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ABSTRACT Static traffic assignment aims to disclose the spatial distribution of vehicular flow over
a transportation network subject to given traffic demands, and plays an essential role in transportation
engineering. User-optimal pattern adheres the individual rationality of motorists, in which everyone chooses
a route that minimizes his own travel cost, while considering congestion effects influenced by the aggregated
movement of vehicles. User optimal traffic assignment, which is also known as the user equilibrium, entails
solving an optimization problem with a strictly convex objective function and linear constraints. However,
the performances of general-purpose solvers are quite disappointing. This paper proposes two highly
efficient computation models for the user equilibrium problem. The first one exploits the second-order cone
reformulation of a convex power function, resulting in a second-order cone program, and no approximation is
incurred. The second one approximates the convex objective function using a piece-wise linear function, and
comes down to a linear program. An adaptive path generation oracle is devised in order to circumvent path
enumeration in problem setup. Case studies demonstrate that the proposed method can deal with large-scale
transportation systems, and outperforms the most popular iterative algorithm in the literature.

INDEX TERMS Linear program, second-order cone program, traffic assignment, user equilibrium.

I. INTRODUCTION
The traffic assignment problem (TAP) is a fundamental
problem in transportation engineering and underlies many
practical applications such as network topology design, road
capacity expansion planning, and traffic signal control. Pro-
vided with the volume of vehicles traveling between each
pair of origin-destination (O-D) nodes, TAP discloses the
vehicular flow distribution among roadway segments subject
to flow conservation constraints. The most widely used cri-
teria that extract a reasonable outcome from infinitely many
feasible network flow solutions were proposed by Wardrop
in 1952 [1], including the user-equilibrium (UE) principle and
system optimum (SO) principle. SO assumes that a central
operator determines the routes for every motorist aiming to
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minimize the total travel time, and all motorists are willing
to accept the supervision of the operator. This is an ideal
assumption. In practice, every driver is most likely to choose
a route that minimizes his own travel time, leading to the
UE principle. In this circumstance, a stable distribution of
network flow emerges if no one has the incentive to alter his
current route. UE has a close relationship with the Nash equi-
libriumwhen the number of players in Nash game approaches
infinity [2].

The Wardrop UE condition is stated in an if-then form and
can be expressed by complementarity constraints, which are
non-convex. Beckmann et al. revealed that the UE condition
exactly constitutes the Karush-Kuhn-Tucher (KKT) optimal-
ity condition of a convex optimization problem [3]. Due to
the elegant property of convex optimization, Beckmann’s
formulation quickly becomes the reference model for solving
a user-optimal TAP. A detailed tutorial on UE and SO based
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TAP can be found in [4]. This paper mainly focuses on the
former one. Since the pioneering work in [1] and [3], various
methods have been developed to solve the UE based TAP,
which can be divided into two categories.

The first category directly solves Beckmann’s model while
leveraging its convexity. The renowned representative in this
category is the Frank-Wolfe (F-W) algorithm [5], which was
firstly embedded in a descent algorithm to solve the link-flow
based Beckmann model in [6]. The procedure in [6] follows
the basic steps of an iterative descent algorithm for nonlinear
program [7]. It entails solving a linear program (LP) and a
one-dimensional search in each step. Due to the nature of
UE, the LP always assigns all traffic flow to the shortest path,
so that the subproblem can be solved instantly. Several vari-
ants were given in [8]–[10], with modifications on the search
direction or step length. The Link-flow based Beckmann
model does not provide path flow information, which offers
insights on how motorists between the same O-D pair choose
different routes. The path flow-based Beckmann model was
discussed with a simplicial decomposition algorithm in [11],
a gradient projection algorithm in [12], and a conjugate gra-
dient projection algorithm in [13]. Likewise, the performance
of these algorithms depends on the updating strategies in each
iteration and specific problem data.

