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ABSTRACT Radio air interface identification provides necessary information for dynamically and effi-
ciently exploiting the wireless radio frequency spectrum. In this study, a general machine learning framework
is proposed for Global System for Mobile communications (GSM), Wideband Code Division Multiple
Access (WCDMA), and Long Term Evolution (LTE) signal identification by utilizing the outputs of the
spectral correlation function (SCF), fast Fourier Transform (FFT), auto–correlation function (ACF), and
power spectral density (PSD) as the training inputs for the support vector machines (SVMs). In order
to show the robustness and practicality of the proposed method, the performance of the classifier is
investigated with respect to different fading channels by using simulation data. Various over–the–air real–
world measurements are taken to show that wireless signals can be successfully distinguished from each
other without any prior information while accounting for a comprehensive set of parameters such as different
kernel types, number of in–phase/quadrature (I/Q) samples, training set size, or signal–to–noise ratio (SNR)
values. Furthermore, the performance of the proposed classifier is compared to the existing well–known
deep learning (DL) networks. The comparative performance of the proposed method is also quantified by
classification confusion matrices and Precision/Recall/F1–scores. It is shown that the investigated system
can be also utilized for spectrum sensing and its performance is also compared with that of cyclostationary
feature detection spectrum sensing.

INDEX TERMS Cyclostationarity, FFT, machine learning, power spectral density, spectral correlation
function, spectrum sensing, support vector machine, wireless signal identification.

I. INTRODUCTION
Wireless communications systems are currently witnessing
a fascinating growth in the volume of data transmissions,
device diversity, number of devices and networks. Thus,
limited spectrum resources can hardly meet the dynamically
changing and ever–increasing demands of 5G and beyond
wirelessmobile networks [1].Many researchers investigate to
carry out amulti–disciplinary effort including the deployment
of small cells, employment of mmWave communications,
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efficient spectrum usage algorithms, device-to-device (D2D)
communications andmassivemultiple–inputmultiple–output
(MIMO) systems [2], as well as cognitive radio networks,
to cope up with these demands. Among them, authorities
such as the Federal Communications Commission (FCC) and
researchers put a specific emphasis on improving the per-
formance of spectrum sensing as well as signal recognition
algorithms to provide a better and more reliable quality of
service (QoS) levels while considering the wide variety of
device diversity, network topology, transmission schemes and
channel conditions. However, contemplating all these metrics
within a single framework can only be achieved by utilizing
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intelligent functions such asmachine learningmethods across
the wireless infrastructure and end–user devices. Within this
framework, it is expected that smart communication devices
will identify and detect the radio frequency (RF) signals,
which are deployed in many commercial and tactical fields
to select the most appropriate transmission schemes.

Wireless signal identification has been employed in var-
ious military and civilian communication systems, such as
electronic warfare, radio surveillance and spectrum aware-
ness. In the past, classical signal identification tasks heavily
relied on complex collections of feature extraction methods
such as higher order cumulants and complex hierarchical
based decision trees. In addition, classical signal processing
approaches are vulnerable to false alarms and modifications
are required over them when a new technology emerges.
Therefore, data–centric machine learning–based methods,
which incorporate the imperfections and real–world effects
will produce a more robust, efficient and resilient perfor-
mance compared to the classical methods.

A. RELATED WORK
Signal identification techniques mainly utilize likelihood
based (LB) and feature based (FB) identification techniques.
The LB approaches maximize the probability of correct clas-
sification. However, LB methods have high computational
complexity and are sensitive to model mismatches such as
timing offsets and channel coefficients estimations [3]–[5].

In FB approaches, various features which are extracted
from signals are employed for the detection of the type of
incoming signals. Features such as the wavelet transform,
higher order statistics and cyclic features are present in
the literature for signal identification problems. Along this
line, instantaneous amplitude, phase and frequency statis-
tics are utilized to classify the modulation types of signals
in [6], [7]. In [8], [9], phase shift keying (PSK) and fre-
quency shift keying (FSK) signals are identified via wavelet
transform. Another feature is higher order statistics such as
higher order moments and cumulants which are used for
signal classification in [10]–[12]. However, these features are
more sensitive to real–world conditions such as timing and
frequency offsets.

The most powerful FB approach for signal identifica-
tion in real–world conditions makes use of cyclostation-
arity based–features because these features are robust to
model mismatches [13]. Accordingly, PSK, FSK and quadra-
ture amplitude modulation (QAM) signals are distinguished
by using features obtained with cyclostationary signal
processing [14], [15]. In addition to modulation classifi-
cation, cyclostationary signal identification is employed in
the identification of radio interfaces such as Global Sys-
tem for Mobile communications (GSM), Wideband Code
Division Multiple Access (WCDMA), Long Term Evolution
(LTE), and worldwide interoperability for microwave access
(WiMAX). In [16], it has been shown that second–order
cyclostationarity can be used for the classification of LTE
and GSM signals. Cyclic patterns of three air interfaces,

which are GSM, code division multiple access (CDMA),
and orthogonal frequency division multiplexing (OFDM), are
investigated in [17] and constant false alarm rate (CFAR)
test is employed to detect the features. Moreover, to iden-
tify IEEE 802.11 signals, the authors use second–order
cyclostationarity [18]. In [19], second–order cyclostation-
arity due to cyclic prefix, preamble and reference signals
are employed to identify LTE and WiMAX signals. Except
cyclostationarity–based identification, the performance of the
aforementioned approaches degrades due to real–world wire-
less conditions such as fading, path loss, and time shift.

