method, a large number
of crack samples are collected manually to ensure the detec-
tion precision, which is costly and tedious. In the pavement
images, the crack is surrounded by more noise and different
interferences and affected by the camera focus fuzzy and
image illumination unevenly. Therefore, the robust crack
detection method is still the focus of research.

In other related areas, the importance of junctions has
received great attention. Junctions have provided important
cues in computer vision and image-understanding tasks, such
as stereo matching, indoor localization, writer identification,
disease diagnosis and change detection [27]–[30]. Junction

detection methods can be classified into three categories:
corner-based, contour-based, and template-based [31].
Luo et al. employed the Harris corner detector to extract junc-
tion [32]. Meanwhile, some researchers detected junctions
using the edge map [33]–[35]. Based on the vessel centerline,
Abbasi et al., applied the geometrical and topological proper-
ties of the blood vessels passing through junction candidates
to identify the true junction from the other structures [36].
Moreover, lots of researchers dedicated themselves to detect
junction by a generic template. Based on the combined infor-
mation of Hessian and correlation matrix, Su et al., extracted
junction candidates first, and then adopted a Gaussian-shaped
multi-scale stick template to validate the candidates [37].
Sinzinger first extracted junction candidates by a preliminary
corner detector and then refined those candidates by an affine
invariant junction template [38]. Xia et al. proposed a junction
template that can set the detection parameter automatically
and keep the contrast invariant [39]. Therefore, the crack
junction is an important factor to extract the semantic struc-
ture of pavement cracks and indicates the type and severity
level change of pavement crack.

Although many methods of junction detection have been
developed in the related areas, real pavement images have
complex lighting conditions and various interferences. There-
fore, there are still many challenges with the crack junction
detection in the pavement image, such as:
• Due to fuzzy focus and insufficient illumination around
some crack junction, the boundary between hair-line
crack and pavement surface becomes blurry and noisy.
The crack junction formed by crossing hair-line cracks
is unobvious. Additionally, for crack junctions with dif-
ferent type, size and intensity contrast, it is difficult to
detect them all by a simple and uniform template.

• There are lots of interferences in the pavement image,
such as shadow, dirt debris, lane marking, which could
happen around the crack junction. Different interfer-
ences have different shape and intensity. Junction-like
structures near the edge of these interferences could
mislead the crack junction detection with the traditional
edge detectors.

This paper is motivated to robustly detect crack junctions
in pavement image, regardless of their type and size. Before
crack junction detection, a pavement image enhancement
method is applied to enhance the contrast between the crack
junction and the background by removing large interferences
and the background. Based on the characteristic of gradient of
the enhanced crack edges, the correlation structure analysis is
employed to characterize the crack structure. Then, the can-
didates of crack junctions are located using the proposed
correlation structure index. Unlike the traditional corner- or
template-based methods, actual junctions are extracted from
the candidates with the unified ball tensor structure after the
iterative tensor voting. The whole framework of our method
can be composed of three parts: pavement image enhance-
ment, crack structure characterization, and crack junction
detection, as shown in Figure 2.
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FIGURE 2. Flowchart of the proposed method for crack junction detection.

The remainder of this paper is organized as follows:
Section II presents the proposed method for crack junc-
tion detection. Section III shows the experimental results.
Section IV discuss the parameter setting in our method.
Conclusions are drawn in Section V.

II. METHODOLOGY
A. PAVEMENT IMAGE ENHANCEMENT
Pavement image is full of noise due to different texture
of pavement materials, imaging condition, etc. It blurs the
contrast near the edge of pavement crack. Also, there are
many large interferences, such as lane marking, shadow, etc.
If crack curves cross these large interferences, junction-like
structures will be formed at the intersection of the crack
and the edges of these interferences and may be mistakenly
extracted as pavement crack junction. Hence, it is necessary
to enhance the pavement image by denoising and removing
large interferences before crack junction detection.

1) PAVEMENT IMAGE DENOISING
To remove noises to some extent and keep the crack edges
from being blurred, bilateral filtering is employed here. The
bilateral filter is composed of two filter kernels: a spatial
filter kernel c(p, q) that measures the geometric closeness
and a range filter kernel s(Ip, Iq) that measures the intensity
similarity [40]. It can be calculated by the following equation:

IBp = ω
−1
p

∑
q∈�p

c(p, q)× s(Ip, Iq)× Iq (1)

where ωp =
∑

q∈� c(p, q) × s(Ip, Iq) is the normalizing
parameter. Ip is the current gray-level of pixel p. IBp is the

result of bilateral filtering.�p is the filtering region of pixel p.
c(p, q) and s(Ip, Iq) are usually calculated by Gaussian kernel
in practice.

c(p, q) = exp(−
d2(p, q)

2σ 2
d

) (2)

s(Ip, Iq) = exp(−
|Ip − Iq|2

2σ 2
r

) (3)

where d(p, q) is the distance between p and q. σd , σr are the
parameters controlling the effective support of c(p, q) and
s(Ip, Iq), respectively. It can be seen that if pixel q is closer
to pixel p and the gray-level of pixel q is more similar to that
of pixel p, Iq will have a greater effect on IBp .
In the pavement image, the noises are removed effectively,

while cracks are kept clearly owing to the obvious intensity
difference between crack edges and pavement and the sup-
pressing effect of s(Ip, Iq), as shown in Figure 3.