The second category formulates theWardrop UE condition
as a variational inequality since the work in [14]–[16], and
thus any algorithm for the variational inequality problem can
be used to solve the UE problem, such as the projection
method [17]. More algorithms for the variational inequality
problem can be found in [16]. Since variational inequality is
a more general modeling framework than traditional math-
ematical programming, it allows incorporating multi-variate
link travel cost functions depending on traffic flows in multi-
ple links. Recently, the variational inequality theory has been
shown to be very useful in dynamic TAP, which takes the
elapse of time into account [18], [19]. This category mainly
pursues the modeling capability of variational inequality
rather than the computational efficiency, as the dynamic TAP
is extremely challenging and is much less mature than the
static TAP.

In the past decade, research efforts are devoted to
more dedicated traffic models, considering the macroscopic
fundamental diagram [20], limited driving distance and
parking choice [21], [22], electric vehicles and charging
stations [23]–[25], ride-sharing travellers [26]–[28], and
reference-dependent utility [29], users’ heterogeneity [30],
transit/queue dynamics [31], [32], and traffic signal control
[33], [34]. Most of them can be formulated as a convex
optimization problem. In addition to the traffic assignment
approach, data-driven methods have been developed to esti-
mate O-D travel time [35], [36]. Nonetheless, traffic assign-
ment is still acknowledged as the most fundamental problem
that provides the holistic information of the entire transporta-
tion network.

With the development of effective algorithms for con-
vex programs, e.g., the interior-point algorithm which has

worst-case polynomial-time complexity [37], problems with
moderate sizes can be solved by off-the-shelf solvers. This
paper focuses on the fundamental UE problem, and aims to
fill the gap between the UE computation and highly effi-
cient algorithms for conic and linear programs. On the one
hand, the convergence rates of the procedures in [6] and
its variants heavily rely on the updating strategy in each
iteration. Although the problem in each step can be solved
fast, we find in experiments that this algorithm converges
slowly around the optimal solution, and the computation time
grows quickly with the reduction in error tolerance. On the
other hand, although TAP is formulated as a convex optimiza-
tion problem, we find in experiments that general-purpose
solvers, no matter interior-point algorithm based ones or
sequential quadratic programming based ones, can only solve
small-scale instances, unlike the state-of-the-art LP solver
which can cope with problems with hundreds of thousands
of variables. In fact, between two extremes of convex pro-
grams, i.e., an LP and a general convex program, there are
many other important and useful instances; one of them is
the second-order cone program (SOCP). Although nonlinear,
SOCP still possesses nice structured properties which can be
utilized to develop more dedicated interior-point algorithms.
These algorithms for SOCP turn out to be considerably faster
than those exploiting only general convexity. Finally, as a
common difficulty, in the path-based TAP model, enumer-
ating all available paths between a given O-D pair not only
consumes a lot of time but also introduces a large number
of unnecessary decision variables in the optimization model,
because only a few paths will be actually used. However,
the subset of paths that carry traffic flow is not known in
advance. In the link-based TAP model, the total link flow
is expressed via the sum of subcomponents contributed by
the traffic demand between each O-D pair. Hence, the link-
based TAP model is also not scalable with the number of
O-D pairs.

This paper proposes two highly efficient computationmod-
els for the user-optimal TAP which overcome the aforemen-
tioned difficulties. The first one exactly reformulates the
Beckmann’s model as a SOCP, as long as road latency can
be expressed by a convex power function, which is a com-
mon paradigm in transportation engineering. The second one
approximates the convex objective function via a piece-wise
linear function and comes down to a single LP. It is eligi-
ble for any increasing road latency function and is slightly
more tractable than the SOCP model. The approximation
error is discussed and tested in the case study. An adaptive
path generation oracle is devised in order to circumvent path
enumeration.