Machine learning and deep learning (DL)–based
identification methods have been recently used in signal
classification due to the rapid development in this area. Con-
volutional neural network (CNN), convolutional long short
termmemory fully connected deep neural network (CLDNN)
and long short term memory (LSTM) are the most popular
deep neural network architectures for signal identification.
In [20], spectral correlation function (SCF) is fed into a neural
network for the generic signals amplitude modulation (AM),
PSK, and FSK. In [21], the various modulation schemes are
classified by using SCF and support vector machine (SVM).
To identify radar signals, CNN is utilized in [22]. CNN is also
employed for interference identification in wireless commu-
nications [23]. In [24], CNNs with the fast Fourier Transform
(FFT), in–phase/quadrature (I/Q) data and amplitude–phase
representations are used for modulation identification and
interference identification in industrial, scientific andmedical
(ISM) band. In [25], the authors utilize LSTM to identify
digital video broadcasting (DVB), Radar, terrestrial trunked
radio (TETRA), LTE, GSM and wide-Band FM (WFM) via
FFT, I/Q data, and amplitude–phase representation. Besides
DL, SVM is used in the signal identification problems due
to the fact that SVM based classifier can be implemented
on field programmable gate array [26], [27], which makes
it a good choice for practical applications. Wu et al. propose
a modulation recognition system including SVM and higher
order cumulants in [28]. By choosing features robust to noise,
the system does not require to train for each signal–to–noise
ratio (SNR) value. In [29], SVM is employed to identify
modulation types in the presence of channel impairments.
Recently, it is shown that SVM outperforms in the classifier
set consisting different models for the automatic modulation
classification in cooperative relaying networks [30]. Besides
modulation classification, [31] proposes an SVM–based
approach to jointly estimate modulation and the SNR. Our
previous work [32] indicates the classification performance
of SVMwith SCF. However, there was no parametric analysis
to observe the classifier performance with regard to the
parameters of the classification system.

B. CONTRIBUTIONS
The survey above indicates the growing literature on the use
of SVMs for modulation recognition. When the literature in
this domain is investigated, it is seen that currently there is
no comprehensive and inclusive work on the investigation
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of implementation of SVM–based identifiers for air inter-
face identification as the signals are transmitted in a mul-
tiplexed manner when compared to the directly modulated
signals. Thus, this work utilizes SVMs for air interface iden-
tification. Even though in this study the focus is on cellu-
lar signals, the proposed framework can be applied to any
air interface since each signal should have to carry some
distinctive features inherently to make the communications
possible. Therefore, the proposed framework incorporates the
processed outputs of cellular signals, which are comprised
of such inherent features with SVMs for signal identifica-
tion. Since the SVMs learn these features directly from the
processed outputs, statistical decision mechanisms that are
utilized by classical identifiers are immediately eliminated.
Furthermore, it is shown that identification procedures that
are based on SVMs have a superior performance than that of
classical detection and estimation techniques depending on
the statistical inference mechanisms. The main contributions
of this study are summarized as follows:
• A conceptual framework for blind wireless signal iden-
tification is proposed, which is followed by detailed
description of the methodology for collecting spectrum
data, designing wireless signal representations, form-
ing training data and utilizing SVM for wireless signal
classification. To demonstrate the proposed approach,
an SVM–based wireless standard–based signal iden-
tification method is proposed by utilizing the FFT,
auto–correlation function (ACF), power spectral density
(PSD), and SCF as the features for SVM. This eliminates
the need for a two step identification approach of clas-
sical sensing techniques. The performance of the pro-
posed method is also compared to the classical sensing
technique of cyclostationary feature analysis.

• A comprehensive set of wireless signal identification
features such as FFT, ACF, PSD, and SCF are provided
on this interdisciplinary topic along with their compar-
ison for wireless standard based signal identification.
Three well–known and mostly available wireless signal
types are analyzed: GSM, WCDMA and LTE. We also
share the over–the–air signal measurements dataset in
the format of FFT, ACF, PSD, and α–domain profile by
maximizing SCFs over spectral frequency; thus, it can
be directly fed into any classifier [33].

