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ABSTRACT This paper investigates the problems of fault estimation and fault-tolerant control for nonlinear
system. The nonlinear part of the system is assumed to be unknown. Based on the adaptive approximation
technique, which can be performed by fuzzy logic systems or neural networks, an adaptive fault estimation
observer is designed, and the fault and the system state can be estimated simultaneously. Based on the
estimation information, the observer-based fault-tolerant controller is designed. In this paper, the parameter
matrices of the adaptive law and the observer and the controller can be calculated by slowing LMIs. To verify
the proposed scheme, a simulation example is provided at the end of this paper.

INDEX TERMS Adaptive approximation, adaptive fault estimation observer, observer-based fault-tolerant
control, regional pole placement.

I. INTRODUCTION
In modern industrial systems, the safety of system operation
is becoming more and more important. However, various
types of faults are inevitable, which can affect the safe oper-
ation of the system and may cause significant losses. Fault
diagnosis and fault-tolerant control are common techniques
for handling faults, and have become hot topics in recent
decades [1]–[8].

Generally speaking, fault diagnosis can be divided into
three methods: model-based method, signal-based method
and date-based method. Compared with the signal-based
method and the date-based method, model-based fault diag-
nosis method canmake full use of the dynamic information of
the system model, and the system model can be constructed
by considering the system operation mechanism. Recently,
many researchers have considered themodel based fault diag-
nosis and fault-tolerant control, and many results have been
reported, such as [9]–[15]. As it pointed in [16], fault diagno-
sis is composed of three parts: fault detection, fault isolation
and fault estimation. In [17], a fault detection filter has been
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designed for a class of nonlinear network systems. A robust
filter-based fault detection method has been proposed in [18],
where both the H∞ performance and H− performance have
been considered to increase the robustness and sensibility of
the proposed detection technique. In [19], an observer based
fault detectionmethod has been reported for nonlinear system
with fault and limited communication capacity. For switched
nonlinear system, the adjustable dimension observer based
fault detectionmethod has been reported [20], [21]. The prob-
lem of fault detection for closed-loop control system has been
considered in [22]. For multi-agent systems, fault detection
methods have been reported by [23], [24], and these methods
can be applied for fault isolation. A new hierarchical fault
detection and fault isolationmethod has been reported by [25]
for complex industrial processes. In [26], the problems of
fault detection and it based fault-tolerant control have been
considered. The integrated design of fault detection, isolation,
and control has been reported by [27] for Markovian jump
systems.

It should be noted that fault estimation can obtain more
information of fault, such as the fault size and shape, and
the information is useful in considering the fault-tolerant
control. Compared with fault detection and fault isolation,
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fault estimation is more challenging, and has become a
hot topic in recent years [28]–[34]. In [35], a fault esti-
mation observer has been designed to estimate the actuator
fault, and corresponding fault-tolerant control method has
been proposed. A dynamic unknown input observer-based
sensor fault estimation method has been reported by [36].
In [37], [38], fault estimation methods have been reported to
reconstruct the actuator and sensor faults, and observer-based
fault-tolerant controllers have been designed. Note that above
results were based on the full order observer. Based on the
reduced order observer, fault estimation problem has been
considered in [39]. The problem of dissipativity-based fault
estimation has been addressed by [40].

It should be pointed out that the system model is
very important in above model-based fault estimation and
fault-tolerant control methods, since the imprecise model
may cause the methods to fail. On the other hand, factors
such as disturbance and uncertainty lead that we cannot know
all system dynamic information accurately [41], [42]. Under
such a background, this paper considers the problems of fault
estimation and fault-tolerant control for a class of systemwith
unknown nonlinear dynamic. The main contributions of this
paper are as follows:

1) For the nonlinear system with unknown nonlin-
ear dynamic and unmeasurable system state, an adaptive
approximation-based fault estimation observer is designed
to reconstruct the fault and the system state, simultaneously.
The approximation method can be performed by fuzzy logic
systems or neural networks. LMI regions are introduced to
improve the estimation performance. 2) Utilizing the esti-
mation information, an observer-based fault-tolerant control
method is proposed. The parameter matrices of the observer
and the controller can be obtained by solving LMIs. The
fault-tolerant controller and the observer are designed sep-
arately, which can reduce the computation complexity.