The rest of this paper is organized as follows. The Beck-
mann model is introduced in Section II. The SOCP formu-
lation, the LP formulation, and the adaptive path generation
oracle are presented in Section III. Case studies are conducted
in Section IV. Finally, conclusions are drawn in Section V.
Throughout the paper, UE and user-optimal TAP are used
interchangeably.
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II. MATHEMATICAL FORMULATION
A. TRANSPORTATION NETWORK MODEL
A transportation network can be abstractly modeled by a
graphG = [N ,A], whereN stands for the set of nodes such as
origin and destination areas, as well as intersection points of
roadways; A denotes the set of links representing roadways.
The connection topology is described by node-link incidence
matrix 3 with a dimension of |N | × |A|, where | · | is the
cardinality (number of elements) of a set. Each column of 3
corresponds to a link with 1(−1) at the entry associated with
the entrance (exit) node, i.e.:

3ij =


+1, if node i is the entrance of link j;
−1, if node i is the exit of link j;
0, if there is no connection;

Let (r, s) be an O-D pair. The volume of vehicles traveling
from an origin node r ∈ N to a destination node s ∈ N is
called the traffic demand qrs. Matrix Q with a dimension of
|N | × |N | is the full-dimensional O-D matrix, and is gener-
ally non-symmetric. Let DRS = {(r, s)|q

rs > 0} be the set of
active O-D pairs. It should be mentioned that traffic flow and
demand in TAP are real numbers, indicating that the system
impact of a single vehicle is negligible.

A path is a chain of connected links between an O-D pair
(r, s). All available paths connecting O-D pair (r, s) ∈ DRS
are labeled by index k ∈ K rs. f rsk is the traffic flow carried
by path k between (r, s). For any O-D pair, the sum of path
flows must meet the traffic demand

f rsk ≥ 0,
∑
k

f rsk = qrs, ∀(r, s) (1)

Topological relations between paths and links are por-
trayed by the link-path incidence matrix1 = [1rs], ∀(r, s) ∈
DRS , where the sub-matrix1rs with a dimension of |A|×|K rs

|

corresponds to a particular O-D pair (r, s), and its elements
are defined as

δrsak =

{
1, if path k passes link a
0, otherwise;

With the definition of matrix 1, the traffic flow xa on link a
can be expressed as a linear function of path flow f rsk

xa =
∑
rs

∑
k

f rsk δ
rs
ak , ∀a (2)

To formulate equation (2), we should enumerate all avail-
able paths between any O-D pair, which is a challenging task.
In the next section, we discuss an adaptive path generation
oracle so that path enumeration can be circumvented.

B. USER OPTIMAL TRAFFIC ASSIGNMENT MODEL
In the user-optimal TAP, motorists decides their paths based
on the travel cost. Travel time is often the primary concern.
Let ta be the time spent on link a. In the classic model, ta is
a function of xa and independent of the flows in other links,
while xa depends on the decision of all motorists in the system

as in (2). The following power function is widely used to
quantify road travel time [4]

ta(xa) = t0a

[
1+ α

(
xa
ca

)β]
(3)

where t0a is the zero-flow travel time; ca is sometimes referred
to as the capacity of link a. In fact, it is not a mandatory
upper bound. The travel time ta would grow quickly if xa
exceeds ca, placing a penalty for further usage of this road.
The remaining two parameters recommended by the Bureau
of Public Road (BPR) are α = 0.15 and β = 4.0 [38].
Given link travel time, the path travel time crsk perceived by

a single traveller between O-D pair (r, s) is calculated by the
sum of link travel times

crsk =
∑
a

ta(xa)δrsak , ∀k, ∀(r, s) (4)

TAP aims to identify a reasonable outcome of traffic
flow distributions from its feasible set (1)-(2) taking into
account the individual rationality of motorists. The following
Wardrop UE principle is used [4]:
At a user equilibrium state, for each O-D pair, the travel

time on all used paths is equal, and no greater than the travel
time that would be experienced by a single vehicle on any
unused path.

The intuition is clear. If the travel time on used paths is not
equal, or travelling on an unused path could save travel time,
then some vehicles will have the incentive to switch to that
path, leading to a change in the distribution of traffic flow.
Above UE principle can be interpreted by a logic condition

if f rsk > 0, then crsk = urs, k ∈ K rs, ∀(r, s)

if f rsk = 0, then crsk ≥ u
rs, k ∈ K rs, ∀(r, s)

where the minimal travel time urs between (r, s) is also a
variable to be determined. These logical conditions can be
expressed by complementarity and slackness constraints

0 ≤ f rsk ⊥ crsk − u
rs
≥ 0, k ∈ K rs, ∀(r, s) (5)

where 0 ≤ x ⊥ y ≥ 0 stands for x ≥ 0, y ≥ 0, and
xy = 0, preventing a and b from being strictly positive at
the same time. (5) should be jointly solved with network flow
model (1)-(2) and travel time model (3)-(4), which is compu-
tationally difficult, because complementarity constraints are
non-convex and violate Mangasarian-Fromovitz constraint
qualification at any feasible point [39].