• In–depth parametric analysis is performed to show the
impact of the performance and accuracy of the wireless
signal classifier by examining different features, kernels,
received signal lengths, training set sizes, and fading
types in the presence of additive white Gaussian noise
(AWGN). Most of the signal identification researches
overlook the effect of wireless environment conditions
and assume AWGN channel [34]–[36]. However, in this
study, we propose a blind signal identification sys-
tem by using over–the–air signal measurements of the
new dataset (i.e. real propagation effects). To account
for the signal imperfections present in the nature of
real–world conditions (e.g. fading,multipath, and so on),

we propose a SVM based classifier system which is
robust to dynamic nature of the wireless signal propaga-
tion environment. The proposed system is also compared
to existing well–known DL algorithms such as CLDNN
and LSTM.

C. ORGANIZATION OF THE PAPER
The rest of this paper is organized as follows: In Section II,
the signal model is provided. In Section III, we present the
features usedwith SVMs. Section IV details themathematical
preliminaries of the SVMs. Data collection and processing
are given in Section V. Results and discussions are presented
in Section VI and conclusions are drawn in Section VII. Also,
the glossary list is provided in Appendix.

II. SIGNAL MODEL
The complex baseband equivalent of the received signal, r(t),
in a fading environment with noise is given as

r(t) = x(t) ∗ ρ(t)+ ω(t), (1)

where ω(t) denotes a sample function of the AWGN pro-
cess with a flat power spectral density N0/2 W/Hz; x(t) is
the complex baseband equivalent of the unknown signal;
ρ(t) stands for the impulse response for the time–varying
wireless channel; and ∗ denotes the convolution operator.
Consequently, the problem can be defined as identifying the
unknown signal x(t) using cyclostationary signal processing
to obtain the discriminating characteristics of r(t) in the
presence of AWGN and multipath fading without any apriori
knowledge for any of them.

III. FEATURES
In this section, we detail four different features extracted
from the received signals and used to identify the type of
cellular communication through the proposed classification.
The features utilized are named as SCF, FFT, ACF, and PSD.

A. SPECTRAL CORRELATION FUNCTION
Cyclostationary signal processing is used to extract the hid-
den periodicities within the received signal, r(t) [14]. The
hidden periodicities show unique characteristics for different
cellular communication signals in terms of symbol periods,
spreading codes, guard intervals, and even message bits. As a
result, cyclostationary signal processing can extract features
from the received signals to discriminate them.

In this study, the second–order cyclostationarity of signals
is investigated by taking the non–linear transformation as

sτ (t) = E
{
r(t + τ/2)r∗(t − τ/2)

}
, (2)

where sτ (t) is the auto–correlation of r(t). As widely
known the auto–correlation function is periodic with T0 for
second–order cyclostationary signals [37]. Therefore, it can
be expanded to Fourier series coefficients as

Rα
r (τ ) =

1
T0

∫ T0/2

−T0/2
sτ (t)exp (−j2παt) dt. (3)
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FIGURE 1. SCFs estimated by FAM algorithm in bi–frequency plane after mapping for various cellular communication signals.

FIGURE 2. α–domain profiles evaluated by maximizing SCFs over spectral frequency.

Rα
r (τ ) is known as the cyclic auto–correlation function

(CAF), where the cyclic frequency is denoted by α. It is noted
that the frequency domain representation of the signals can
also provide some distinct characteristics regarding r(t). Then
the Fourier transform of CAF for a fixed α can be analyzed
by using cyclic Wiener relation [14]

Sαr (f ) =
∫ T/2

−T/2
Rα
r (τ ) exp (−j2π f τ) dτ. (4)

Sr (f ) is named as SCF and it is obvious that SCF gives the
PSD when α is zero.

Sαi+q1αrT

(
nL, fj

)
=

∑
k

RT (kL, fm)R∗T (kL, fl)

·gc (n− k) e−i2πkq/P (5)

The computation of SCF has a very high computational
complexity. In order to reduce this complexity, the FAM is
used, which is originally proposed in [15], and based on time
smoothing via FFT. The SCF corresponding to the received
signal, r(t) is estimated by FAM via (5), where RT (n, f ) is
complex–valued demodulates which is the N ′–point FFT of

r(n) passed through a Hamming window, computing with

RT (n, f ) =
N ′/2∑

k=−N ′/2

a(k)r(n− k)e−i2π f (n−k)Ts . (6)

In this study, the Hamming window and unit rectangle win-
dow are used as data tapering windows in FAM. Hamming
window and unit rectangle window are represented with a(n)
and gc(n), respectively in (5) and (6). Ts, N ′, and L are the
sampling period, channelization length and sample size of
hopping blocks, respectively. The SCF of wireless commu-
nication signals which are estimated via FAM is depicted in
Fig. 1.
After bi–frequency mapping, the output matrix of SCF has

the dimensions 64 × 16385 when 16384 I/Q samples are
used. In order to reduce the size of feature vectors, instead
of using the bi–frequency domain of SCF, α–domain profile
is employed by evaluating the maximum over spectral fre-
quency such that

I (α) = max
f
|Sαr (f )|. (7)

As a result, the feature size decreases to 1 × 16385. For the
signals to be classified, the α–domain profiles are depicted
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FIGURE 3. FFTs for cellular communication signals.