2) PAVEMENT IMAGE ENHANCEMENT
To discard the large interferences and the useless pave-
ment background from the bilateral-filtered image, median

FIGURE 3. Result of pavement image denoising. (a) Original image,
(b) bilateral-filtered image.
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FIGURE 4. Pavement image enhancement. (a) Bilateral-filtered image, (b) gray-level histograms of three
structures, (c) result of median filtering with large window, (d) result of pavement image enhancement.

filtering with large window is employed to enhance crack
junction. Median filter is a kind of statistical order filter, and
finds the median gray-level of the filtering window �p [41].
It can be calculated by the following equation:

IMp = med{IBq , q ∈ �p} (4)

where IMp is the result of median filtering. IBq is the result of
bilateral filtering.

As shown in the histograms of Figure 4(b), for crack, small
stone mixture and lane marking, the median gray-levels in the
large local patch correspond to the gray-level of pavement,
pavement and lane markings, respectively. Then, the pave-
ment background and lane marking are extracted correctly
by the median filtering with large window as shown in
Figure 4(c). As shown in Figure 4(d), the pavement image is
enhanced by subtracting the median-filtered image from the
bilateral-filtered image. The large interferences and useless
pavement background are removed. The contrast between the
crack junction and background is improved significantly.

B. CRACK STRUCTURE CHARACTERIZATION
Crack junction is the special structure of cracks in pavement
image. Pixels of the crack curves are recognized as crack
junction candidates in our method. After pavement image
enhancement, there remains lots of aggregate of stone mix-
tures of arbitrary sizes and positions in the asphalt pave-
ment image. It is difficult to differentiate the aggregate and

crack pixels from the intensity contrast perspective owing to
the similar intensity change around the crack and the stone
mixture after the enhancement. But, in the view of structure,
crack has a linear structure while stone mixture is a point-like
structure in a local patch. This structure characteristic is
generic and robust to different imaging conditions, such as
over- or under-exposed lightening conditions.

As shown in Figure 5(a), gradients of cracking edges are
perpendicular to the crack direction locally. Most of the crack
gradients have similar direction and stronger gradient magni-
tude in their local patch. The projection of gradients of all
crack edge pixels along the crack direction is small in the
local patch. In contrast, the projection along the orthogonal
direction of crack is far larger. For stone mixtures, the direc-
tions of stone mixture gradients are anisotropic and vary a
lot in Figure 5(b). Therefore, the gradient projections along

FIGURE 5. Gradients of different structures in the pavement image.
(a) Crack, (b) stone mixture, (c) pavement.
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FIGURE 6. Correlation structure analysis of crack. (a) Gradients of crack
edges, (b) projection direction Evi in the local patch W, (c) result of
correlation structure analysis.

all directions are almost identical. For pavement pixels in
Figure 5(c), due to the invariant pavement texture, gradients
are very low and gradient projection is relatively quite small.
Therefore, based on the gradient projection differences, crack
junction candidates can be extracted. Correlation structure
analysis is adopted here to obtain these gradient projection
differences.

1) CORRELATION STRUCTURE ANALYSIS
As shown in Figure 6(b), there are N × N pixels in the local
patch W. The gradient of each pixel is represented as Eg. And
the gradient set of W is represented as G = { Egi}

mw
i=1. mw is

the number of the pixels in W. Since local crack direction
Ev is perpendicular to the gradients of cracking edges, it can
be obtained by minimizing the projection of all the gradients
along Ev in W. The projection of all the gradients along Ev is
calculated by the following equation:

E(V ) =
1
mw

mw∑
i=1

( Egi
T
Ev)2 = EvT (

1
mw

mw∑
i=1

( Egi Egi
T )Ev (5)

Let G = 1
√
mw

[ Eg1, Eg2, ..., Egn]
The equation 5 can also be expressed as:

E(V ) = EvTGGT Ev (6)

Then, the minimal projection can be obtained by the
first-order derivative of E(v) with respect to the unit
length Ev [42].

h
E(V ) = 2GGT Ev = 0 (7)

Let M ′ = GGT be the correlation matrix and can be
calculated as follows:

M ′ =
1
mw

mw∑
i=1

( Egi Egi
T ) =

1
n2

n2∑
i=1

[
g2ix gixgiy
gixgiy g2iy

]
(8)

where gix , giy are the gradient value along x direction and y
direction, respectively.

Let λc1, λ
c
2(λ

c
1 ≥ λc2) be the eigenvalues of correlation

matrix M ′, Ee1
c, Ee2

c be the corresponding eigenvectors. The
minimal projection ofE(v) happens along Ee2

c. The local crack
direction is then decided by Ee2

c. λc1, λ
c
2 denote the gradi-

ents projections along the crack direction and the orthogonal
direction of crack respectively as shown in Figure 6(c).