Fortunately, complementarity constraint (5) combining
with (1)-(4) happen to constitute the KKT optimality condi-
tion of the following optimization problem [3], [4],

min
∑
a

∫ xa

0
ta(θ )dθ

s.t. Net-flow (6)

where the feasible set Net-flow is short for (1)-(2). Prob-
lem (6) is the path flow based Beckmann model. Its feasible
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set is a polyhedron. The objective function is the sum of
univariate function. For each term, calculate its derivative

d2

dx2a

(∫ xa

0
ta(θ )dθ

)
=

dta(xa)
dxa

Because ta is a increasing function in xa, the second-order
derivative is always positive, and thus the Hessian of the
objective function is positive definite. Therefore, problem (6)
is strictly convex in xa and has a unique link flow solution.
There could be multiple path flow solutions satisfying (2).

III. EFFICIENT COMPUTATION MODELS
Although problem (6) is convex, the worst-case complexity of
the interior-point algorithm for finding a ε-optimal solution of
a general convex program turns out to be [37]

O(1)n
(
n3 +M

)
ln
(
1
ε

)
where n is the number of variables; at any given point, the val-
ues of functions in the objective and constraints together
with their derivatives can be computed using M arithmetic
operations. This bound is already unacceptable for n with an
order ofmagnitude of 103. In contrast, an LPwith hundreds of
thousands of variables can be solved very efficiently. Because
a mature LP solver never evaluates function values. All struc-
tured information is contained in the constant coefficient
matrix. SOCP is almost as tractable as LP [40]. In this section,
we will present SOCP and LP models for problem (6). The
proposed model can be easily generalized to tackle various
recently proposed UE models.

A. SOCP FORMULATION
We have already shown that the objective function of (6)
is strictly convex. For BPR recommended parameters, prob-
lem (6) evolves minimizing∑

a

t0a

[
xa +

0.03 x5a
c4a

]
Replace the nonlinear term (xa)5 with a new variable ya and
let γa = 0.03c−4a , problem (6) gives rise to

min
∑
a

t0a (xa + γaya)

s.t. Net-flow, ya ≥ (xa)5, ∀a (7)

Because the objective is to beminimized, ya = (xa)5 naturally
holds at the optimal solution. This is known as the epigraph
transformation [41]. The convex region CP = {(xa, ya)|xa ≥
0, ya ≥ (xa)5} (xa ≥ 0 is included in (1)) is the epigraph of
function ya = (xa)5 over R+. However, a solver is unable to
recognize such convexity. We need to represent the epigraph
via the intersection of second-order cone constraints. For the
sake of exposition, we omit the subscript a. Consider the
following set of constraints

x2 ≤ v21v22 (8a)

v221 ≤ v11v12 (8b)

v222 ≤ v13v14 (8c)

0 ≤ v11 ≤ x (8d)

v212 ≤ x (8e)

v213 ≤ y (8f)

0 ≤ v14 ≤ 1 (8g)

where v21, v22, v11, v12, v13, v14 are auxiliary variables. To
see the equivalence between (8) and y ≥ x5, squaring both
sides of (8a) and substituting (8b) and (8c) we have

x4 ≤ v11v12v13v14 (9)

For any point satisfying y ≥ x5, we can find v11 = x, v12 =√
x, v13 =

√
y and v14 = 1, such that (9) is met; conversely,

suppose v11, v12 and v14 are not equal to 0 (otherwise, x = 0 is
the unique feasible solution), because v13 ≥ x4/(v11v12v14),
(8d)-(8g), we have y ≥ v213 ≥ x

8/(v211 v
2
12 v

2
14) ≥ x

5 is met.
In (8), (8a)-(8c) are rotated second-order cones; take (8a)

for example, its canonical form is∥∥∥∥ 2x
v21 − v22

∥∥∥∥ ≤ v21 + v22, v21 ≥ 0, v22 ≥ 0 (10)

(8e) and (8f) are convex quadratic constraints, and remaining
ones are linear. They do not harm computational efficiency.