FIGURE 4. ACFs for cellular communication signals.

in Fig. 2. It is easily seen that the α–domain profiles for
GSM, WCDMA, and LTE signals show unique characteris-
tics. Therefore, they can be employed as feature vectors for a
classifier. The feature vector is constructed as

x = [I (−fs +1α), I (−fs + 21α), · · · , I (fs)]T , (8)

where fs is the sampling frequency and 1α indicates the
cyclic resolution. It is employed by SVM as detailed in
Section IV.

B. FAST FOURIER TRANSFORM
The frequency domain representation of a signal are
employed as a discriminating feature. This is extracted from
time domain I/Q data via an FFT operation. FFT is defined as

Rk =
N−1∑
n=0

r[n]e−j2πkn/N , k = 1, . . . ,N − 1. (9)

and r(n) is samples of signal r(t)

r[n] = r(
t
fs
), n = 0, . . . ,N − 1. (10)

Frequency domain representations of sampleGSM,WCDMA
and LTE signals are depicted in Fig. 3. The feature vector for

FFT is defined as

x =
[
R0, R1, · · · ,RN−1

]T
. (11)

C. AUTO–CORRELATION FUNCTION
TheACF extracts unique patterns from different cellular com-
munication signals due to periodicities in the time domain.
For instance, in the time domain of GSM signals, there exists
periodicity due to midambles [38]. This periodic pattern is
revealed by the ACF. In addition, due to the usage of cyclic
prefix to eliminate inter–symbol interference [39], the peri-
odicity corresponding to cyclic prefixes can also be seen in
the ACF of LTE signals. ACF for the cellular communication
signals are in Fig. 4. ACF sequence of received waveform is
investigated to make a decision about the type of communi-
cation signal. ACF of signal is defined as

Rr (k) =
N−1∑
n=0

r[n]r[n− k], k = 0, . . . , 2N − 1. (12)

Then, the feature vector is

x = [Rr (0), Rr (1), · · · ,Rr (2N − 1)]T . (13)
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FIGURE 5. PSDs for cellular communication signals.

D. POWER SPECTRUM DENSITY
The PSD of cellular communication signals can be used as
a feature vector in order to differentiate signals because the
power spectra are related to the bandwidth and the channel
in which the signal propagates through. PSD is the Fourier
transform of the ACF and is calculated as follow

Sr (f ) =
∞∑

k=−∞

Rr (n)e−j2/N , k = 1, . . . ,N − 1. (14)

PSDs in the linear scale are presented in Fig. 5 for GSM,
WCDMA, and LTE signals.

PSD has almost the same characteristics as FFT since

|Pr (f )| = |F{r(n)}|2, (15)

where | · | denotes the magnitude. The feature vector obtained
from PSD is given as

x =
[
R20, R

2
1, · · · ,R

2
N−1

]T
. (16)

Especially, in the logarithmic scale, it is expected to show
almost same performances.

E. COMPUTATIONAL COMPLEXITY ANALYSIS
Computational complexity is an important parameter for fea-
ture selectionwhen considering specifications of a processing
unit. Optimal features can be chosen by taking prediction
accuracy into consideration as well as its computation time.
In regards to the problem, we provide the computational
complexity of feature generation for the features used in this
study. The computational complexity of SCF estimated by
FAM is O(2N [4 + 2log2(N ′) + 4N + 2N ′ + N ′log2( 4NN ′ )]),
where N is the received signal length [15]. FFT has the
computational complexity O(N log2(N )). The computational
complexity that is the same for both ACF and PSD isO(N 2).
Even though SCF is the most computationally complex fea-
ture among them, the training complexity of SVM is reduced
by using the α−domain profile of the SCF.

IV. SUPPORT VECTOR MACHINES
SVM is a supervised machine learning method originally
used for binary classification. SVMs aim to find the optimal
decision boundary referred to as the hyperplane. In essence,
this plane is chosen such that the separation between two
classes in the feature space is maximized.