In this paper, Section 2 is problem description. Observer
and controller design method are provided in Section 3 and
Section 4. Simulation study is listed in Section 5. Section 6 is
the Conclusions.

II. PROBLEM DESCRIPTION
In this paper, the following nonlinear system with unmodeled
nonlinear dynamic is considered:

ẋ(t)=Ax(t)+ Bu(t)+ Hh(x(t))+ Ed(t) (1)

y(t)=Cx(t) (2)

yc(t)=Ccx(t) (3)

in which x(t) ∈ Rn, u(t) ∈ Rnu , d(t) ∈ Rnd , y(t) ∈ Rny ,
yc(t) ∈ Rncare the state, input, disturbance, measurement
output and controlled output, respectively. h(x(t)) ∈ Rnh

represents the nonlinear part of the system, which is assumed
to be unknown. And the parameter matrices in above system
are assumed to be constant real matrices. Without loss of
generality, it is assumed that above system is controllable and
observable. If there is additive fault in the actuator, the system

can be described as

ẋ(t)=Ax(t)+ B(u(t)+ f (t))+ Hh(x(t))+ Ed(t) (4)

y(t)=Cx(t) (5)
where f (t) ∈ Rnf represents the actuator fault.
In this paper, themain objectives are: 1) Design an observer

to estimate the system state and actuator fault. 2) Based on
the estimation information, design an observer-based fault-
tolerant controller.

The following lemmas are useful.
Lemma 1 [6]: For the matrix U , assume that λi represents

the eigenvalue of the U . If there is a symmetric positive
definite matrix V = V T > 0, such that the following LMIs
hold, [

−αV UV
∗ −αV

]
< 0[

sin(β)(UV + VUT ) cos(β)(UV − VUT )
∗ sin(β)(UV + VUT )

]
< 0

then λi ∈ D(α, β), where D(α, β) represents the conic sector
region, whose center is (0, 0), radius is α and the angle of
sector of the disc region is 2β.
Lemma 2 [35]: Assume that X and Y are twomatrices with

appropriate dimensions, then

XTY + Y TX ≤ τXTX +
1
τ
Y TY

where τ > 0 is a constant.
Note that the nonlinear dynamic in (4) is unknown, then

the methods proposed in [35]–[39] cannot be used directly.
In fact, it can be found that the nonlinear function h(x(t)) can
be described as

h(x(t)) = θTϕ(x(t))+ w(t) (6)

where ϕ(x(t)) is the basis function, θ is the weight coefficient,

w(t) = h(x(t))− θTϕ(x(t))

is the approximation error.
Remark 1: It should be noted that above approximation

method can be performed by fuzzy logic systems or neural
networks, and both of them are with the same form of (6).
As it pointed in [43], ϕ(x(t)) in (6) can be selected as sig-
moids, Gaussians or fuzzy knowledge basis, θ represents the
ideal weight vector of fuzzy logic systems or neural networks
with the approximation error w(t). Similar approximations
can be found in [43], [44]. 9 According to (6), the system
dynamic (4) can be described as

ẋ(t) = Ax(t)+B(u(t)+f (t))+HθTϕ(x(t))+Hw(t)+Ed(t)

(7)

III. FAULT ESTIMATION OBSERVER DESIGN
To estimate the system state and actuator fault, the following
observer will be considered:

˙̂x(t)=Ax̂(t)+ B(u(t)+ f̂ (t))

+H θ̂Tϕ(x̂(t))+ K1(y(t)− ŷ(t)) (8)
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˙̂f (t)=K2(y(t)− ŷ(t)) (9)

ŷ(t)=Cx̂(t) (10)

where x̂(t), f̂ (t), θ̂ , ŷ(t) are the estimations of x(t), f (t),
θ and y(t). K1 and K2 are observer gain matrices to be
designed. In addition, θ̂ can be updated online, and the
undated law will be provided later.

