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ABSTRACT The extraction and proper utilization of convolutional neural network (CNN) features have
a significant impact on the performance of image super-resolution (SR). Although CNN features contain
both spatial and channel information, current deep learning techniques for SR often suffer to maximize the
performance due to using either the spatial information or channel information. Moreover, they integrate
such information within a deep or wide network rather than exploiting all the available features, eventually
resulting in high computational complexity. To address these issues, we present a binarized feature fusion
(BFF) structure that utilizes the extracted features from global residuals (GR) in an effective way. Each GR
consists of multiple hybrid residual attention blocks (HRAB) that effectively integrates the multiscale feature
extraction module and channel attention mechanism in a single block. Furthermore, to save computational
power, instead of using a large filter size, we use convolutions with different dilation factors to extract
multiscale features. We also propose to adopt global skip connections (GSC), short skip connections (SSC),
long skip connections (LSC) and GR structure to ease the flow of information without losing important
features details. In the paper, we call this overall network architecture as hybrid residual attention network
(HRAN). In the experiment, we have observed the efficacy of our method against the state-of-the-art methods
for both the quantitative and qualitative comparisons.

INDEX TERMS Single image super-resolution, spatial attention, channel attention, hybrid attention, feature
fusion, efficient feature extraction.

I. INTRODUCTION
In this paper, we address the Single Image Super-Resolution
(SISR) problem, where the objective is to reconstruct the
accurate high-resolution (HR) image from a single low-
resolution (LR) image. It is known as an ill-posed problem,
since there are multiple solutions available for mapping any
LR image to HR images. This problem is intensified when
the up-sampling factor becomes larger. Because HR images
preserve much richer information than LR images, SISR
techniques are popular in many practical applications, such
as surveillance [38], Face Hallucination [31], Hyperspectral
imaging [13], medical imaging [23] etc.

Numerous deep learning based methods have been pro-
posed in recent years to address the SISR problem. Among
them, SRCNN [3] is considered as the first attempt to come
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up with a deep-learning based solution with its three con-
volutional layers. SRCNN outperformed the existing SISR
approaches that typically used either multiple images with
different scaling factors and/or handcrafted features. Later,
Dong et al. [4] proposed an architecture named VDSR
that extended the depth of CNN up to twenty layers while
adding a global residual connection within the architecture.
DRCN [11] also increased the depth of network through
a recursive supervision and skip connection, and improved
the performance. However, due to increasing depth of the
networks, vanishing gradient resisted the network to be con-
verged [7]. In the image classification domain, to solve the
aforementioned problem, He et al. [7] proposed a residual
block by which a network over 1000 layers was successfully
trained. Inspired by its very deep architecture with residual
blocks, EDSR [16] proposed much wider and deeper net-
works for the SISR problem using residual blocks, called
EDSR and MDSR [16], respectively.
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Very recently, Zhang et al. [35] proposed RCAN
that utilizes a channel attention block to exploit the
inter-dependencies across the feature channels. Moreover,
Li et al. [15] proposed MSRN that improved the reconstruc-
tion performance by exploiting the information of spatial
features rather than increasing the depth of CNNs. MSRN
combined the features extracted from different convolution
filter sizes and concatenates the outputs of all residual blocks
through a hierarchical feature fusion (HFF) technique, uti-
lizing the information of the intermediate feature maps. By
doing so, MSRN achieved comparable performance against
EDSR [16] although having a 7-times smaller model size.
In [37], Zhang et al. proposed DCSR in which they pro-
posed a mixed convolution block that combines dilated and
conventional convolutional layers to attain larger receptive
field sizes. Nonetheless, most of these CNN-based meth-
ods focused either on increasing the number of layers [10],
[11], [16], [35] or on extending the width and height in
a layer of CNN to achieve higher performance [15]. In
this way, they put less focus on exploiting the by-product
CNN features, i.e. spatial and channel information simul-
taneously, and thus suffer to maximize the performance at
times.

Moreover, the strong correlations between the input LR
and output HR images [15] lead us to assuming that, apart
from the high-level features, low-level and mid-level features
also play vital roles for reconstructing a super-resoled image.
Therefore, we argue that the mid- and high-level features
should also be treated precisely in this paper.