Consider a given training dataset {(x1, y1), (x2, y2), · · · ,
(xn, yn)} with a feature vector xk ∈ Rn and label yk ∈ R
for the k−th signal. Feature vectors described in the previous
sections are utilized in an SVM classifier as

yk
[
ωTψ(xk )+ b

]
≥ 1− ζk , k = 1, . . . , n, (17)

where ω and b denote the weight vector and the decision bias,
respectively. ψ(·) is the transformation applied for the kernel
trick as

K(xk , xl) = ψ(xk )Tψ(xl), (18)

and ζ is a slack variable for the linearly non–separable case,
noting that it is zero for the linearly separable case. The slack
variable is employed to tolerate misclassifications [40]. Con-
vex optimization methods are used to maximize the margin
between data points and the hyper plane given as

min
ω,b,ζ

1
2
ωTω + c

n∑
k=1

ζk

such that yk
[
ωTψ(xk )+ b

]
≥ 1− ζk ,

ζk ≥ 0, k = 1, . . . , n, (19)

where c is a positive real constant. The Lagrangian for the
optimization problem given in (19) is expressed as in (20),

L(ω, b, ζ ;α, ν) =
1
2
ωTω −

n∑
k=1

αk

(
yk
[
ωTψ(xk )+ b

]
−1
)

−

n∑
k=1

ζk (αk + νk − c) (20)

where αk and νk are Lagrange multipliers such that αk ≥ 0
and νk ≥ 0. Using saddle point of the Lagrangian, the dual
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quadratic programming problem is obtained as follows:

min
α

1
2

n∑
k=1

n∑
l=1

ykylK(xk , xl)αkαl −
n∑

k=1

αk

such that
n∑

k=1

αkyk = 0,

0 ≤ αk ≤ c, k, l = 1, . . . , n. (21)

Then, the SVM classifier can be expressed with the deci-
sion function, f (x) such that

f (x) = sign
[ n∑
k=1

αkykK(x, xk )+ b
]
, (22)

where K(x, xk ) is the kernel function. Some kernel functions
can be defined as

K(x, xk ) = xTk x, (23)

K(x, xk ) = (γ + xTk x)
d , γ > 0, (24)

K(x, xk ) = exp(−|x− xk |22/σ
2), σ ∈ R (25)

K(x, xk ) = tanh(κ1xTk x+ κ2) (26)

for linear, d–degree polynomial, radial basis function (RBF),
and multi–layer perceptron (MLP) kernels, respectively.

The performance metrics mainly used for SVM classifier
models are prediction, recall, and F1–score. These perfor-
mance metrics give an insight into the characteristics of a
designed classifier model. The prediction accuracy is the
measure of how well accurate recognition can be performed
by an SVM signal classifier. The prediction is given as

2 =
1

Ntest

Ntest∑
i=1

l(r̂i, ri), (27)

where r̂i and ri are the predicted and received signals at
any instance i, respectively. Then, l(r̂i, ri) takes a value of 1
when the predicted and true signals match, or a 0 value,
otherwise. The precision gives a metric of how much the
results determined as positive are actually positive. The recall
is a measure denoting how much true positives are identified
correctly. The harmonic average of precision and recall is
named as the F1–score which is an overall measure for the
accuracy of the classifier model. The precision (P), recall (R),
and F1–score are given as

P =
ξ

ξ + υ
, R =

ξ

ξ + µ
,

F1–score = 2×
P× R
P+ R

, (28)

where the number of true positive, false positive, and false
negative are denoted by ξ , υ, and µ, respectively.

V. DATASET
The wireless mobile communication dataset used in this
study includes GSM, WCDMA and LTE signals which have
been received over–the–air from different base stations with
unique conditions in terms of the number of taps, fading, and

SNR. To illustrate the dataset, the power spectrum estimation
by the Welch’s method is depicted in Fig. 6.

For the sake of clarity, we emphasize that all signals
are received from different channels and at different times.
Furthermore, as [41] allows transmissions in the different
bandwidths, the dataset includes LTE signals of various band-
widths. The training set and the test set contain 1000 and
500 signals for each waveform, respectively. Each signal is
composed of 20000 I/Q samples. We share the dataset in
the format of FFT, ACF, PSD, and α–domain profile by
maximizing SCFs over spectral frequency; thus, it can be
directly fed into any classifier [33].

VI. CLASSIFICATION PERFORMANCE ANALYSIS
Performance of the proposed SVM–based signal classifier is
analyzed in terms of the different features, kernels, numbers
of I/Q samples, and SNR levels. Unless otherwise stated,
SCF, linear, and 16384 are used as optimum parameters for
the feature vector, kernel, and the number of I/Q samples,
respectively. For these default parameters, 5–fold cross val-
idation gives a mean accuracy of 98% with 1% variance.

A. FEATURE SELECTION
Four feature types are employed individually for the classifi-
cation of GSM, WCDMA, and LTE signals in the real–world
conditions. As described in Section III, FFT, ACF, PSD and
SCF are employed, which can give the unique features for the
signals owing to their periodicity arising from mid–amble,
chip rate, symbol duration, and so on. For instance, FFT
creates features associated with spectrum masks defined in
the standardization of cellular communication signals. Also,
the ACF of GSM signals gives mid–amble position. Another
example of ACF leads to peaks with the period related to
symbol duration for LTE signals. On the other hand, SCF
reveals the hidden periodicities within the signals. To illus-
trate, the SCF of WCDMA signal takes peak value in α–
domain at 3.84 Mcps which is the chip rate for the system
operating in 5 MHz bandwidth [42].