We now consider a more general case in which β in func-
tion (3) is a rational number, i.e., β = p/q > 1 where p
and q are positive integers. This entails a conic representation
of region CβP = {(x, y)|y ≥ xp/q, x ≥ 0}. We utilize the
technique in [37]. Let l be the smallest integer satisfying
p ≤ 2l and r = 2l − p. Consider

s2
l
≤ y1y2 · · · y2l (11)

where all variables are non-negative. This inequality can be
represented by second-order cones through introducing l gen-
eration tower of variables.More precisely, we call the original
2l y-variables the variable of generation 0 denoted by y0,i
instead of yi. For every pair of 0-generation variables, add a
new variable of generation 1 denoted by y1,i. There are totally
2l−1 1-generation variables. Repeat above procedure, we get
2l−2 2-generation variables, 2l−3 3-generation variables, until
l generation with a single variable yl,1 is built. Construct the
following system of constraints

Layer 1 : (y1,i)2 ≤ y0,2i−1y0,2i, i = 1, · · · , 2l−1

Layer 2 : (y2,i)2 ≤ y1,2i−1y1,2i, i = 1, · · · , 2l−2

· · · · · · · · · · · ·

Layer l : (yl,1)2 ≤ yl−1,1yl−1,2
Layer l + 1 : s ≤ yl,1

all variables are non-negative

By squaring inequalities in each generation, we arrive at (11).
The standard form of rotated second-order cones in each layer
is similar to (10).

To retrieve a conic representation of CβP , based on (11), let
s = y1 = y2 = · · · = yr = x, yr+1, · · · , yr+q = y, and
all remaining variables, if there is any, are equal to 1. In this
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way, (11) evolves x2
l
−r
≤ yq, which gives y ≥ xp/q (recall

r = 2l − p).
In summary, TAP (6) is equivalent to the following SOCP

min
∑
a

t0a (xa + γaya)

s.t. Net-flow,Pow-fun-SOC (12)

where Pow-fun-SOC collects all constraints of conic repre-
sentation of power functions. Although auxiliary variables are
introduced in (8) and the more general case, such an attempt
is worthwhile because solving SOCP is almost as efficient as
solving LP, which will be demonstrated in case study.

B. LP APPROXIMATION
Another way to approximate convex function ya = (xa)β+1,
β > 1 in interval [0, xam] is to use piecewise linear function.
Suppose xka and yka = (xka )

β+1, k = 1, · · · , n denote the
collection of break points. Introduce new decision variables
λka, k = 1, · · · , n, which represent the weights associated
with the break points, then a point on function ya = (xa)β+1

can be approximated by the convex combination of the break
points:

xa = λ1ax
1
a + λ

2
ax

2
a + · · · + λ

n
ax

n
a

ya = λ1ay
1
a + λ

2
ay

2
a + · · · + λ

n
ay
n
a

λa = [λ1a, · · · , λ
n
a] ∈ 1n (13)

where vector λa is decision variable; 1n = {λ ∈ Rn
+|1

Tλ =

1} is the unit probability simplex. So TAP (6) can be approx-
imated by the following LP

min
∑
a

t0a (xa + γaya)

s.t. Net-flow-Path

xa =
∑
k

λkax
k
a , ∀a

ya =
∑
k

λkay
k
a, ∀a

λa ∈ 1n, ∀a (14)

where γa = α(β + 1)−1/(ca)β , which originates from the
integral of road latency function (3) following the objective
function of problem (6)∫ xa

0
ta(θ )dθ =

∑
a

t0a

[
xa +

α (xa)β+1

(β + 1) (ca)β

]
Because of convexity, at the optimal solution, only two adja-
cent weights can be activated (strictly positive), while the
remaining ones are equal to 0.