In the previous work, dense connections were used [28],
which added every feature to subsequent features with resid-
ual connections. As a variant of dense connections, HFF [15],
[28], [36] was proposed to remove the trivial residual connec-
tions and to directly concatenate all the output features from
the residual blocks for the SISR problem. However, this direct
feature concatenation prohibits the features from smooth
feature transformation from low to high levels, resulting in
improper utilization of various low-level and mid-level fea-
tures. This may introduce redundancy in feature utilization,
thus increasing the cost of computation complexity. In our
ablation study in Section 4.1, this problem will be analyzed
in details.

To solve this problem, in this paper, we propose a BFF
structure that combines adjacent feature maps with 1 × 1
convolutions, which is repeatedly performed until remaining
a single feature map. This allows all the features extracted
from CNN to be integrated smoothly, thus fully utilizing
various features with different levels. Moreover, to efficiently
extract the features, unlike previous work that used only
residual blocks in [15] as feature extractors, we come up with
GR that are constructed with the proposed hybrid residual
attention block (HRAB). Our proposed HRAB extracts both
spatial and channel information with the notion that the both
information is important in the reconstruction of high quality
SR images and should be extracted simultaneously in a single
module.

Moreover, compared to MSRN [15] that concatenates the
conventional convolutional layers with different kernel sizes
to enlarge receptive field sizes, our proposed method con-
catenates convolutional layers with different dilation factors
exploiting much larger receptive fields while significantly
decreasing the number of convolution weights. Furthermore,
to ease the flow of information, we introduce the SSC,
LSC, and GSC skip connections. We conduct comprehensive
experiments to verify the efficacy of our method, where we
observe its superiority against other state-of-the-art methods.

We summarize the overall contributions of this work as,

• We propose a BFF to transfer all the low- mid- and high-
level features to the end of the network. This allows
the network to smoothly transform the features with
different levels and generate an effective feature map in
the final reconstruction stage.

• The proposed HRAB considers both channel and spatial
attention mechanisms to exploit the channel and spatial
dependencies. The spatial attention mechanism extracts
the fine spatial features with larger receptive field sizes
whereas the channel attention guides in selecting the
most important feature channels thus in the end, we have
more discriminative features.

• Unlike the previous work [15] which utilizes the features
of residual blocks for HFF, we employ BFF on GRs
to avoid the redundant information, resulting in better
reconstruction performance.

• For extracting themultiscale spatial features, we propose
to use a mixed dilated convolution block with different
dilation factors. Compared to the previous work in [15]
that used the large kernel sizes to secure large receptive
fields, our proposed method can achieve similar per-
formance even with smaller kernel sizes. Moreover, we
propose to use the dilated convolution in an effective
manner to avoid the gridding problem of the conven-
tional dilated convolutional layers.

• To ease the transmission of information throughout the
network, we propose to adopt the hierarchical (GSC,
SSC and LSC) skip connections in our architecture.

II. RELATED WORK
Several CNN-based SISR methods have been proposed in
the recent past. In 2014, Dong et al. [3] proposed SRCNN,
the first CNN network architecture in the SR domain. It
was a shallow 3 layers CNN architecture which achieved the
superior performance against the previous non-CNN meth-
ods. Later, based on a residual learning technique in [7],
Kim et al. [10], [11] achieved remarkable performance with
their proposed VDSR and DRCN methods. VDSR used
a deeper (20 layers) CNN and global residual connection
method whereas DRCN [11] used a recursive block to
increase the depth of CNN. Thanks to the recursive block,
DRCN does not require many convolution weights to secure
large repetitive fields. Tai et al. [24] proposed the MemNet
which had memory blocks that consist of recursive and gate
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FIGURE 1. The proposed network architecture HRAN. The green-shaded area at top-left performs shallow feature extraction. the gray-shaded area at
top-right indicates the internal structure of GR. The proposed BFF smoothly integrates features from low to high level GR blocks, and the output of BFF is
element-wise summed with the shallow features and is fed into the final reconstruction stage (the orange-shaded area) to produce an HR image. The
left-bottom block shows the specific descriptions.

units. All of these methods have used the interpolated LR
image as input to meet the size of the target HR image. Due
to this preprocessing, these methods flow high dimensional
tensors in the network, introducing additional computation
complexity with some visual artifacts [22].