When FFT is employed as a feature vector as described in
Section III-B, the average accuracy is quite poor such that
it almost resembles random selection. The second feature is
PSD and the performance of PSD is quite similar to FFT
performance because of similar characteristic of operations
to FFT. ACF feature shows performance over 74%. Addi-
tionally, SCF performs with the accuracy exceeding 95%.
The classification results indicate that SCF can be used as a
superior feature to identify cellular communication signals in
real–world conditions compared to the FFT, PSD and ACF.
Furthermore, the feature fusion method is actually used by
concatenating four feature vectors which are FFT, PSD, ACF,
and SCF. This new vector is fed into SVM. However, one
should note that the training and feature extraction processes
increase complexity. Then, the results for both feature fusion
method and SCF onlymethod are given in Table 1. The results
show that SCF only case gives better performance compared
to the fusion method, since the diversity of the feature fusion
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FIGURE 6. The power spectral densities estimated by Welch’s method for sample signals in the dataset.

FIGURE 7. The confusion matrices when the different features used in SVM signal classifier.

FIGURE 8. Two–dimensional demonstration of the features by the t–SNE algorithm.

output vector increase drastically. Thus, the feature fusion
method provides a bit worse performance results than the
SCF only case. The confusion matrices for the classifica-
tion results are given in Fig. 7. The precision, recall, and
F1–scores are summarized in Table 1.
Moreover, t–distributed stochastic neighbor embedding

(t-SNE) algorithm is employed to visualize feature vectors
created by SCF, FFT, ACF, and PSD in two–dimensional
space. As seen in Fig. 8, SCF outputs feature vectors which
are linearly separable. However, other functions are not able
to produce linearly separable feature vectors. The results of
t-SNE algorithm show why FFT, ACF, and PSD have poor
classification performance.

Notably, when the logarithm of features in base ten is
employed, the classification accuracy becomes higher. FFT
feature with logarithm identifies signals by the ratio of 89%.
Likewise, the performance of PSD increases to 89% by taking
the logarithm due to the fact that the logarithm of the FFT
is equal to the logarithm of the PSD scaled by 2 as afore-
mentioned in Section III-D. At the same time, the logarithm
operation also increases the performance of ACF feature from
74% to 93%. In contrast with these features, there is a slight
decrease in SCF. This phenomenon is due to the fact that
the logarithmic process huddles scattered features in space.
By comparing the confusion matrices depicted in Fig. 9 with
the matrices given for features without logarithm, it can be
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FIGURE 9. The confusion matrices when the different features with logarithm are used in SVM signal classifier.

TABLE 1. Performance metrics when FFT, ACF, and SCF are individually
employed as feature vector in SVM.

seen that the logarithm function improves the performance.
The performance metrics are listed in Table 2 for the loga-
rithm of features.

SCF performs with a high accuracy in the fading envi-
ronment at the cost of increased computational complexity.
Although FFT, PSD, and ACF show relatively poor classi-
fication performances, they have lower computational com-
plexity. By taking the logarithm, these features can be used
in SVMs for the classification of signals received in the
real–world conditions.

B. SUPPORT VECTOR MACHINE KERNEL TYPE
In this study, the effect of the kernel type of SVM on clas-
sification accuracy is investigated. During the performance
analysis, 16384 I/Q samples for each candidate signal are uti-
lized as a constant parameter. The training and test sets consist
of 1000 and 500 signals for each waveform, respectively. SCF
of the received signal is used as a discriminating feature. The
results in regards to kernel selection are given in Table 3.
Table 3 shows that the linear kernel given with (23) gains an
advantage over the others. The linear kernel results with the
accuracy of 93%. Besides the performance, the linear kernel

TABLE 2. Performance metrics when the logarithms of FFT, ACF, and SCF
are individually employed as feature vector in SVM.

is faster and simpler in terms of training and classification.
Even though the quadratic and polynomial kernels with the
degree of three show acceptable performance in a fading
environment, MLP and RBF kernels degrade classification
performances. The MLP kernel achieves best performance
when the weight κ1 and the bias κ2 are chosen as 1 and −1,
respectively. Especially RBF kernel is noneffective for the
recognition of cellular communication signals by using SCF.
Nevertheless, σ value is chosen as 10−2, 1, 10, and 100,
there is no change in the classification behavior of SVM.
It is possible to say that the SVM classifier with RBF kernel
(σ = 1) predicts the received signal as GSM due to the
Gaussian characteristics of Gaussian minimum shift keying
(GMSK) used in the GSM waveform.

One should note that the proposed framework does not
require a specific tensor processor such as graphics pro-
cessing unit (GPU), as known that SVMs can run on the
central processing unit (CPU) without serious degradation
in performance. Moreover, the results show that SVM with
SCF can perform high F1–score even if it does not employ
complex kernel. Thus, more complex kernel does not guar-
antee higher performance comparing to less complex kernel.
In other words, SCF is a function which maps I/Q vectors
to another space where the signals can be separated linearly.
Also, the proposed system does not need a large dataset since
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TABLE 3. Performance metrics of the SVM–based classifier with several
kernels.

it employs a basic (linear) kernel. Furthermore, the linear
kernel is recommended to use when the number of feature
is very high [43].