Let ex(t) = x(t) − x̂(t), ef (t) = f (t) − f̂ (t). According to
the designed observer and the system dynamic, we can obtain
the following error dynamic:

ėx(t)= ẋ(t)− ˙̂x(t)

=Aex(t)+ Bef (t)+ H (θTϕ − θ̂T ϕ̂)+ Ed(t)

+Hw(t)− K1(y(t)− ŷ(t))

= (A− K1C)ex(t)+ Bef (t)+ H θ̃T ϕ̂

+HθT ϕ̃ + Ed(t)+ Hw(t)

= (A− K1C)ex(t)+ Bef (t)+ H θ̃T ϕ̂

+Ed(t)+ Hw̄(t) (11)

ėf (t)= ḟ (t)−
˙̂f (t)

= ḟ (t)− K2(y(t)− ŷ(t))

= ḟ (t)− K2Cex(t) (12)

where θ̃ = θ − θ̂ , ϕ̃ = ϕ − ϕ̂, ϕ̂ and ϕ represent ϕ(x̂(t)) and
ϕ(x(t)), w̄(t) = θT ϕ̃ + w(t).

Let e(t) =
[
ex(t)
ef (t)

]
, then we have

ė(t) = (Ā− K̄ C̄)e(t)+ H̄ θ̃T ϕ̂ + Ē d̄(t) (13)

where

Ā=
[

A B
Onf×n Onf×nf

]
, K̄ =

[
K1
K2

]
,

C̄ =
[
C Ony×nf

]
, H̄ =

[
H

Onf×nh

]
,

Ē =
[

E H On×nf
Onf×nd Onf×nh Inf

]
,

d̄(t)= [dT (t), w̄(t), ḟ T (t)]T

Based on above analysis, it can be found that ḟ is treated
as a disturbance, and it is a common handling method, which
can be found in [12], [29], [32], [35], [39]. Thus, to obtain a
satisfied estimation performance, it is assumed that the fault
f is with a slow changing property. In fact, this assumption
existed definitely or potentially in many reported results, such
as [12], [29], [32], [35], [39].
Theorem 1: For given constant γ > 0 and matrix M > 0,

the error dynamic (13) is asymptotically stable with the H∞
performance γ , that is,

lim
t→∞

e(t) = 0, if d̄(t) = 0 (14)∫ t

0
eT (s)e(s)ds < γ 2

∫ t

0
d̄T (s)d̄(s)ds, if d̄(t) 6= 0 (15)

if the adaptive law satisfies

˙̂
θ = ϕ̂(y(t)− ŷ(t))TNTM (16)

and there is symmetric positive definite matrix P = PT > 0
and matrices Q and N , such that[

8+8T
+ I PĒ

∗ γ 2I

]
< 0 (17)

PH̄ = C̄TNT (18)

where 8 = PĀ − QC̄ . The observer gain matrix

K̄ =
[
K1
K2

]
= P−1Q.

Proof: Let

V (t) = eT (t)Pe(t)+ tr(θ̃M−1θ̃T ) (19)

Note that θ̇ = 0. Thus,

V̇ (t)= eT (t)(P(Ā− K̄ C̄)+ (P(Ā− K̄ C̄))T )e(t)

+ 2eT (t)PH̄ θ̃T ϕ̂ + 2eT (t)PĒd̄(t)

− 2tr(θ̃M−1 ˙̂θT ) (20)

According to adaptive law (16), we have

V̇ (t)= eT (t)(P(Ā− K̄ C̄)+ (P(Ā− K̄ C̄))T )e(t)

+2eT (t)PH̄ θ̃T ϕ̂ + 2eT (t)PĒd̄(t)

− 2tr(θ̃M−1(ϕ̂(y(t)− ŷ(t))TNTM )T )

= eT (t)(P(Ā− K̄ C̄)+ (P(Ā− K̄ C̄))T )e(t)

+ 2eT (t)PH̄ θ̃T ϕ̂ + 2eT (t)PĒd̄(t)

− 2tr(θ̃M−1MTNey(t)ϕ̂T ) (21)

where ey(t) = y(t)− ŷ(t).
Note that ey(t) = Cex(t) = C̄e(t). Thus,

V̇ (t)= eT (t)(P(Ā− K̄ C̄)+ (P(Ā− K̄ C̄))T )e(t)

+ 2eT (t)PH̄ θ̃T ϕ̂ + 2eT (t)PĒd̄(t)

−2tr(θ̃NC̄e(t)ϕ̂T ) (22)

Note that

tr(θ̃NC̄e(t)ϕ̂T ) = e(t)T C̄TNT θ̃T ϕ̂

According to (18), we have

V̇ (t)= eT (t)(P(Ā− K̄ C̄)+ (P(Ā− K̄ C̄))T )e(t)