Then we discuss how to select the break points xka , k =
1, · · · , n. The error introduced by approximating a nonlinear
function using piecewise linear function is thoroughly studied
in [42]. In our problem, function ya = (xa)β is sufficiently
smooth, and the maximum of second-order derivative on
interval [0, xam] is y′′am = β(β − 1)(xam)β−2. According to

FIGURE 1. Non-uniform partition of interval.

Theorem 2 in [42], if we divide [0, xam] into

n ≈

√
β(β − 1)(xam)β/2

4
√
ε

(15)

segments with identical length, then the maximum absolute
approximation error will be no greater than ε.

Because the typical value of β in the power function is
around 4, the function value changes smoothly when x is
close to 0, and the error in the rightmost segment beside xam
is the largest. To reduce the number of breakpoints and the
dimension of λa, we resort to non-uniform partition. This is
implemented by merging segments and checking the approx-
imation error. The procedure is summarized in Algorithm 1.
In view of the shape of the function, we start from the left and
move to the right. In the end, the segments become shorter
with the growth of xa, as illustrated in Fig. 2

Algorithm 1 Adaptive Partition
1: Select an error tolerance ε > 0. Uniformly divide

traffic flow interval [0, xam] into n segments labeled by
1, · · · , n, where n is given in (15). Iteration counter k =
1.

2: Find segment k and its endpoints xl and xr . Check the
maximum approximation error

ε = max
x∈[xl ,xr ]

{L(x)− ta(x)}

where L(x) is the linear function connecting (xl, ta(xl))
and (xr , ta(xr )). The maximum must be found in an inte-
rior point because the error is 0 at two endpoints.

3: If ε < 0.9ε, merge the current interval with the next
one; decrease the index numbers of remaining segments
by 1, and go to step 2. If segment k is the rightmost one,
terminate; otherwise update k ← k + 1 and go to step 2.

The piecewise linear approximation approach does not
rely on any specific structure of the latency function ta(xa).
As long as it is increasing, such as the Davidson function in
[43] which considers amandatory upper bound of traffic flow,
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FIGURE 2. Sioux Falls network.

its integral is convex in xa, and thus this approach remains
valid.

C. AN ADAPTIVE PATH GENERATION ORACLE
Path information is needed during the setup of problem (6).
Although the number of feasible paths connecting each O-D
pair could be large, only a small fraction will be used. So we
can incorporate only a subset of paths which are most likely
to be activated. To this end, we start with an arbitrary subset
of K rs which includes one or only a few paths and solve a
restricted TAP, where ‘‘restricted’’ means that the feasible
region of TAP is smaller compared with the original TAP,
because the majority of feasible paths are neglected. At the
obtained UE pattern, if the travel time can be further reduced
by switching to a new path, then the path is added to K rs,
and the TAP is solved again, until no one is willing to change
their route. In such circumstance, the UE pattern also solves
the original TAP.

This section streamlines themathematical format for above
procedure. For an O-D pair (r, s), vector I rs ∈ R|N | has two
non-zero elements: 1 and −1 at the entries corresponding
to the origin node r and the destination node s. Vector v
consists of |A| 0-1 variables. By the definition of node-link
incidence matrix3, suppose3v = I rs holds, then those links
corresponding to non-zero elements in v constitute a chain
connecting r and s, i.e, an available path.

To identify the fastest path at a given traffic flow patten
x∗, the travel time t∗a for each link can be calculated via
equation (3). The minimal travel time ursb between (r, s) on
present paths is readily available by comparison. To find a
potentially better path, we solve the following MILP

ursc = min
v

∑
a

t∗a va

s.t. 3v = I rs

v ∈ B|A| (16)

If ursc < ursb , the optimal solution v∗ indicates a better path,
which can reduce travel time and will be added in the path
set K rs. According to above discussions, a procedure for
solving problem (6) without path enumeration is summarized
in Algorithm 2.

Algorithm 2 Adaptive Path Generation
1: Find the initial fastest path connecting every O-D pair

using free travel time t0a ,∀a, and then construct link-path
incidence matrices 1.

