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ABSTRACT In this paper we propose a novel framework to process Doppler-radar signals for hand
gesture recognition. Doppler-radar sensors providemany advantages over other emerging sensingmodalities,
including low development costs and high sensitivity to capture subtle gestures with precision. Furthermore,
they have attractive properties for ubiquitous deployment and can be conveniently embedded into different
devices. In this scope, current recognition methods still rely in deep CNN-LSTM and 3D CNN-LSTM
structures that require sufficient labelled data to optimize millions of parameters and significant amount of
computational resources for inference; which limits their deployment. Indeed, subtle gestures recognition is a
challenging task due to the high variability of gestures among different subjects. To overcome the challenges
in the recognition task and the limitations of the current methods, we propose a shallow learning approach
for gesture recognition, that is based on unsupervised range-Doppler features representation, along with
a learnable pooling aggregation via NetVLAD. The proposed framework can encode extremely valuable
information across time, and results in features that are highly discriminative for hand gesture recognition.
Experimentation on publicly available Doppler-radar data shows that the proposed framework outperforms
state-of-the-art approaches in terms of recognition accuracy and speed for sequence-level hand gesture
classification.

INDEX TERMS Convolutional neural networks, Doppler-radar, feature aggregation, hand gesture recogni-
tion, unsupervised representation learning.

I. INTRODUCTION
Gesture recognition has become increasingly important in
human-computer interaction (HCI) and can support a broad
array of emerging applications, such as smart home, virtual
reality, driver assistance, and mobile gaming. Prior work
in gesture recognition mainly relies on (i) cameras such
as RGB cameras, depth cameras or infrared cameras that
require line of sight, (ii) dedicated sensors (e.g., Radio Fre-
quency Identification Reader (RFID), gloves, motion sen-
sors) that are worn by the user, and (iii) Radio Frequency (RF)
based gesture recognition using either specialized or com-
modity RF devices. These approaches, however, require
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significant deployment overhead and incur non-negligible
cost [1].

Recently, Doppler-radar sensors showed promising perfor-
mance in human gesture recognition, attracting significant
interests in the microwave community and consumer elec-
tronics industry [2]–[11]. Doppler-radar based techniques
utilize time-frequency analysis on the Doppler shift intro-
duced by the movement of the hand. The advantage is that
it can be implemented in low-cost devices with a simple
front-end architecture. Examples, include the Soli sensor
developed by Google’s Advanced Technology and Projects
Group (ATAP) [2]. Soli is a solid-state millimeter-wave radar
for micro-interactions in mobile and wearable computing.
Soli uses a sensing approach that prioritizes high temporal
resolution to detect subtle, non-rigid motion. It utilizes a
single broad antenna beam to illuminate the entire hand as
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modulated pulses are transmitted at very high repetition rates
(for details see [2]).

Robust gesture recognition is a difficult problem due to
the spatio-temporal variations in gesture formation and sub-
jects. It has been addressed using several machine learn-
ing approaches, such as Hidden Markov Models [12],
Dynamic Time Warping [13], Recurrent Neural Networks
(RNNs) [14], Echo State Networks [15] and Convolutional
Long Short-Term Memory (CLSTM) [16].

Two categories of literature exist for deep learning-based
Doppler-radar gesture recognition algorithms. In the first
category, the deep learning framework is trained on the
input Doppler-radar data without explicitly modeling the
inter-frame temporal information. For such methods, Con-
volutional Neural Networks (CNNs) are trained on the input
Doppler-radar [3], [17], [18]. Regardless of the unquestion-
able success of deep CNNs trained in a supervised manner
for several tasks, to achieve a reasonable local minimum
while optimizing the millions of parameters conforming such
structures, extremely large labelled datasets are required.
Nonetheless, extensive labelled datasets are awkward to build
up and there are no guarantees of better results at making such
datasets huge. Hence, unsupervised learning approaches,
which can learn intermediate features representation directly
from the input data distribution have attracted the attention
of several researchers. Furthermore, our main motivation
towards an unsupervised learning strategy is driven by the
high variability across different individuals when performing
the same gesture; which has been referred in previous studies
as one of the key challenges for hand gesture recognition [19].
In this sense, the experimental evidence [20]–[26] suggests
that unsupervised feature learning approaches can enforce
representations robust to variations that are irrelevant for the
final recognition task.