+ 2eT (t)PH̄ θ̃T ϕ̂ + 2eT (t)PĒd̄(t)

− 2e(t)T C̄TNT θ̃T ϕ̂

= eT (t)(P(Ā− K̄ C̄)+ (P(Ā− K̄ C̄))T )e(t)

+ 2eT (t)PĒd̄(t) (23)

For the case that d̄(t) = 0, it can be found that

V̇ (t) = eT (t)(P(Ā− K̄ C̄)+ (P(Ā− K̄ C̄))T )e(t) (24)

Obviously, if (17) hold,

P(Ā− K̄ C̄)+ (P(Ā− K̄ C̄))T < 0

that is, V̇ (t) < 0, which implies that

lim
t→∞

e(t) = 0
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For the case that d̄(t) 6= 0, let

J (t) = V̇ (t)+ eT (t)e(t)− γ 2d̄T (t)d̄(t)

Based on (23), we have

J (t)= eT (t)(P(Ā− K̄ C̄)+ (P(Ā− K̄ C̄))T )e(t)

+ 2eT (t)PĒd̄(t)+ eT (t)e(t)− γ 2d̄T (t)d̄(t)

= eT (t)(P(Ā− K̄ C̄)+ (P(Ā− K̄ C̄))T + I )e(t)

+ 2eT (t)PĒd̄(t)− γ 2d̄T (t)d̄(t) (25)

Thus, if (17) holds, we have

J (t) = V̇ (t)+ eT (t)e(t)− γ 2d̄T (t)d̄(t) < 0

That is,∫ t

0
[V̇ (s)+ eT (s)e(s)− γ 2d̄T (s)d̄(s)]ds < 0 (26)

Under the zero initial condition, above inequality means
that

V (t)+
∫ t

0
eT (s)e(s)ds− γ 2

∫ t

0
d̄T (s)d̄(s)ds < 0 (27)

Since V (t) ≥ 0, (27) implies that∫ t

0
eT (s)e(s)ds < γ 2

∫ t

0
d̄T (s)d̄(s)ds

That is, the error system is asymptotically stale with H∞
performance γ .
Remark 2: It should be noted that there is a equation

constraint (18) in Theorem 1. Thus, it is not easy to cal-
culate the observer gain matrices based on the LMI tool in
Matlab. To overcome this problem, (18) can be rewritten
approximatively as[

−εI NC̄ − H̄TP
∗ −εI

]
< 0 (28)

where ε is a small constant. Thus, the observer gain matrices
can be obtained by solving the LMIs (17) and (28). More
details about this method can be found in [45], where similar
handling method has been used.

In this paper, fault estimation observer is designed for
nonlinear systemwith unknown nonlinear dynamic. Based on
theorem 1, it can be found that the fault and the unknown
nonlinear dynamic can be estimated simultaneously. Once
the actuator fault occurs, the approximations of the unknown
nonlinear dynamic will be affected, which may lead to the
output estimation error increase. However, based on the
designed observer and the adaptive law, it can be found that
the output estimation error is existed in the designed observer
and the adaptive law, and it can adjust the estimation (approx-
imation) results. In fact, similar process have been reported
in [44], [45].

In the error dynamic (13), the eigenvalues of Ā− K̄ C̄ can
affect the estimation performance. Thus, in order to obtain
better estimation results, the regional pole placement condi-
tions are introduced.

Theorem 2: For given constant γ > 0 and matrix M > 0,
if the adaptive law is selected as (16), and there is symmetric
positive definite matrix P = PT > 0 and matrices Q and N ,
such that (17)-(18) and the following LMIs hold,[

−αP 8

∗ −αP

]
< 0 (29)[

sin(β)(8+8T ) cos(β)(8−8T )
∗ sin(β)(8+8T )

]
< 0 (30)

then the error dynamic (13) is asymptotically stable with the
H∞ performance γ , and λi ∈ D(α, β), where λi represent the
eigenvalues of Ā−K̄ C̄ ,8 = PĀ−QC̄ ,D(α, β) is defined as it

in Lemma 1. The observer gain matrix K̄ =
[
K1
K2

]
= P−1Q.