Different structures in the pavement image can be charac-
terized by the gradient projection differences after correlation
structure analysis as shown in Figure 7. For the crack, λc1 is far
greater than λc2 in Figure 7(a). Nevertheless, λc1, λ

c
2 of stone

mixture are close in Figure 7(b). For the pavement, both λc1
and λc2 are very small in Figure 7(c).

FIGURE 7. Structure characterization of different structures in the
pavement image by correlation structure analysis. (a) Crack, (b) stone
mixture, (c) pavement.

2) CORRELATION STRUCTURE INDEX OF CRACK
Base on the gradient projection differences after correlation
structure analysis, a correlation structure index is proposed
to characterize these differences from the structure perspec-
tive and differentiates the crack-like structure from the other
point-like structure. The correlation structure index of crack
Pcrack is defined as the biased ratio of the gradient projections
along the crack direction and the orthogonal direction of
crack, i.e.,

Pcrack =
λc1

λc2 + mean(λ
c
1)

(9)

where λc1 and λc2 denote the gradient projections along the
crack direction and the orthogonal direction respectively. The
offset item mean λc1 is adaptively set as the mean of λc1 of all
local patches in the pavement image. It insures the reliability
of Pcrack in case of infinitesimal λ2 and detect the crack
junction candidates under various image conditions.

To obtain the appropriate threshold for crack junction can-
didate extraction, some samples of pavement, stone mixture,
dirt debris and crack, are collected to analyze the charac-
teristic of correlation structure index for different structures.
As shown in Figure 8, the correlation structure index of
crack is usually higher than 10 with the high probability

FIGURE 8. Histogram of correlation structure index of different structures.
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of 0.97. However, correlation structure indexes of other struc-
tures mainly distribute from 0 to 4. Therefore, based on this
index, crack junction candidates can be easily extracted by
thresholding.

C. CRACK JUNCTION DETECTION
Although crack junctions have different type, size and inten-
sity, there is a common characteristic: the crack junction is
like a ball and has no obvious direction. Hence, the ball-
like structure characterization of ball tensor is adopted in this
paper for the crack junction detection. Furthermore, as shown
in Figure 9, there are some breaking segments on the crack
curves owing to the physical breakup of faint crack, imag-
ing condition or incorrect threshold of crack structure. The
crack junctions can not be detected when gap of breaking
segments appears near them. Therefore, iterative tensor vot-
ing is employed for crack junction candidates to propagate
their crack-like structure in the neighborhood and link the
breaking segments naturally. After iterations, based on the
characteristic of ball tensor, candidates of crack junction are
validated to extract the crack junction accurately.

FIGURE 9. An illustration of breaking segment on crack curves.

1) TENSOR CHARACTERIZATION OF CRACK JUNCTION
In pavement image, the symmetric, non-negative definite,
second-order tensor T is a 2 × 2 matrix. It characterizes the
optimal directions and the structure saliencies of perceptual
structure as the following equation [43].

T = λ1 Ee1 Ee1
T
+ λ2 Ee2 Ee2

T (10)

where λ1, λ2(λ1 ≥ λ2) are the eigenvalues of T. Ee1, Ee2 are
the corresponding eigenvectors. From the view of structure,
Ee1 and Ee2 represent the normal and tangnet orientations of
the structure respectively. T can be further decomposed as
follows:

T = (λ1 − λ2) Ee1 Ee1
T
+ λ2( Ee1 Ee1

T
+ Ee2 Ee2

T ) (11)

The first term is named stick tensor, and the coefficient
(λ1−λ2) is the saliency of stick tensor that indicates the prob-
ability of being a curve. The second term is ball tensor, and
λ2 is the saliency of ball tensor that indicates the probability
of being a ball structure. If the saliency is large, the structure
possibility is high.

To characterize tensor vividly, T can also be viewed as an
ellipse, which Ee1, Ee2 are the orientations of ellipse and λ1, λ2

are the length of the semi-axes as shown in Figure 10. When
λ1 is much larger than λ2, T can be seen as a flat ellipse
in Figure 10(a). It means there is an optimal orientation and
is the same as the structure of crack curves. Thus, λ1 − λ2
indicates the probability of being crack curves in the pave-
ment image. If λ1 is similar to λ2, T is like a ball and equal to
its ball tensor in Figure 10(b). The ball tensor has no optimal
direction and is similar to the structure of crack junctions.
Hence, in pavement image, the stick tensor and ball tensor
can be used to represent the crack curves and crack junction,
respectively, as illustrated in Table 1. The ball tensor can be
used to uniformly characterize the crack junction of different
size, type, intensity or formed by crack curve with different
orientations.

FIGURE 10. Ellipse characterization of tensor. (a) Stick tensor (crack
curve), (b) ball tensor (crack junction).

TABLE 1. Tensor characterization of different structures in pavement
image.