2: Solve the restricted TAP (6) with the current 1; the UE
is x∗, update the link travel time t∗a ,∀a and the minimal
travel time ursb ,∀(r, s).

3: solve path generation subproblem (16) for each O-D pair.
The optimal solution is v∗ and the optimal value is ursc .
If ursc ≥ ursb , ∀(r, s), then there is no better path. Return
the current UE solution x∗. Otherwise, if ∃(r, s) : ursc <
ursb , then update 1rs

← [1rs, v∗] and 1; go to step 2.

Because the number of paths is finite, Algorithm 2 must
terminate in a finite number of iterations. In practice, it often
converges very quickly because only a few paths are actually
used. Therefore, the problem size of path-based formulation
(6) is actually very small. To accelerate Algorithm 2, multiple
paths can be used in the initiation step. Algorithm 2 imple-
ments the same function as the Dijkstra algorithm of shortest
path. In a large network, when the origin and the destination
are distant from each other, Algorithm 2 is more efficient.

IV. CASE STUDIES
We present case studies on systems with different scales.
In function (3), α = 0.15 and β = 4.0 are used for
all roadway segments if there is no particular declaration,
while t0 depends on real system data. All simulations are
implemented on a laptop with Intel i5-3210M CPU and 4 GB
memory. MILP and SOCP are solved by CPLEX 12.8. The
source code is available in [44].

To circumvent explicit enumeration of paths, SOCP
model (12) and LP model (14) are embedded in the frame-
work of Algorithm 2, while in the algorithm framework
proposed in [6] (F-W method for short), the convergence
criterion requires the change of objective values in two suc-
cessive iteration should be less than 1% (in [6], this threshold
is 5% and also tested, but the accuracy is not satisfactory).
Among the SOCP model, the LP model and the F-Wmethod,
the first one offers the exact solution which is also unique
due to the strict convexity; the second one approximates
the objective function with an adjustable error tolerance; the
last one tackles the exact traffic assignment model; however,
the convergence criterion does not provide clear information
on the optimality gap, which is defined as

optimality gap =
|v− v∗|
v∗

where v∗ is the optimal value of SOCP (12), and v is the
optimal value of LP (14) or that offered by the F-W method.
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TABLE 1. Results of Sioux Falls network.

To compare solution quality, we use indicators

maximum relative error = max
a

{
|xa − x∗a |

x∗a

}
and

standard deviation =

√
1
|A|

∑
a

(
xa − x∗a

)2
where x∗a is the optimal solution of SOCP (12), and xa is
the optimal solution of LP (14) or that offered by the F-W
method.

A. SIOUX FALLS NETWORK
In this section, the renowned Sioux Falls network shown
in Fig. 2 which consists of 24 nodes and 76 links is tested. The
O-D demandmatrix has a dimension of 24×24. In the normal
case, system data are identical to those in [6], and xam = 2ca
is adopted in equation (15). In peak (off-peak) case, traffic
demand qrs is multiplied by 1.5 (0.75), and xam in (15) is
adjusted accordingly. Results are compared in Table 1.

In all three cases, Algorithm 2 converges in 5 or 6 itera-
tions, indicating that its performance is robust against load
conditions. Computation times of SOCP and LP do not differ
significantly. Since the piecewise linear function (13) over-
estimates the original convex function (3), the optimal value
of LP (14) should be always no less than that of (12), which
is the true optimum. Nevertheless, even in the case of peak
hour, the optimality gap is smaller than 0.02%. At the optimal
solution, the maximum relative error of link flow is kept
below 2.0%, which is satisfactory in practical usage.

1Optimization problem setup time is not counted. The same applies for all
‘‘solver time’’ throughout the paper.

For the F-W method, from Table 1 we can observe that
when the convergence tolerance is set to 1%, the optimality
gap and approximation error are generally small. However,
dozens (even one hundred) of iterations are needed before
the F-W algorithm could converge, and the CPU time is one
order of magnitude longer than those of SOCP and LP. When
the convergence tolerance is set to 5%, the F-W algorithm
converges quickly, but link flow solutions still exhibit errors
as large as 17% and 21% in the peak and normal cases. These
observations imply that F-W algorithm converges slowly
around the optimal solution, and it is usually difficult to
improve efficiency and accuracy at the same time, especially
when the demand is high.