On the other hand, the recent state-of-the-art methods
directly learn the mapping from the LR image input without
upscaling. Dong et al. [4] proposed FSRCNN, an improved
version of SRCNN, having faster training and inference time
by allowing the network to have an LR input image without
upscaling. Ledig et al. [14] proposed SRResNet, inspired
from ResNet [7], to construct the deeper network. With
the perceptual loss function in Generative Adversarial Net-
works (GAN), they proposed SGRAN for photo-realistic SR.
Lim et al. [16] removed the trivial modules (like batch nor-
malization) of SRResNet, and proposed EDSR (wider) and
MDSR (deeper) that made a significant improvement in the
SR problem. EDSR has a large number of filters (256 filters)
whereas MDSR has a small number of filters though the
depth of CNNnetwork is increased to 165 layers. It has shown
that deeper networks can achieve remarkable performance.
Consequently, Zhang et al. [35] proposed a very deep network
for SR. To the extent of our knowledge, it has the largest
depth in the SR domain. Zhang et al. [35] has shown that
only stacking the layers cannot improve the performance
and proposed to use the CA [8] mechanism to neglect the
low-frequency information while selecting the valuable high-
frequency feature maps. To increase the depth of the network,
they proposed the residual in residual (RIR) structure. Never-
theless, their network, called RCAN [35], is very deep, thus
making it difficult to use it in real-life applications due to very
slow inference time.

In contrast, multiscale feature extraction techniques, which
are less explored in SISR, have shown significant perfor-
mance in object detection [17], image segmentation [21], and
model compression [2] to achieve good tradeoffs between
speed and accuracy. Li et al. proposed a multiscale resid-
ual network (MSRN) [15] having only 8 residual blocks.
MSRN used multipath convolutional layers with different
kernel sizes (3×3 and 5×5) to extract the multiscale spatial
features. Furthermore, it proposed to use the HFF architecture
to utilize the intermediate features. The intuition behind HFF
architecture is to transfer the middle features at the end of the
network since the increase in the depth of the network may
cause vanishing intermediate features. HFF shows compara-
ble performance to EDSR. However, as the depth or width
of a network increases, HFF also increases the computation
complexity.

In this paper, we found that it is also important to build an
efficient SR network to fully utilize the feature information
as well as channel information. Considering it, we propose a
hybrid residual attention network (HRAN) which combines
the multiscale feature extraction along with the channel atten-
tion [8] mechanism. In this paper, we refer the multiscale
feature extraction as spatial attention and call the combination
of the channel and spatial attention, hybrid attention.

III. HYBRID RESIDUAL ATTENTION NETWORK
A. NETWORK ARCHITECTURE
The proposed HRAN architecture is shown in Figure 1. The
HRAN can be decomposed into two parts: feature extraction
and reconstruction. The feature extraction is further divided
into two parts: shallow feature extraction and deep feature
extraction. The deep feature extraction includes GR with
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BFF structure. Whereas, GR contains a sequence of HRAB
followed by 3×3 convolution. We represent the input and
output of HRAN as ILR and ISR respectively. We aim to
reconstruct the accurate HR image IHR directly from LR
image ILR without upscaling.
In the shallow feature extraction, we use two convolutional

layers to extract the features from input ILR image.

F0 = HSF1 (ILR) , (1)

Here HSF1 (·) represents the convolution operation. The out-
put feature F0 in Eq. (1) is used for global residual learning
to preserve the input features. As mentioned above, we pass
F0 for further feature extraction as

F1 = HSF2 (F0) , (2)

whereHSF2 (·) represents the convolution operation. F1 is the
output of the shallow feature extraction step and will be used
as input for the deep feature extraction as

FDF = HDF (F1)+ F0, (3)

whereHDF (·) represents the deep feature extraction function
and F0 shows global residual connection to the end of deep
feature as in VDSR [10]. The deep features are sequentially
extracted through HRAB, GR and BFF, which will be fully
described in the subsequent sections. Consequently, the last
reconstruction step can be expressed as