Proof: Based on Theorem 1, we only need to prove
that (29)-(30) mean that λi ∈ D(α, β).
According to Lemma 1, if there is matrix V T

= V > 0,
such that [

−αV 8̆

∗ −αV

]
< 0[

sin(β)(8̆+ 8̆T ) cos(β)(8̆− 8̆T )
∗ sin(β)(8̆+ 8̆T )

]
< 0

then λi ∈ D(α, β), where 8̆ = (Ā − K̄ C̄)V , λi represent the
eigenvalues of Ā− K̄ C̄ .
LetV = P−1. Pre- and post-multiplying by diag{P, P} and

its transpose in above inequalities, it can be found that above
inequalities are equivalent to (29)-(30).
That is, if (29)-(30) hold, λi ∈ D(α, β).

IV. FAULT-TOLERANT CONTROLLER DESIGN
In this section, the observer based fault-tolerant controller
will be designed. It is assumed that the nonlinear dynamic
h(x(t)) is Lipschitz with respect to x(t), and satisfies the zero
initial condition, that is h(0) = 0. In addition, supposed that
the Lipschitz constant c is known. In fact, there are more than
one Lipschitz constant for a nonlinear function, and we can
select a big c to satisfy this assumption.
The following observer-based controller is considered in

this paper:

u(t) = −Kcx̂(t)− f̂ (t) (31)

where Kc is the controller gain to be designed.
Substituting (31) into (4), we have

ẋ(t)=Ax(t)+ B(−Kcx̂(t)− f̂ (t)+ f (t))

+Hh(x(t))+ Ed(t)

= (A− BKc)x(t)+ Hh(x(t))+ Bef (t)

+BKcex(t)+ Ed(t) (32)

Let v(t) = [eTx (t) e
T
f (t) d

T (t)]T , and

G = [BKc B E]

then we have

ẋ(t)= (A− BKc)x(t)+ Hh(x(t))+ Gv(t) (33)
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Theorem 3: For given constant γ , the closed-loop sys-
tem (33) is asymptotically stable with theH∞ performance γ ,
that is,

lim
t→∞

x(t) = 0, if v(t) = 0 (34)∫ t

0
yTc (s)yc(s)ds < γ 2

∫ t

0
vT (s)v(s)ds, if v(t) 6= 0 (35)

if there is symmetric positive definite matrix P̆ = P̆T > 0
and matric Q, constant τ > 0, such that

ϒ BQ B E cP̆ P̆CT
c

∗ γ 2
2 (I − 2P̆) O O O O

∗ ∗ −γ 2
2 Inf O O O

∗ ∗ ∗ −γ 2
2 Ind O O

∗ ∗ ∗ ∗ −τ I O
∗ ∗ ∗ ∗ ∗ −Inc

<0

(36)

whereϒ = AP̆−BQ+ (AP̆−BQ)T + τHHT . The controller
gain matrix Kc = QP̆−1.

Proof: Let

V (t) = xT (t)Px(t)

where P = PT > 0. Then we have

V̇ (t)= ẋT (t)Px(t)+ xT (t)Pẋ(t)

= xT (t)(P(A− BKc)+ (A− BKc)TP)x(t)

+ 2xT (t)PHh(x(t))+ 2xT (t)PGv(t) (37)

Note that

2xT (t)PHh(x(t)) ≤ τxT (t)PHHTPx(t)+
1
τ
hT (x(t))h(x(t))

(38)

Since h(x(t)) is Lipschitz with respect to x(t), then we have

||h(x(t))− h(0)|| ≤ c||x(t)− 0|| = c||x(t)||

Note that h(x(t)) satisfies the zero initial condition,
i.e., h(0) = 0, then,

||h(x(t))|| ≤ c||x(t)||

which implies that

hT (x(t))h(x(t)) ≤ c2xT (t)x(t)

Thus, (38) means that

2xT (t)PHh(x(t))≤ τxT (t)PHHTPx(t)+
1
τ
c2xT (t)x(t)

= xT (t)(τPHHTP+
c2

τ
I )x(t)

Thus,

V̇ (t)= xT (t)(P(A− BKc)+ (A− BKc)TP)x(t)

+ 2xT (t)PHh(x(t))+ 2xT (t)PGv(t)

≤ xT (t)(P(A− BKc)+ (A− BKc)TP

+ τPHHTP+
c2

τ
I )x(t)+ 2xT (t)PGv(t) (39)

For the case that v(t) = 0, we have

V̇ (t)= xT (t)(P(A− BKc)+ (A− BKc)TP)x(t)