In the second category of deep learning-based Doppler-
radar gesture recognition, researchers model the inter-frame
temporal information using CLSTM, in which CNNs and
3D CNNs are used to obtain intermediate signal rep-
resentations, either for frame-based [10], [27], or short
spatio-temporal features extraction [28], [29]; and LSTM
layers are employed for modeling the inter-frame tempo-
ral dynamics. In such approaches, multiple frames, sampled
from the radar sequence, are given as input to the network
to perform classification. In [10], the authors achieved rea-
sonable accuracy in both frame-based and sequence-based
classification. However, one of the key challenges in these
approaches is the difficulty of selecting the sampled frames
because durations of different gestures can vary significantly.

To alleviate for the above challenges, and motivated by
the recently developed powerful pooling techniques to aggre-
gate variable-length inputs into a fixed-length representation
when dealing with sequential data [30], [31], in this work,
we adopt the NetVLAD approach [32] to explicitly model the
inter-frame temporal information.

The main contribution of this work is the combination
of an unsupervised representation learning strategy with the

NetVLAD approach for Doppler-radar gesture recognition
problem. The primary objective of the unsupervised rep-
resentation learning strategy is to retain short-term tem-
poral structure between frame-level Doppler-radar features
and their spatial inter-dependencies in the representation,
whereas enforce invariance. Furthermore, the introduction
of the NetVLAD approach for gesture recognition drives
our proposal to obtain discriminative sequence representa-
tions allowing to keep those gestures of different classes
far apart and those of the same class near; even when they
are potentially variant due to gesture formation and subjects
intrinsic differences. We evaluated the proposed framework
in terms of representation learning task, gesture recognition
task, and speed using Doppler-radar provided by [10]. Our
proposal can yield discriminative representations and obtains
98.24% recognition score at sequence-level classification,
whereas at inference phase it achieves rather fast recognition
rates; which demonstrates its potentials for intelligent con-
trol applied to an emerging sensor technology that exhibits
unique properties and would enable new input modalities for
touchless HCI in a broad array of devices.

II. RELATED WORK
In this section, we briefly review related methods to learn
features representation and aggregate frame-based features
for sequence classification, particularly those related to our
approach developed for gesture recognition.

In general, the first step in sequence classification is to
process the frames of the sequence to extract frame-based
features using either hand-crafted features [2], [5]–[7] or
CNNs [3], [10], [18], to get intermediate layer activations as
frame features.

Over the years, several studies based on radar sensors have
adopted hand-crafted features representation. Lien et al. [2]
proposed an entire system to sense and recognize hand ges-
tures using Soli. The authors explored a gesture recogni-
tion pipeline based on motion signatures to demonstrate
the advantages of Soli. Domain engineering knowledge was
required to obtain features representation relevant for recog-
nition. Hence, generic low-level features, such as fine dis-
placement, total measured energy, measured energy from
moving scattering centers, scattering center range and veloc-
ity centroid were extracted [2]. Moreover, the generic
low-level representations were combined with gesture spe-
cific features and used to recognize the gestures with a
Random Forest classifier; which was selected as a suitable
classifier by benchmarking among different classifiers. The
machine learning pipeline exposed in [2] mainly relied on
gesture specific hand-crafted features since the generic rep-
resentations were not effective to discriminate across several
gestures and not enough to achieve robust recognition. Ever-
more, the authors pointed out the difficulties in designing
features which reflect the gestures and can enable robust
recognition. The authors argued that deep CNNs were not
suitable for this problem due to the computational burden
required for deep structures [2]. Similarly, in [33] Random
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Forest was proposed to recognize hand gestures sensed using
Soli. They extracted specific features representation to recog-
nize predefined gestures for vehicular infotainment control.