2) ITERATIVE TENSOR VOTING
To obtain the accurate tensor structure information of can-
didates, tensor voting is applied. Tensor voting is a mech-
anism, which adopts tensor-based structure characterization
and propagates structure indication to the neighbors in a
voting manner. As seen in Figure 11(a), a unit length stick
tensor N is located at P and the orientation of N is perpen-
dicular to the x-axis. To propagate the structure indication
in a smooth path, the osculating circle O of N is adopted to
propagate structure from P to Q, whichmaintains the constant

FIGURE 11. Tensor voting and tensor field. (a) Tensor voting of the unity
stick tensor (b) Stick tensor field, (c) ball tensor field.
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curvature [44]. The orientation of structure M propagated by
N is lying along the radius of O. Based on the distance and
curvature, the saliency of structure indication is decided by
the saliency decay function as the following equation:

DF(s, k, σ ) = e−
s2+ck2

σ2 (12)

where s is the length of the arc from P to Q, k is the curvature
of the arc. σ is the scale parameter of tensor voting and
controls the size of voting field Wsize as seen in equation 13.

Wsize = b
d2×

√
−log(0.01)× σ 2e

2
c × 2+ 1 (13)

c is a constant related with σ , c = −16log(0.1)×(σ−1)
π2 , and

controls the decay degree of the curvature. It is optimized to
make the extension of two orthogonal line segments to form
a right angle equally likely to the completion of the contour
with a rounded corner [43], [45]. Therefore, σ is the unique
parameter in tensor voting and can be set according to the size
of Wsize for actual demand. If the angle θ between the line
PQ and the x-axis is larger than 45◦, Q accepts no structure
indication from P to avoid the false structure propagation.
Finally, the structure indication M can be characterized as a
tensor using the orientation and the saliency propagated by N
as follows.

Vstick = DF(s, k, σ )e−
s2+ck2

σ2

×

[
−sin(2θ)
cos(2θ )

] [
−sin(2θ) cos(2θ )

]
(14)

The stick tensor N of Figure 11(a) will propagate its
structure indication of orientation and saliency in the voting
field of Figure 11(b), where different color means differ-
ent saliency. If N is a stick tensor with saliency λ1 − λ2,
the propagated structure is characterized by product of Vstick
and λ1 − λ2. The ball tensor can be seen as a summation of
stick tensors that span the field of all possible orientation as
the following equation:

Vball =
∫ 2π

0
RVstickRT dθ ′ (15)

where θ ′ is the direction where the stick tensor located. R is
the rotation matrix to align Vstick with θ ′. The voting field of
ball tensor is illustrated in Figure 11(c).
To link the breaking segments naturally and obtain the

tensor structure of candidates, the iterative tensor voting for
crack structure propagation is applied in this paper. The
whole process of tensor voting is composed of two parts:
spare voting with ball tensor and dense voting with stick
tensor as seen in Figure 12 [46]. First, the crack junction
candidates of Figure 12(a) are encoded as a unit length ball
tensor. Secondly, the crack structure is propagated between
candidates by sparse voting with the ball tensor field of
Figure 12(b). Each crack junction candidate accumulates
the tensor structure characterization from their neighboring
candidates. Initial crack direction and saliency of candidates
are derived from the tensor accumulation and then encoded

FIGURE 12. Iterative tensor voting for crack structure propagation.
(a) Original crack junction candidate, (b) sparse voting with ball tensor
field, (c) dense voting with stick tensor field, (d) tensor structure
characterization.

as stick tensor. Then, the dense voting with stick tensor field
propagates the structure to all pixels in their voting field as
shown in Figure 12(c). After structure propagation, the gap
between breaking segments and crack junctions can also get
the accurate structure indication propagated by the neigh-
bors. Finally, cracks are characterized by the stick tensor and
crack junctions are characterized by the ball tensor as shown
in Figure 12(d). After tensor voting, some breaking segments
cannot yet be connected well due to the small voting field.
If we increase the size of the voting field, original structure
of crack curves may be altered slightly. Using the iteration of
small-field voting, breaking segments can be progressively
linked to the crack junctions with no compromising of the
crack structure. Moreover, stone mixture and dirt debris in
the set of crack junction candidates are weakened due to the
less indications of structure in the neighborhood after tensor.
With iterations, these mixture and dirt debris will gradually
disappear. Therefore, iterative tensor voting is adopted to
enhance the structure of crack junction candidates and elimi-
nate stonemixture and dirt debris. After current tensor voting,
another iteration starts with the new crack junction candidates
extracted by the stick tensor saliency, which include less small
interferences, like large stone mixture, and more crack junc-
tions until the number of iteration meets the given stopping
conditions Niter .

3) CRACK JUNCTION DETECTION
After iterative tensor voting, the ball tensor saliency indicates
the probability of being a crack junction. To extract the
crack junction with different sizes, the local maximum of
ball tensor saliency is applied as shown in Figure 13. Crack
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FIGURE 13. Crack junction detection for different size. (a-b) Ball tensor
saliency, (c-d) Results of crack junction detection.

turn of Figure 14(a) is the special point of a crack curve,
where the local crack direction turns significantly. The ball
tensor saliency of crack turns is larger than the local pixels
owing to the intersection of two orientations. They may be
mistakenly extracted as crack junctions. However, there is a
great structure difference between the crack turn and the crack
junction. There are at least three linear structures around the
crack junction while the crack turn is surrounded by only two
linear structures. Hence, the number of peaks of stick tensor
saliency is adopted to describe the number of linear struc-
tures around crack junction and eliminate the crack turns.
Firstly, around the crack junction, a circle is drawn as shown
in Figure 14(a) and 14(d). Then, the values of stick tensor
saliency on the circle are recorded orderly. Finally, the crack
junction is validated by analyzing the number of stick tensor
peaks as shown in Figure 14(c) and 14(d).