ISR = HREC (FDF ) , (4)

where HREC denotes the reconstruction function. We recon-
struct the ISR to have the same dimension with the IHR
through deep features of ILR. There are various techniques
to serve as upsampling modules, such as PixelShuffle layer
[22], deconvolutional layer [4], nearest-neighbor upsampling
convolutional [5]. In this work, we use MSRN [15] recon-
struction module that enables us to upscale to any upscale
factor with minor changes. The proposed HRAN function can
be expressed as

ISR = HHRAN (ILR) , (5)

For the optimization, numerous loss functions have been
discussed for SISR. The mostly used loss functions are L1,
and L2 distance norms whereas perceptual and adversarial
losses are also preferred. To keep the network simple and
avoid the trivial training tricks, we adopt the L1 loss function
for training HRAN. L1 loss function is defined as

L1 (2) =
1
N

N∑
i=1

∥∥∥HHRAN (I iLR)− I iHR∥∥∥1 , (6)

where 2 denotes the weights and bias of our network, and N
is the total number of image patches used for training HRAN.

B. BINARIZED FEATURE FUSION (BFF) STRUCTURE
The shallow features lack the fine details for SISR. We use
deep networks to solve this problem. Since there is a strong
correlation between ILR and ISR in SISR, it is required to
fully utilize the features of ILR and transmit them to the end
of the network. However, due to its deep depth in network,
the low-level features are lost during the transmission, results
in inaccurate reconstruction. One possible solution is to use
a residual connection, however, it induces the redundant
information [15]. The MSRN [15] uses HFF to transmit
the information from all the feature maps towards the end
of the network. However, the concatenation of every feature
generates a lot of redundant information and also increase
memory computation.

To ease this problem, we propose the BFF structure as
shown in Figure 1. First, we concatenate the adjacent GR
blocks and then, we remove the redundant information from
adjacent blocks using 1×1 convolution. We repeat this pro-
cedure for all GR blocks and the resultant blocks produced
through this mechanism until all the blocks are integrated into
the single GR block, which is convolved by 1×1 to produce
the output features. In the end, we element-wise add this out-
put to the shallow features’ output (F0).We refer this element-
wise summation as GSC in Figure 1. The notable difference
in the proposed BFF structure and previous ones [15] is the
use of GR instead of multi-scale residual block (MSRB) in
MSRN. The use of GRs does not only help to increase the
depth of the network without the vanishing gradient problem
but also reduce the memory overhead when concatenating the
features map.

The first step of BFF is the feature extraction through the
GR block. We explain the details of GR in the next section.
When we extract all the features through GR blocks, we can
utilize these GR blocks with BFF architecture. The proposed
BFF can be represented as

Mj = H1×1 [Fi+1,Fi+2] , (7)

Mj+1 = H1×1 [Fi+3,Fi+4] , (8)

Here, Fi+1,Fi+2 are the adjacent feature maps generated
through GR. The output of the two adjacent GR blocks are
channel-wise concatenated and then passed into a 1× 1 con-
volutional layer to avoid the redundant information. Thus, we
use four GR blocks that produce two more blocks which are
then processed in a similar manner such thatFi+1 becomesMj
and Fi+2 becomesMj+1 in the next step as shown in Figure 1.
Thus, in the next step,Mj andMj+1 will act as two GR blocks.
We repeat this procedure until all GRs and resultant blocks
are integrated into a single output which is further used as the
input of the reconstruction step.

C. GLOBAL RESIDUALS (GR)
It is shown in [16] that the stacked residual blocks enhance
the performance of SR but after some extent, cause crucial
information loss during transmission of features and also
makes the training slower, affecting the performance gain in
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FIGURE 2. Proposed multi-path hybrid residual attention block (HRAB). Top path represents Spatial Attention (SA) that contains dilated convolutions with
different dilation factors. Bottom path represents Channel Attention (CA) mechanism. Notations about different components are given in the right.

the SISR [35]. Thus, rather than increasing the depth, we pro-
pose the GR (see shaded area of Figure 1) in our architecture
to detect deep features. The GR consists of multiple HRAB
that are followed by 1×1 convolution. We found that only
cascading many HRAB does degrade the SR performance.
Thus, to preserve the information, we apply element-wise
summation between the input of GR and output of 1×1
convolutional and refer it as LSC as shown in Figure 1.