+ 2xT (t)PHh(x(t))

≤ xT (t)(P(A− BKc)+ (A− BKc)TP

+ τPHHTP+
c2

τ
I )x(t) (40)

It is not difficult to find that (36) means that

P(A− BKc)+ (A− BKc)TP+ τPHHTP+
c2

τ
I < 0

where P̆ = P−1. That is, V̇ (t) < 0, which implies that

lim
t→∞

x(t) = 0

For the case that v(t) 6= 0, let

J (t) = V̇ (t)+ yTc (t)yc(t)− γ
2vT (t)v(t)

According to (39), we have

J (t)≤ xT (t)(P(A− BKc)+ (A− BKc)TP

+ τPHHTP+
c2

τ
I )x(t)+ 2xT (t)PGv(t)

+ yTc (t)yc(t)− γ
2vT (t)v(t)

= xT (t)(P(A− BKc)+ (A− BKc)TP

+ τPHHTP+
c2

τ
I + CT

c Cc)x(t)

+ 2xT (t)PGv(t)− γ 2vT (t)v(t)

=

[
x(t)
v(t)

]T [
911 PG
∗ −γ 2Inv

] [
x(t)
v(t)

]
(41)

where911 = P(A−BKc)+(A−BKc)TP+τPHHTP+ c2
τ
I+

CT
c Cc, and nv represents the dimension of v(t), and it can be

found that nv = n+ nf + nd .

Let 9 =
[
911 PG
∗ − γ 2Inv

]
. Note that G = [BKc B E],

then

PG = [PBKc PB PE]

Thus,

9 < 0

can be rewritten as
911 PBKc PB PE
∗ −γ 2

2 In O O
∗ ∗ −γ 2

2 Inf O
∗ ∗ ∗ −γ 2

2 Ind

 < 0 (42)

Note that P̆ = P−1. Pre- and post-multiplying by
diag{P̆, P̆, Inf , Ind } and its transpose in above inequality,
we have

P̆911P̆ BKcP̆ B E
∗ −γ 2

2 (P̆P̆) O O
∗ ∗ −γ 2

2 Inf O
∗ ∗ ∗ −γ 2

2 Ind

 < 0 (43)
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Based on Lemma 2,

I + P̆P̆ ≥ P̆+ P̆

That is

P̆P̆ ≥ 2P̆− I

Thus,

−P̆P̆ ≤ I − 2P̆

Hence, if the following inequality holds, (43) holds.
P̆911P̆ BKcP̆ B E
∗ γ 2

2 (I − 2P̆) O O
∗ ∗ −γ 2

2 Inf O
∗ ∗ ∗ −γ 2

2 Ind

 < 0 (44)

Note that P̆911P̆ = (A − BKc)P̆ + P̆(A − BKc)T +
τHHT

+
c2
τ
P̆P̆ + P̆CT

c CcP̆. Based on Schur complement,
above inequality is equivalent to:

9̄ BKcP̆ B E cP̆ P̆CT
c

∗ γ 2
2 (I − 2P̆) O O O O

∗ ∗ −γ 2
2 Inf O O O

∗ ∗ ∗ −γ 2
2 Ind O O

∗ ∗ ∗ ∗ −τ I O
∗ ∗ ∗ ∗ ∗ −Inc

<0

(45)

where 9̄ = (A− BKc)P̆+ P̆(A− BKc)T + τHHT .
It can be found that (36) is equivalent to (45). Thus, if (36)

holds, we have 9 < 0, which implies that

J (t) = V̇ (t)+ yTc (t)yc(t)− γ
2vT (t)v(t) < 0

Similar to the proof of Theorem 1, (36) means that the
closed-loop system (33) is asymptotically stable with theH∞
performance γ .
Remark 3 In this paper, it can be found that the fault esti-

mation observer and the fault-tolerant controller are designed
separately. As it pointed in [32], compared with the integrated
design method reported in [37], the separate design method
can reduce the computation complexity.

V. SIMULATION STUDY
Here, the simulation example is provided to show the effec-
tiveness of the proposed method.
Example: Consider the system with the same form

as (4)-(5), and the parameter matrices are selected as

A=


1 −1 0 1
2 −1 0 0
2 −1 −1 0
0 0 0 −2

 , B =


0.5 0.2
1 −1.2
−1 1
0 1

 ,

H =


0
1
0
0

 , E =


0.2 1
1.2 1
0.5 0
0 0

 , C =
1 0 0 0
0 1 0 0
0 0 1 1

 .