FIGURE 14. Analysis of the number of stick tensor peaks. (a) Stick tensor
saliency of crack turn, (b) stick tensor saliency of crack junction, (c) values
of Stick tensor saliency of pixels on the circle of (a), (d) values of stick
tensor saliency of pixels on the circle of (b).

III. EXPERIMENTAL RESULTS
To test the proposedmethod, a diverse set of asphalt pavement
images with various lighting condition are acquired using
unmanned aerial vehicles. They are collected on the highway
G45 in China with the image size of 2048 × 1536 pixels.
1 pixel represents a 2 mm × 2 mm area of the pavement sur-
face according to the camera calibration parameters and aerial
altitude of UAV. They involve lots of interferences on the
pavement, like dirt debris, shadow, lane marking, etc. Among
them, there are different type and size of crack junctions
that are formed by different type of cracks, such as alligator

crack, longitudinal crack, transverse crack, etc. Meanwhile,
some typical concrete crack junction images collected from
SDNET2018 data set [47] are also applied to evaluate the
applicability of the proposed method. SDNET2018 is a pub-
lic image data set with concrete bridge decks, walls, and
pavements. It also includes different interferences, such as
shadows, crack-like edges, and background debris.

For the parameter setting, in pavement image denoising,
σd and σr are set as 2 and 35 according to the size of stone
mixture and the gray-level difference between the crack and
the pavement, respectively. In pavement image enhancement,
the size of median filter window is set as 51 × 51 according
to the width of large interferences, e.g., lane marking, in the
pavement image. In correlation structure analysis, the size of
correlation window is set as 5 × 5 according to the width
of the hair-line crack. For iterative tensor voting, σ is set
as 25, which can ensure that breaking segments are connected
naturally without too much cost of computation time. The
number of iterations Niter is set as 2 according to the salience
of crack junction candidate and the effect of noise in the stick
tensor image. The radius of circle for crack junction detection
with stick tensor saliency is set as 15 pixels.

A. CRACK JUNCTIONS OF DIFFERENT TYPE AND SIZE
As shown in Figure 15(a), some detection results of crack
junctions of different type, including the ′X−′,′ Y−′,′ T−′

shaped branching or crossing, are illustrated. These crack
junctions are detected well by our method. Although the
number of neighbouring crack curves around crack junctions
is different, there is a generic characteristic of crack junction:

FIGURE 15. Detection results of crack junction. (a) Crack junctions of
different type, (b) crack junctions with different orientation of crack
curve, (c) crack junctions of different size, (d) special crack junctions.
Detection results are marked with red points.
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at least two main curves cross around the crack junction and
the crack junction is a ball-like structure as shown in the
stick tensor images and ball tensor images, respectively. The
ball tensor characterization of crack junction is based on this
generic characteristic. So, crack junction of different type can
be extracted by our method in a unified framework.

In Figure 15(b), these crack junctions have the same type,
but the orientations of neighbouring crack curves around
crack junctions are different. The orientation of crack curves
is arbitrary in the pavement image. It is difficult to charac-
terize crack junctions by a template-based method. However,
due to the unified ball-like structure characterization of crack
junction, they are detected well by the ball tensor saliency.

The size of crack junctions varies a lot as shown in
Figure 15(c). Although the width of crack curves is various,
they show the same linear structure characteristic. The crack
curves of different size are kept entirely after correlation
structure analysis. So, crack junction of different size can get
enough structure indications from their neighbouring crack
curves and detected well by the proposed method as shown
in the stick tensor images and ball tensor images.

Some special crack junctions are shown in Figure 15(d).
They are with white filler, located on lane marking, and
repaired. The proposed method is based on the structure char-
acterization, not on the intensity threshold decomposition.
Although the intensity of crack curves and pavement back-
ground are various, the significant ball-like structure of crack
junctions is the same andwell detected by the proposed tensor
characterization from the structure perspective as shown in
the ball tensor images.

Therefore, the proposed method for crack junction detec-
tion is independent of the type and size of junctions, and
robust to the variance of the location, orientation and width
of neighboring crack curves around crack junctions.

B. CRACK JUNCTIONS OF BREAKING SEGMENTS
As shown in rectangle of Figure 16(a) and 16(b), there
is a obvious gap between the breaking segment and the
crack junction due to physical breakup. Using the itera-
tive tensor voting, this gap obtains the structure indications
from the neighboring crack curves gradually and the break-
ing segment is connected naturally to the crack junction
in Figure 16(c) and 16(d). The crack junction can then be
located accurately as shown in Figure 16(e) and 16(f). Sim-
ilarly, as shown in yellow rectangle of the first column of
Figure 17, the breaking segments in enhanced image and cor-
relation structure index image are linked well in the iterative
tensor voting image. Crack junctions are located accurately
in ball tensor image. Therefore, our method can fill gaps
naturally and extract the unobvious crack junction.