The GR enables the network to remember the information
through LSC whereas to detect deep features, it uses SSC
within its modules, in this case, HRAB. Hence, the flow of
information in GR is smoothly carried out through LSC and
SSC. The details of the HRAB are discussed in the next
section.

We express the single GR block as

HGR = WGR ∗ Hn (Hn−i (· · ·Hi (F1) · · · )) , (9)

Here we have Hi represents the ‘n’ HRAB blocks, which
takes input features from previous GR block (Fi) and pro-
duces the output (Fi+1). After stacking the ‘B’ HRAB mod-
ules, we apply 3×3 convolutions with weights WGR. After
applying LSC, the equation 9 can be rewritten as

HGR = WGR ∗ Hn (Hn−1 (· · ·H1 (F1) · · · ))+ F1, (10)

The above equation represents the first GR block because
it takes the shallow features F1 as input. Since, we have
multiple GR blocks to extract the deep features, hence, the
above equation can be generally written as

H i
GR = W i

GR ∗ H
i−1
GR + H

i−1
GR (11)

Here i = 1, 2, · · · ,R. We have ‘R’ GR blocks and each GR
block uses the output of the previous block as its input except
the first GR block that uses the shallow features F1 as input.
Thus, for the first GR block, H0

GR = F1.

D. HYBRID RESIDUAL ATTENTION BLOCK (HRAB)
In this section, we propose a multiscale multipath residual
attention block for the feature extraction, called HRAB (see
Figure 2). Our HRAB has two separate paths for the SA and
CA mechanisms which are combined in such a way so that
we could utilize most important features. Mathematically,

HHRAB (Fi+1) = HSA (Fi) · HCA (Fi) (12)

where HSA and HCA denote the functions of SA and CA
respectively and ‘·’ represents the element-wise multiplica-
tion between the SA and CA functions. Unlike RCAN [35],
we propose to use element-wise multiplication between the
outputs of SA and CA to extract the most informative spatial
features. As shown in Figure2 we add the SSC in HRAB to
ease the flow of information through the network.

1) SPATIAL ATTENTION (SA)
MSRN [15] proves that multiscale features improve the per-
formance with lesser residual blocks. In MSRN [15], authors
use the multiple CNN filters with increasing kernel sizes
(3 × 3 and 5 × 5) to extract multiscale features. The intu-
ition behind the larger kernel size is to take advantage of
large receptive fields. But, the large kernel size causes to
increase the memory computation. Thus, we propose to use
the dilated convolutional layers with different dilation factors
which can have the same receptive fields as large kernel size
and memory consumption is similar to smaller kernel size.
But, only stacking the dilated convolutional layers produces
gridding effect [32]. To avoid this problem, as illustrated in
Figure 2, we propose to use the element-wise sum operation
between the dilated convolutions with different factors before
the concatenation operation. If Fi−1 and Fi are the input and
output of SA respectively then SA can be described as :

S1 = LeakyReLU (HDC1 (Fi)) (13)

S2 = LeakyReLU (HDC2 (Fi)+ S1) (14)
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FIGURE 3. Qualitative results for 4× SR with BI model on Urban100 and Manga109 datasets.

S =
[
S1, S2

]
(15)

S1 = LeakyReLU (HDC1 (S)) (16)

S2 = LeakyReLU (HDC2 (S)+ S1) (17)

HSA (Fi+1) = H1×1 ∗
[
S1, S2

]
(18)

where HDC1 and HDC2 denotes the convolutional layers with
dilation factors 1 and 2 respectively. First, we concatenate
the output of two convolutional layers to increase the channel
size and at the end, we use 1 × 1 convolution to reduce the
channels. Thus, our input and output have the same number
of channels. Our SA architecture inspires from [6] which has
shown that upsampling and downsampling module within the
architecture improves the accuracy in SR. For the activation
unit, by following [12], [25], we opt the LeakyReLU over
ReLU activation whereas we use the linear bottleneck layers
as suggested in [20].