Apart from the Random Forest, k-Nearest Neighbor
(k-NN) classifiers, Support Vector Machines (SVM) and
similarity measurements for sequences, such as Hausdorff
distance and Dynamic Time Warping (DTW), have also been
employed along with hand-crafted features for radar-based
sequence recognition. Sun et al. [6] developed an approach
based on hand-crafted features extracted frommicro-Doppler
signatures to classify gestures using k-NN. In [34] the
authors proposed a gesture recognition pipeline for smart
home, which made use of k-NN for gesture classification
based on application specific features extracted from radar
signals. Moreover, the effects of sparsity and time fre-
quency for dynamicmicro-Doppler hand gestures recognition
have been extensively investigated in a series of studies by
Li et al. [7], [35], [36]. They studied different hand-crafted
features and diverse machine learning approaches such
as SVM, Naïve Bayes, and Nearest Neighbor combined
with Hausdorff distance to classify dynamic hand gestures.
Zhuo et al. [5] proposed awhole system to recognize dynamic
gestures employing a terahertz radar. The authors made use
of high-resolution range profile sequences, whose can be
obtained with the terahertz radar, in conjunction with Doppler
signatures to extract sequence representations from both sig-
nals. For the final classification, they employed an extended
DTW algorithm to measure the similarity between multi-
modal sequences.

In general terms, radar-based hand-crafted features for
human action recognition have been extensively investigated.
Nonetheless, the main limitation of these solutions is the
feature engineering design. The effectiveness of such fea-
tures depends on the application and the specific human
domain knowledge, which leads to features representation
that lack generalization capabilities. In consequence, more
recent attention has focused on CNNs approaches capable to
learn features representation directly from data [1], [28], [37].
Despite the indisputable success of deep CNNs, their reliance
on huge amounts of labelled data is a limiting factor when
approaching new applications [26], such as Doppler-radar
based gesture recognition. We therefore argue that there is
a growing need for unsupervised learning strategies capable
of training CNNs.

A large body of studies have investigated unsupervised
representation learning [38]. Among them, auto-encoders
(AEs) [38], denoising auto-encoders (DAEs) [38], [39] and
reconstruction contractive auto-encoders (RCAEs) have been
extensively employed for unsupervised feature learning. The
basic idea behindAEs is to learn a function that minimizes the
squared error between the input signal and its reconstruction.
Moreover, DAEs yield features robust to noise because can
learn to denoise randomly corrupted signals to reconstruct the
input data. Furthermore, RCAEs [40] can learn to prioritize
relevant factors of the input signal, which leads to useful
representations of the data for subsequent learning tasks.

Nonetheless, a key challenge for AEs, DAE and RCAEs is
that generally these algorithms tend to ignore the structure of
two dimensional input signals, which enforces to learn global
representations instead of capturing local spatial variations
in the data. In [41], the authors proposed the convolutional
auto-encoders (CAEs), whose structure is designed based
on 2D convolutions to overcome the issues related to local
spatial representations. They trained the CAEs in an unsuper-
vised manner and subsequently stacked them to conform a
CNN. The CNNwas initialized with the unsupervised learned
hyper-parameters from the CAEs. This approach achieved
good performance for visual object recognition tasks. How-
ever, the authors relied on a deep CNN architecture.

Dosovitskiy et al. [26] proposed an approach to learn
generic features using unlabelled data. This proposal is based
on a set of image transformations which are used for learning
a representation regarding an auxiliary task directly related
towards the final classification the authors aimed for. The
experimental evidence in [26], suggests that when unsu-
pervised features learning algorithms can exploit unlabelled
data effectively, it is possible to extract meaningful feature
representation, whose is not related to one specific class
instance and robust to image transformations. Nonetheless,
the authors required a deep CNN structure to achieve the
reported performance.

Unsupervised feature learning has been also studied in
radar-based classification of sequences. Seyfioğlu et al. [42]
presented a deep convolutional auto-encoder to classify
indoor human activities. The authors faced the problem
of dealing with highly similar radar-based signatures; and
proposed a strategy to pretrain, in unsupervised manner,
the hyper-parameters of a three-layer CAE, whose are then
used as initial values for supervised training. The authors
pointed out that such training strategy was useful to learn
features representation from two dimensional radar-based
signatures.