Above all, one should consider that the RBF kernel tends
to be overfitted when comparing to the linear kernel. Let
mathematically explain why the RBF kernel tends to be
overfitted. Remembering (25), when a given test vector x∗ =
[x∗1 , x

∗

2 , · · · , x
∗
p ]
T is far from (in terms of Euclidean distance)

an observation xk used in training, |x − xk |22 becomes large.
Therefore, K(x, xk ) takes very small value, which corre-
sponds to that training observations far from the test obser-
vation do not have an essential impact on the prediction [44].
As a result, the RBF kernel can be considered as overfitted.
Thus, the complex kernels cannot fulfill high performance
when the number of signal samples is kept constant. That is
why the complex kernels cannot achieve high accuracy for
our scenario and dataset.

C. THE NUMBER OF IN–PHASE AND QUADRATURE
SAMPLES
The number of I/Q samples is an important parameter which
affects the performance of the proposed algorithm. Therefore,
the impacts of received samples on the classifier performance
have been investigated by Monte–Carlo simulations. Table 4
presents the performance of the SVM classifier with respect
to number of I/Q samples. As seen from Table 4, when
the number of I/Q samples is less than 2048, the classifica-
tion accuracy of the algorithm fluctuates due to insufficient
samples to reveal the hidden periodicities within signals.
GSM signals are recognized with high precision whatever
the number of samples is because of the fact that GSM
signals have a more basic structure compared to WCDMA
and LTE. Therefore, a few samples for GSM allow observ-
ing the periodicities. According to Monte–Carlo simulations,
the number of I/Q samples should be greater than 4096 to
achieve a remarkable classification performance in SVMs.

TABLE 4. Performance metrics of the SVM–based classifier with respect
to the number of received signal samples.

The proposed SVM model is tested by using the test dataset
including signals which have not been observed by the model
before. Therefore, these results show that the proposed sys-
tem can be generalized, i.e. not overfitted.

D. PERFORMANCES VS. SIGNAL–TO–NOISE RATIO
VALUES
In order to investigate the impact of SNR on the classification
accuracy, the signal sets have been expanded to include the
signals with SNR values ranging between 1 dB and 15 dB.
The training set consists of 1000 signals for each class. The
same procedure has been applied in order to construct the test
set including 500 signals for each class at each SNR value.

The classification performance in regards to the different
SNR values is shown in Table 5. Although it is expected
that the classification performance gets better when SNR
increases, the accuracy for GSM fluctuates due to the Gaus-
sian low–pass filtering used in GSM signal generation. On the
other hand, the performances for WCDMA and LTE are
increasing as expected. The overall performance for three
cellular communication signals is over 90% at 7 dB SNR.
As a result, SCF produces reliable feature for the cellular
communication signals in the environments with fading and
multipath.
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TABLE 5. Performance metrics with respect to SNR when the SCF is
employed as feature vector in SVM for the signals with 16384 samples.

E. FADING
Our dataset includes real–world data; hence, there are many
channel types in the dataset. The classification results show
that the proposed system is robust to varying channel con-
ditions. In order to observe the performance with respect to
fading, we created a new dataset including signals generated

FIGURE 10. Classification performances of SVM and SCF with respect to
ideal, Rician (K = 1) and Rayleigh channels.

in the simulation environment. Then, we used this dataset
to observe the performance of the proposed model and SCF
function with respect to the fading and SNRs. For each fading
and SNR value, the training and test sets consist of 3000 and
1500 signals. In the simulation dataset, the number of three
signal types is equal.

The simulation is performed for Ideal (AWGN only),
Rician (K = 1), and Rayleigh fading channels with SNR
values in between −10 dB and 10 dB. The multipath model
is adopted from ITU–R M1225 Pedestrian B channel param-
eters detailed in [45]. The simulation results indicate that
SCF and SVM show tremendous success in the classifica-
tion of cellular communication signals as seen in Fig. 10.
However, real–world conditions degrade the performance of
the proposed classifier. For instance, the classifier achieves
90% accuracy when SNR is−5 dB for simulation dataset and
7 dB for real–world signal dataset, respectively. This result
exhibits why we deal with signals received in real–world
environments in this study since the real–world channels spoil
the structure of the signals heavily because of Doppler shift,
imperfections caused by electronic components and antennas,
etc.