2) CHANNEL ATTENTION (CA)
The CA mechanism achieves a lot of success in image clas-
sification [8]. In SISR, RCAN [35] introduces the CA layer
in the network. CA plays an important role in exploiting the
interchannel dependencies because some of them have trivial

information while others have the most valuable information.
Therefore, we decide to use channel-wise features and incor-
porate the CA mechanism with SA module in our HRAB.
By following [8], [35], we use the global pooling average
to consider the channel-wise global information. We also
experiment with global pooling variance as we thought global
variance could extract more high-frequencies, in contrast, we
get poor results as compared with global pooling average.

If we have C channels in the feature maps [x1, x2, · · · , xC ]
then we can express each ‘c’ feature map as a single value.

zc (xc) =
1

H ×W

H∑
i=1

W∑
j=1

xc (i, j) , (19)

(where xc is the spatial position (i, j) of the feature maps.
To extract the channel-wise dependencies, we use the sim-

ilar sigmoid gating mechanism as [8], [35]. Alike SA, here,
we replace the ReLU with LeakyReLU activation.

HCA (Fi+1) = f (WULR (WDz)) , (20)

Here LR (·) and f (·) represent the LeakyReLU and sig-
moid gating function respectively whereas WD and WU
respectively denote the weights of downscaling and upscaling
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convolutions. It is noted that it is channel-wise downscaling
and upscaling with reduction ratio r.

E. IMPLEMENTATION DETAILS
For training the HRAN network, we employ 4 GR blocks
in our main architecture and in each GR block, there are 8
HRABmodules which are followed by one 3×3 convolution.
For the dilated convolutional layers, we use the 3×3 convolu-
tion with dilation factor 1 and 2. We have also experimented
with larger dilation factor but it gives a gridding effect. We
believe, we do need to linearly increase the number of dilation
factors i.e. 1, 2, and 3 rather than using 1 and 3 or 2 and 3. We
useC = 64 filters in all the layers except the final layer which
has 3 filters to produce a color image though our network
can work for both gray and color images. For the channel-
downscaling in CA mechanism, we set a reduction factor
r = 4.

IV. EXPERIMENTAL RESULTS
In this section, we explain the experimental analysis of our
method. For this purpose, we use public datasets that are
considered as the benchmark in SISR. We provide the results
of both the quantitative and qualitative experiments for the
comparison of our method with several state-of-the-art net-
works. For the datasets, we follow the recent trends [15], [16],
[26], [34], [36] and use DIV2K dataset as the training set,
since it contains the high-resolution images. For testing, we
choose widely used standard datasets: Set5 [1], Set14 [33],
BDS100 [18], Urban100 [9] and Manga109 [19]. For the
degradation, we use the Bicubic Interpolation (BI).

We evaluate our results with peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) [29] on luminance
channel i.e. Y of transformed YCbCr space and we remove
P-pixels from each border (P refers to upscaling factor). We
provide the results for scaling factor ×2, ×3, ×4, and ×8.

For the training, we follow the training settings in [15]. We
extract 16 LR patches randomly in each training batch with
the size of 64×64. We use ADAM optimizer with learning
rate lr = 10−4 which decreases to half after every 2 × 105

iterations of back-propagation. We use PyTorch framework
to implement our models with NVIDIA GeForce RTX 2080
Ti GPU.

A. COMPARISON WITH STATE-OF-THE-ART METHODS
We compare our method with 10 state-of-the-art SISR meth-
ods: SRCNN [3], FSRCNN [4], VDSR [10], LapSRN [12],
MEMNet [24], EDSR [16], SRMDNF [34], RDN [36],
DCSR [37] and MSRN [15]. By following [16], [27], we also
use similar self-ensemble strategy to improve the accuracy of
our model at test time and denote with HRAN+ in Table.1.
We show our quantitative evaluation results in Table 1

for the scale factor of ×2, ×3, ×4, and ×8. It is evident
from the results of our efficient model that our method out-
performs most of the previous methods. Our self-ensemble
model achieves the highest PSNR amongst all the mod-
els whereas our single model has comparable performance

FIGURE 4. Comparison of memory and performance. Results are
evaluated on Urban100 (×4).

against RDN [36]. Note that, RDN [36] has more than 22M
parameters as shown in Figure 4, in contrast, our HRAN
model has only 7.94 M parameters. Instead of increasing the
depth and dense connections, our HRAN model with HRAB
and BFF detect the deep features without increasing the depth
of the network. Hence, this observation indicates that we can
improve the network performance with HRAB and GR along
with BFF without increasing the network depth. This also
suggests that our network can further improve the accuracy
with more HRAB’s and GR’s, though, we aim to achieve the
greater accuracy by considering the memory computations.