C. CRACK JUNCTIONS WITH DIFFERENT INTERFERENCES
AND IMAGING CONDITIONS
To obtain the hair-line crack curves, some stone mixtures
are mistakenly extracted in enhanced image and correla-
tion structure index image owing to the linear structure of

FIGURE 16. An illustration of the impact of breaking segments.
(a) Original image, (b) correlation structure index image, (c) stick tensor
image after first voting, (d) stick tensor image after second voting,
(e) ball tensor image, (f) result of crack junction detection.

edge, as shown with the green ellipse of the first column of
Figure 17. With the iterative tensor voting, the crack curves
obtain more structure indications than the remaining stone
mixtures due to less linear structures around stone mixture.
These stone mixtures are eliminated well after the first tensor
voting and cannot impact the final detection results.

Similarly, the dirt debris is mistakenly extracted as shown
in the second column of Figure 17. Through iterative ten-
sor voting, the dirt debris is weakened due to the absence
of strong indications of crack-like structure in their neigh-
borhood as shown in the iterative tensor voting image of
Figure 16. Based on the local maximum of ball tensor, the dirt
debris cannot be mistakenly detected by our method.

As shown in third column of Figure 17, some intersections
of the crack and the edges of large interferences are marked
with green ellipse. These junction-like structures interfere the
crack junction detection seriously. They can be removed by
the pavement image enhancement and correlation structure
analysis. Meanwhile, both the crack junction located on the
lane marking and crack junctions located on pavement are
detected well by our method. Figure 18 shows the crack
detection results with the interference of lane marking. With-
out median filter, lane marking cannot be removed from the
pavement image and the junction-like structures caused by
the lane marking edge and crack are mistakenly detected as
shown in the yellow rectangles in Figure 18(b) and (d). Using
the median filter, these large interferences can be removed
from the pavement images and cannot mislead crack junction
detection as shown in Figure 18(a) and (c).

Another important factor impacting crack junction detec-
tion is the imaging condition, which influences the con-
trast between the crack and the pavement and aggravates
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FIGURE 17. Results of our proposed method for crack junction detection with different interferences and imaging conditions.

the difficulty for crack junction detection. As shown in
fourth and fifth column of Figure 17, the pavement images
are over-expose and under-exposed, respectively. Comparing
with the ordinary pavement image, they have more noise.
Using the pavement image enhancement method, the contrast
is improved significantly as shown in the enhancement image.
Meanwhile, lots of noise introduced by the poor imaging

condition is further eliminated by the correlation structure
analysis. Crack junctions under poor imaging conditions
are detected well as the same as the ordinary pavement
image.

Therefore, the proposed method is robust enough to get a
good detection result regardless of the pavement interferences
and imaging conditions.
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FIGURE 18. Crack detection results with the impact of lane marking. (a)(c) Using median filter, (b)(d) not
using median filter.

D. EVALUATION OF CRACK JUNCTION DETECTION
To test the detection accuracy of the proposed method,
the ground-truth location of crack junction is marked elab-
orately by the operators of transportation agencies. To avoid
the subjectivity of manual marking, the morphological dila-
tion with the circular structure element of 10-pixel radius is
made to encircle the ground-truth crack junction. The size of
structure element is set according to the minimal size of crack
junction and the image size. If the detected crack junction
falls inside the buffered ground truth, the detection result
is true; otherwise, the detection result is false. The measure
of correctness and completeness is adopted here to evaluate
the detection accuracy of the proposed method. They can be
calculated by the following equation:

correctness =
T
Nd

(16)

completeness =
T
Nt

(17)

where T is the number of crack junctions detected correctly
by our method; Nd is the total number of junctions extracted
by our method and Nt is the total number of crack junctions
marked in the ground truth image.

Currently, there is no specific method for pavement
crack junction detection. Therefore, a combined method of
crack centerline detection and junction extraction is adopted
to compare with the proposed method. B-COSFIRE (bar-
selective combination of shifted filter responses) is used
to extract the crack centerline [48]. B-COSFIRE can be
applied in any computer vision methodology which requires
the delineation of curvilinear. It also achieves state-of-
the-art results for crack centerline detection in pavement
images [49]. Then the crack junction candidates are detected
by the crossing of skeletal centerline. To differentiate from the
turn of crack curve, the number of crack centerlines around
the junction is applied to get the final junctions from the
candidates.

Sixteen concrete pavement images of SDNET2018 data
set are selected and classified into four categories: common,
with hair-line crack, with more noise and under-exposed,
according to the crack junction characteristics and image
conditions. Since the number of crack junction in single
concrete image is small, the correctness and completeness
of concrete crack junction are calculated according to the
category of junction. Meanwhile, At the same time, sixteen
typical asphalt pavement images are selected, which were

classified into two categories according to the crack type:
asphalt transverse/longitudinal crack junctions and asphalt
alligator crack junctions. Then, based on crack junction char-
acteristics, these images are divided into five categories: com-
mon, with hair-line crack, with interferences, with white filler
and with more noise, The correctness and completeness of
each image are calculated separately.