The parameter matrix in the controlled output equation (3)
is assumed to be Cc = [1 2 1 1]. The nonlinear dynamic
h(x(t)) is assumed to be h(x(t)) = sin(x4(t)). In this paper,
h(x(t)) is assumed to be unknown, that is, it does not appear
in the designed observer and the controller. In addition,
it is supposed that the fault is f (t) = [f T1 (t) f T2 (t)]T , and
f1(t) = f2(t) = 0 for t < 5, f1(t) = 1 − e−5(t−5) and
f2(t) = −3 for t ≥ 5. Note that the fault considered in
this example is with a slow changing property, since ḟ may
affect the estimation results. In fact, similar faults have been
considered in [12], [32], [39]. Assume that the disturbance
d(t) = [dT1 (t) dT2 (t)]

T , where d1(t) = cos(2t + 1)e−t and
d2(t) = sin(2t − 3)e−t . The system initial value is assumed
as x(0) = [0.9, 0.8, − 0.2, − 1.3]T .
In this example, similar to [45], the basis function ϕ is

selected as the hyperbolic tangent function. Assume that the
Lipschitz constant c = 2. The observer initial value x̂(0)
and θ̂ (0) are selected as zero. The H∞ performance of the
observer and the controller are selected as 1.732 and 2.236,
M in (16) is selected as M = 2, small constant ε in (28)
is selected as ε = 0.00001, and the LMI region D(α, β) is
chosen as D(10, π/12). Based on Theorem 2 and Theorem 3,
we can obtain the observer gain matrices and the controller
gain matrix as follows:

K1=


12.4554 −1.3062 −0.3075
4.0371 7.6169 −1.6552
−3.9995 −2.0033 6.4107
6.0147 0.9770 4.4923

 ,
K2=

[
18.8136 2.5995 −5.8239
11.9503 2.2214 12.0052

]
,

Kc=
[
7.2874 6.0767 2.6017 2.7318
6.2565 1.3345 2.5316 1.8272

]
.

FIGURE 1. The system states and their estimations.

The simulation results are provided in Fig.1-Fig.3. In Fig.1,
it can be found that the designed observer can reconstruct
the system states, and the designed controller can stabilize
the system states, where solid lines are the system states and
dashed lines are the estimations of them. Fig.2 represents
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FIGURE 2. The faults and their estimations.

FIGURE 3. The fault estimation errors.

FIGURE 4. The system output y (t).

the fault estimation results, where the solid lines represent
the faults and dashed lines are fault estimations. According
to Fig.2, it can be found that the faults can be estimated
by the proposed observer. To illustrate the effectiveness of
the proposed method, the fault estimation comparison results

FIGURE 5. The controlled output yc (t).

are provided in Fig.3. To verify the observer performance,
in this figure, the control input is assumed to be zero. In Fig.3,
the solid lines represent the fault estimation errors obtained
by our observer, and the dashed lines are the fault estimation
results obtained by the method proposed in [38], where the
adaptive approximation is not considered. In Fig.4-5, the sys-
tem output y(t) and the controlled output yc(t) are provided.
It can be found that the designed controller can ensure that
the controlled output approaches to zero, even if there is fault
occurs in the system.

VI. CONCLUSION
In this paper, the fault estimation observer and fault-tolerant
controller design methods have been proposed for a class
of system with unknown dynamic. Adaptive approximation
method, which can be performed by fuzzy logic systems
or neural networks, has been introduced to approximate the
unknown nonlinear dynamic in the system. The designed
adaptive fault estimation observer can estimate the fault
and the system state simultaneously. LMI region has
been introduced to adjust the estimation performance. The
observer-based fault-tolerant controller has been proposed
to stabilize the system. The observer and the controller are
designed separately, which can reduce the computation com-
plexity. The parameter matrices of the observer and the con-
troller can be obtained by solving LMIs, this implies that
we can calculate the parameter matrices by MATLAB easily.
At last, a simulation example has been added to verify the
proposed method. It should be noted that this paper assume
that the system model is partially known, and the prob-
lem of fault-tolerant control for the system with completely
unknown dynamic will been considered in our further work.
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