Moreover, we present the qualitative results in Figure 3.
The results of other methods are derived from [35]. In
Figure 3, it can be observed from ‘img_004’ image our
HRAN method recovers the lattices in more details, mean-
while, other methods experience the blurring artifacts. Sim-
ilar behavior is also observed in ‘Yumeiro-Cooking’ image
where other methods produce blurry lines and our HRAN
produces the lines similar to HR image. It shows that our
model reconstructs the fine details in output SR image
through extracted deep features with GRs which are then
efficiently utilized by BFF.

We note that that RCAN has shown consistently superior
performance than ours in the literature [35]. However, exist-
ing methods in [39]–[41] argued that the higher performance
of RCAN comes mainly from their extended number of lay-
ers and parameters, which introduce extensive computational
costs making RCAN impractical. As our proposed method is
positioned in efficient super resolution methods, we exclude
RCAN from the comparison in this paper.

B. ABLATION STUDIES
We conduct a series of ablation studies to show the effec-
tiveness of our model. In the first experiment, we train our
model with and without CA and compare their performance
with our HRAB module. For the testing, we use Urban100
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TABLE 1. Quantitative comparisons of state-of-the-art methods for BI degradation model. Best, 2nd best and 3rd best results are respectively shown with
Magenta, Blue, and Green colors.
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TABLE 2. Investigation of HRAB module (with and without CA). We
examine the best PSNR (dB) on Urban100 (2×) with same training
settings.

TABLE 3. BFF vs HFF structures. We examine the best PSNR (dB) on Set5(
2×

)
with same training settings.

dataset [9] as it consists of a large dataset. The results are
shown in Table 2. We observe that our SA module alone
achieves 32.77 dB PSNR. We also experiment with CA mod-
ule only though results were unsatisfactory. Whereas, when
we combine SA with CA, i.e. our HRAB module, it achieves
the 32.95 dB PSNR. This study suggests we need HRAB
module containing both the spatial and channel attention for
accurate SR results. We also investigate about our BFF struc-
ture usingHRABmodule and tested the both BFF andHFF on
MSRN [15] and proposed HRAN to verify the effectiveness
of BFF on both models. It is evident from the results that BFF
structure improves the PSNR of MSRN [15] from 32.22 dB
to 32.44 dB by just replacing the HFF with BFF. Moreover,
proposed HRAN and BFF together significantly increase
the accuracy which show the effectiveness of our BFF
structure.

C. MODEL COMPLEXITY ANALYSIS
Since we are targeting the maximum accuracy with limited
memory computation, therefore our performance is best visi-
ble whenwe see the Table.1 alongwith Figure. 4. In Figure. 4,
we compare our model size and its performance on Urban100
dataset with scale factor 4 as it is more difficult dataset as
compared to others, and also it consists of large number of
images. As we observe that our HRAN model has fewer
parameters compared to RDN [36] and EDSR [16], never-
theless it still achieves the comparable performance whereas
our HRAN+ outperforms the state-of-the-art methods. For
the fair comparisons, we trained the high-capacity model
of MSRN [15] which contains 50% more residual blocks,
denoted with MSRN* in the Figure 4. We can see that our
model still achieves better performance than MSRN* with
lower number of parameters. Thus, these results demonstrate
the effective utilization of the features that result in perfor-
mance gain in SISR.

V. CONCLUSION
In this paper, we propose the HRAN to detect the most
informative multiscale spatial features for the accurate SR
image. The proposed HRAB module fully utilizes the high-
frequency information from input features with a combi-
nation of the SA and CA. In addition, the proposed BFF
structure allows us to smoothly transmit all the features at the
end of the network for reconstruction. Furthermore, we pro-
pose the adoption of the GSC, SSC, LSC and GR to ease the
flow of information through the network. Our comprehensive
experiments show the efficacy of the proposed model.
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