We also test some general-purpose NLP solvers including
the interior-point algorithm based IPOPT [45], the sequential
quadratic programming based SNOPT [46], the KNITRO
solver [47] that integrates interior-point algorithm, active
set algorithm, and sequential quadratic programming algo-
rithm, and a global solver SCIP [48]. Results are given
in Table 2.

TABLE 2. Comparison with NLP solvers.

All the above solvers failed to solve TAP (6) with the
complete set of O-D pairs. We reduce the number of active
O-D pairs |DRS | and change it from 10 to 40. As we can
see from Table 2, IPOPT is the most efficient among the
four candidates. If there are only 10 O-D pairs, all methods
have comparable efficiency. However, general-purpose NLP
solvers are not scalable; their computation times grow quickly
with the increase of DRS . When DRS = 38, only SCIP could
return a solution in more than 100 minutes. In contrast, SOCP
and LP methods successfully solve all instances within less
than a second. On this account, directly solving problem (6)
as an NLP is not wise although it is convex.

B. BEIJING NETWORK
In this section, the transportation network in the city of Bei-
jing is considered. Ring expressways and arterial roads within
the fifth ring are taken into account. The free travel time is
set as t0 = L/v, where L is the length of the arc, and v is
the speed limit, which is 80km/h for ring expressways and
60km/h for arterial roads. Network topology is built in [49]
and shown in Fig. 3. It consists of 222 nodes, 943 links and
2000 O-D pairs. We consider the evening peak from 5:30 to
7:30 p.m. Complete system data can be found in [44]. Similar
experiments are conducted. Results are listed in Table 3.
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FIGURE 3. Beijing network.

TABLE 3. Results of Beijing network.

The same trends are observed in this table. LP and F-W
(1% tolerance) offer similar link flow solutions with a max-
imum relative error less than 5% and 7%, respectively, com-
pared with the exact one provided by the SOCP model. LP is
slightly faster than SOCP, and one order of magnitude faster
than F-W (1% tolerance). F-W (5% tolerance) is not accurate

TABLE 4. Performances on Other networks.

enough and less efficient than SOCP and LP. The maximum
relative error of link flow is larger than 20%. We further
change the number of O-D pairs in the system. F-W (1%
tolerance) takes more iterations when |DRS | is reduced, while
the convergence rates of SOCP, LP and F-W (5% tolerance)
are not significantly influenced. The maximum relative error
of F-W (5% tolerance) shows an increasing trend with the
decrease of |DRS |.

C. OTHER SYSTEMS
Above methods are tested on Anaheim network in the
U.S., and also in Berlin-Mitte-Center (BMC) network,
Berlin-Prenzlauerberg-Center (BPC) network, as well as
Berlin-Tiergarten (BT) network in Germany. System data are
available in [50]. Information on the scale of each system
and the computation time of each method are summarized
in Table 4. Results show that SOCP and LP have similar
efficiency, which is one order of magnitude faster than F-W
(1% tolerance) and almost 4 times faster than F-W (5%
tolerance).

V. CONCLUSION
This paper studies efficient computation of the user-optimal
traffic assignment problem. Experiments demonstrate that
solving such a problem using general-purpose nonlinear pro-
gramming solvers is not scalable. The popular F-W method
has some advantages. The solution sequence generated by the
algorithm is decreasing, and any solution in the sequence is
feasible. However, it is difficult to meet the requirements on
accuracy and efficiency simultaneously. The proposed SOCP
and LP methods outperform F-W method in both aspects.
The key idea is to represent the nonlinear but convex objec-
tive function via second-order cones or a piecewise linear
function, so as to utilize state-of-the-art conic and linear
programming solvers, in which the structured property of
cones and polyhedra are better exploited. The acceleration is
more than one order of magnitude compared to F-W method
with a similar level of accuracy.
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