F. COMPARISON WITH EXISTING DEEP LEARNING
NETWORKS
In order to observe how CLDNN and LSTM perform,
we adopt the CLDNN [46] and LSTM [47] models which
are used in modulation classification. We employ the same
models and input vector and matrix as proposed in the papers.
CLDNN employs a 2 × 128 matrix whose first and second
rows include amplitude and phase values, respectively. Addi-
tionally, LSTM takes a vector with the length of 256, which
created by concatenating 128 I and Q values, as an input. For
all details, we refer the readers to [46], [47].

As given in Table 6, precision, recall, and F1–score reveal
poor performance of these classifier models for radio air
interfaces. We also investigate LSTM network given in [47]
with SCF instead of I/Q samples; however, the computation
time is very high (i.e. 2 hour 29 minutes per epoch for the PC
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TABLE 6. Performance metrics of the existing DL networks and the
proposed system.

FIGURE 11. Spectrum sensing performances of SVM–based detector and
CFAR detectors with respect to SNR.

with Nvidia GTX1070 Ti 11GB) since SCF outputs a vector
with length of 16385. Thus, I/Q is employed in LSTM as
given in [47] instead of SCF. On the other hand, even though
LSTM takes 84 second for an epoch when I/Q samples are
used as given in [47], using I/Q vector gives poor results.

G. SPECTRUM SENSING
The proposed SVM–based classifier is able to detect signals
in the spectrum; hence, it can be employed in the cognitive
radio networks. SVM–based detector employs SCF to dif-
ferentiate signal from noise. SVM classifier is trained with
1200 signals (i.e. 600 noisy signals and 600 pure noise sam-
ples) for each SNR value. Then, the test process is carried
out by using 800 signals (i.e. 400 noisy signals and 400 pure
noise samples) for each SNR value. WCDMA signals are
used since they have dominant SCF characteristics due to
spreading codes. Also, CFAR detector which utilizes SCF,
is employed to compare with SVM–based detector. Basically,
CFAR detector includes a peak detector which searches the
peaks of SCF with a constant false alarm rate. By searching
peaks in the feature vector, the presence of the signal in the
RF spectrum is determined. The false alarm rate comes from
the peak detector in the CFAR detector. If the detector finds
the peaks, the CFAR detector decides that a signal is present
in the spectrum, otherwise not.

The real signals are employed in this study, also. The
results show that SVM–based detector outperforms CFAR
detector at low SNR values. For instance, the detection rate
for SVM–based detector exceeds 92.5% at 3 dB SNR; how-
ever, CFAR detector senses the signals with detection rates
of 45.6% and 59.4% when false alarm rates are 0.05 and 0.1,
respectively. At high SNR values, SVM–based detector per-
forms better compared to CFAR detector. Spectrum sensing
performances with respect to SNR are depicted in Fig. 11 for
SVM–based and CFAR detectors.

VII. CONCLUSION
Designing signal feature extractors and transforms to obtain
the most suitable information to identify the wireless sig-
nals can pave the way towards more efficient and dynamic
utilization of wireless RF spectrum. In this study, identifi-
cation of wireless standard–based signals without any prior
information by employing SCF, PSD, FFT and ACF under
the umbrella of SVMs is proposed while considering many
design parameters such as kernel type, number of I/Q samples
and training input size.

SCF feature achieves the best performance for the iden-
tification of received signals in real–world wireless envi-
ronments. Also, it is observed that other features are not
robust against wireless channel conditions such as multipath
fading and shadowing even though they have less compu-
tational complexity than SCF. This study shows that SVM
with the linear kernel performs with an accuracy of 93%;
however, other kernels cause SVM to have a poor perfor-
mance. The effect of the number of I/Q samples on per-
formance is also investigated. The accuracy fluctuates when
the number of I/Q samples is less than 1024. The reason
for this, I/Q sample number is not sufficient to extract fea-
tures. It is seen that, after enough sample to extract statis-
tics, there is proportion between success of classifier and
sample number of received signal. Moreover, it is shown
that the overall performance increases with SNR level. The
overall accuracy reaches to 90% for the signal set with
7 dB SNR level and channel imperfections. It is shown
that the features which are exploited within the proposed
multi–dimensional signal identification framework can be
used as a superior features to identify cellular communi-
cation signals in real–world conditions. Moreover, the pro-
posed system achieves a high performance under a fad-
ing channel and low SNRs by using the dataset created in
the simulation environment. Even if channel has Rayleigh
fading, SVM performs a high accuracy at SNR as low
as −3 dB.

It is observed that the proposed system achieves a sig-
nificantly superior performance than the existing DL meth-
ods, which are commonly used in modulation classification.
Additionally, this study shows that SVM together with SCF
can be utilized in spectrum sensing with higher performance
than conventional CFAR detector. Overall, SVM and SCF
provide a convenient toolset for the classification of radio air
interfaces as well as spectrum sensing.
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TABLE 7. Abbreviations used in this study.

.

As future work, a classifier model can be designed, which
employs fewer I/Q samples without any deterioration in clas-
sification performance.

APPENDIX
GLOSSARY LIST
See Table 7.
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