Detection results of some typical concrete pavement
images are listed in the first part of Table 2 and shown
in Figure 19. For the common images, the contrast between
pavement and crack junction is high and the crack curve is
smooth. The detection accuracy of the proposed method and
B-COSFIRE is similar. For pavement image with hair-line
crack, due to the influence of breaking segment of crack
centerline, some junctions can not be detected well by
B-COSFIRE with the correctness of 0.750 and completeness
of 0.545. Comparing with the proposed method, the hair-line
crack gets the structure indications from the neighboring
crack curves and connects naturally to the crack junction
as shown in Figure 19 (b). The average correctness and
completeness of hair-line crack images are 0.900 and 0.818,
respectively. For the pavement image with more noise and
interferences as shown in Figure 19 (c), lots of crack-like
structures are extracted into the crack centerline, which
greatly increases the number of false junctions. The com-
pleteness and correctness of B-COSFIRE are 0.364 and
0.800. Moreover, when the contrast between pavement and
crack is low, complete crack centerlines cannot be extracted
correctly by B-COSFIRE. The correctness is 0.600 and com-
pleteness is 0.750 in Figure 19 (d). Due to the effect of
pavement image enhancement and iterative structure prop-
agation, our method has better robustness and applicability,
and the completeness is above 0.800, regardless of the influ-
ence of noises, interferences and image conditions. The aver-
age correctness and completeness of concrete crack junction
detection of B-COSFIRE method are 0.629 and 0.724. The
average correctness and completeness of concrete crack junc-
tion detection of the proposed method are 0.889 and 0.842.

The second part of Table 2 shows the detection result of
asphalt transverse/longitudinal crack junctions. Some local
detection results of the proposed method and B-COSFIRE
are shown in Figure 20 (a) and the detection results of the
whole image are shown in Figure 21. The detection result of
transverse or longitudinal crack junctions is similar with that
of concrete crack junction. For common images, the num-
ber of crack junction is small and the detection correctness
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TABLE 2. The correctness and completeness of some typical crack junction images.

FIGURE 19. An illustration of detection results of typical concrete crack images. (a) Common, (b) with hair-line crack, (c) with more noise,
(d) under-exposed. Detection results are marked with red points.

and completeness are almost 1 for both our method and
B-COSFIRE. For pavement image with hair-line crack, some
crack junctions cannot be detected by B-COSFIRE as shown
in second part of Figure 20 (a). For the pavement images

with more noise, the correctness is 0.429 and completeness
is 0.500 for B-COSFIRE. Based on iterative the structure
propagation, the breaking segments are connected and the
noise is removed gradually. Therefore, both correctness and
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FIGURE 20. An illustration of detection results of typical asphalt crack images. (a) Transverse/Longitudinal cracks, (b) Alligator crack. Detection results
are marked with red points.

completeness of the proposed method are better than 0.700.
Moreover, the junction-like structures formed at the inter-
section of the crack and the lane marking edge are mistak-
enly extracted by the B-COSFIRE as shown in third part
of 20 (a). However, these large interferences cannot influence
the detection result of the proposed method. The average cor-
rectness and completeness of asphalt transverse/longitudinal
crack junction detection of B-COSFIRE are 0.615 and 0.688.
The average correctness and completeness of our method are
0.915 and 0.872. Results of junction detection is helpful to
tell the change of severity level for the accurate location of
branching in the transverse or longitudinal cracking.

The third parts of Table 2 and Figure 20 (b) show the detec-
tion result of asphalt alligator crack junctions. Differently,
for one alligator crack image, crack junctions have different
type, size and intensity and the contrast between pavement
and crack junction varies a lot. It is difficult for B-COSFIRE
method to completely extract the centerlines of the wide
and hair-line cracks with no additional false junction-like
structures as shown in 20 (b). In our method, using iter-
ative structure propagation, both wide cracks and hair-line
cracks can get enough indications to extract crack junctions.
Meanwhile, the additional false junction-like structures can
be removed gradually due to the less structural indications.
For the common image of SXX_3539, the detection correct-
ness and completeness of our method are 0.923 and 0.944,
respectively, which are superior to the detection result of
B-COSFIRE method with the correctness of 0.570 and com-

pleteness of 0.655. For the more noisy image of SXX_4226,
the correctness and completeness of B-COSFIRE are as low
as 0.037 and 0.026, respectively, which is affected by the
noise interferences and low contrast in the pavement image.
In this case, our method can still detect well with the correct-
ness of 0.855 and completeness of 0.852 as shown in the final
image in 20 (b). The average correctness and completeness
of asphalt alligator crack junction detection of B-COSFIRE
are reduced to 0.562 and 0.524. The average correctness and
completeness of our method are 0.867 and 0.903. The accu-
rate extraction of alligator crack junctions provides a reliable
indication to quantify the severity level of alligator cracks.

Therefore, the results demonstrate that the proposed
method can detect crack junctions with the correctness
of 0.891 and completeness of 0.887. The average correct-
ness and completeness of B-COSFIRE method are 0.597 and
0.630, respectively. It demonstrates the proposed method
can be applied to junction detection on concrete pavement
and alligator pavement images. It can extract more complete
crack junctions with high accuracy, especially for the alligator
crack junctions. Moreover, the proposed method has better
robustness to different noise and interference.

IV. DISCUSSIONS
In our method, there are two important parameters, which
influence the result of crack junction detection. To make the
proposed method applicable for different pavement images
and get a good result, we discuss the parameter setting here.
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FIGURE 21. An illustration of detection results of typical crack images. Detection results are marked with red points.

A. SIZE OF LOCAL PATCH OF CORRELATION
STRUCTURE ANALYSIS
The only and most important parameter of the correlation
analysis is the size of local patch in correlation structure
analysis. If the local patch is small, some small stone mixture
will be mistakenly extracted as crack junction candidates.
Correlation structure analysis with a large local patch can
remove the ball-like structures, like stone mixture, owing
to the anisotropy of gradients. But crack curves of small
width, like hair-line cracks, are unexpectedly discard due to
the weaker crack-like structure in a larger patch. Therefore,
to keep the entire crack curves robustly, size of local patch is
set to according to the width of crack in the pavement image.

As shown in 22(a), there is a hair-line crack in the pavement
image and size of local patch is decided on it. For a 7 × 7
window as shown in Figure 22(a), there is an obvious linear
structure. However, lots of pavement pixels also exists in
this local patch. It weakens the characteristic of correlation
structure analysis as shown in Figure 22(b). For correlation

FIGURE 22. Local patch selection of correlation structure analysis.
(a) Hair-line crack and size of local patch, (b) correlation structure index
with a local patch of 7 × 7 pixels, (c) correlation structure index with a
local patch of 5 × 5 pixels.

structure analysis with a 5 × 5 window in Figure 22(c),
structure of hair-line crack is more obvious than that with
a 7 × 7 window, which helps get a more complete set of
crack junction candidate. Hence, we set the size of local patch
equals 5×5. In ourmethod, the hair-line crack can be seen as a
reference to set the size of local patch in correlation structure
analysis.
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FIGURE 23. Scale parameter setting in tensor voting. (a) Crack junction
candidate, (b-d) Tensor voting with σ= 12.5, 25, 35, respectively.

B. SCALE PARAMETER OF ITERATIVE TENSOR VOTING
In iterative tensor voting, the scale parameter σ controls the
size of voting field. To connect the breaking segments to
crack junctions, the voting fields should at least cover the
gaps between the breaking segments and the crack junctions.
Additionally, due to the effects of saliency decay function,
σ is set twice the value that are calculated from the distance
between breaking segments based on equation 13 to get
enough structure indications for the gaps.

As shown in Figure 23(a), there are many gaps among
breaking segments. The size of gap is about 21 pixels. When
σ equals 12.5, semi-width of the voting filed is then 27 pixels
by equation 13, which can fill the gaps. However, breaking
segments are not connected well in Figure 23(b) due to the
insufficient structure indications. As shown in Figure 23(c),
when σ equals 25, the breaking segments are connected nat-
urally. However, when σ equals 35 in Figure 23(d), the result
of tensor voting is identical to the result of Figure 23(c). But
the computation time increases greatly. Therefore, σ should
ensure that breaking segments are connected naturally with-
out too much cost of computation time. In our method,
the value of σ is 25.

V. CONCLUSION
Crack junction is the crossing or branching point of different
cracks. It represents the branch of transverse crack or lon-
gitudinal crack. The interlaced network of alligator crack is
indicated by junctions. It is simple yet important factor in
crack semantic structure extraction, classification, severity
level quantification. This paper is dedicated to detect crack
junction in the pavement image for the first time.

The proposed method is based on the structure characteri-
zation of crack junction that is generic and robust to different
imaging conditions. The pavement image is enhanced by
denoising and removing large interferences. Based on the
correlation structure analysis, candidates of crack junction
are extracted by the proposed correlation structure index. Ball
tensor is employed to characterize the candidates of different
type and size in a unified framework. Using the iterative
tensor voting, crack junction structure is enhanced and some
interferences, such as stone mixture and dirt debris, are grad-
ually eliminated. Actual junctions are identified among the
candidates by with the saliency of ball tensor and the linear
structure surrounding them.

The proposed method achieves high correctness of 0.891
and completeness of 0.887. It demonstrates the proposed
method can be applied to junction detection on both con-
crete and asphalt pavement images. Meanwhile, the proposed
method for crack junction detection is independent of the type
and size of junctions, and is robust for different interferences
and imaging conditions. The unobvious crack junction caus-
ing by the physical breakup of faint crack or poor imaging
condition can be well detected by our method. In the future
research, we will test the proposed method with more crack
image data sets and develop the method for crack classifica-
tion and severity level estimation based on the density and
distribution of crack junctions.
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