In this work we are dealing with Doppler-radar hand
gesture recognition problem, and ideally, we could directly
rely on labelled samples. However, people perform hand
gestures in a variety of ways which make the task difficult,
because learning a discriminative set of predefined feature
related to each class sample is not straightforward due to
the intra-class variability. Therefore, in a similar aim as
in [22], [26] and [42], we propose to learn unsupervised
frame-level representations directly from data. We propose to
employ a fast and accurate layer-wise unsupervised learning
strategy for CNNs, which trains the convolutional and fully
connected (FC) layers using the reconstruction contractive
auto-encoding (RCAE) objective as presented in [43], [44].
Essentially, we train the hyper-parameters of the network
by transforming the reconstruction contractive auto-encoding
objective [40] to a convexified variant in the frequency
domain, whose is optimized using the Gauss-Seidel (GS)
algorithm [45]. Our class agnostic learning strategy drives
the features representation to discover relevant factors in
the input frames, whereas enforces invariance to slightly
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differences caused by variability among subjects; which leads
to a representation that could be directly used for the recog-
nition task or fine-tuned in supervised manner.

Over the recent years, researchers have developed solu-
tions based on deep learning to aggregate frame features
extracted by CNNs. Several RNNs solutions have been pro-
posed. Most researchers utilized LSTMs to aggregate frame
features extracted by CNNs [10], [28], [46]. Moreover, sev-
eral solutions have been proposed to improve the perfor-
mance of RNNs. For video action recognition, Lev et al. [47]
proposed RNN Fisher Vectors (FV), in which a sequence
is represented by using derived gradient from the RNN as
features, instead of using a hidden or an output layer of
the RNN. The proposed representation is sensitive to the
element ordering in the sequence and provides a richer
model than the additive ‘‘bag’’ model typically used for
conventional FV. In [28] is proposed a whole system to
recognize unsegmented hand gestures continuously. The
authors designed a gesture recognition system for a Fre-
quency Modulated Continuous Wave (FMCW) radar sen-
sor. The recognition is based on 3D convolution applied
on short sequences of 8 frames, to extract spatio-temporal
features which are aggregated with LSTMs aided by a con-
nectionist temporal classification to deal with unsegmented
sequence. Likewise, recently Wang et al. [29] made use of
3D convolution along with LSTM for Doppler-based hand
gesture recognition. After preprocessing the FMCW radar
signal each gesture was represented as a sequence of 32
range-Doppler frames. The authors used a simplified, how-
ever still-deep version, of the I3D network [48] to pro-
duce range-time and Doppler-time spatial-temporal represen-
tations. Further, the generated range-time and Doppler-time
features were used as input to two LSTMs to capture global
dynamics. Finally, classification was performed using the
Softmax classifier. Note that, the Gated Recurrent Unit
(GRU) [49] has also been successfully used in replacement
to the LSTM for video-based gesture recognition, while
being more computationally efficient. To further enhance the
performance of the bidirectional-GRU, Li et al. [50] incor-
porated the Fisher criterion into the Softmax loss function
for gesture recognition from accelerometer and gyrometer
signals.

Approaches based on deep learning to aggregate inter-
mediate features representation extracted by 2D and 3D
CNNs have achieved an unquestionable success. Admit-
tedly, one major drawback of these methods for hand ges-
ture recognition is that deep network structures increase
the computational burden. Thus, in this work we pro-
pose a framework which can effectively exploits 2D
CNNs features learned directly from data, while remaining
shallow.

To aggregate frame-based features for sequence-based
prediction, early research considered averaging over the
sequence for the subsequent regression or classification tasks.
Bag of Words (BoW) [51], Vector of Locally Aggregated
Descriptors (VLAD) [52], and FV [53] have been used

as sequence encoding approaches. BoW and VLAD use
k-means to cluster the data, while FV adopts the Gaussian
Mixture Model (GMM) approach. BoW and its variants have
dominated research in action and gesture recognition for
a long time [54], [55]. BoW consists of four main steps:
feature extraction, codebook generation, feature encoding
and pooling, and normalization. Whereas BoW aggregation
keeps a count of the ‘‘visual’’ words (a codebook of k
centroids), the VLAD [52] stores the sum of the residuals
(difference between the descriptor and the mean of its corre-
sponding cluster) for each visual word. Originally developed
in the image analysis domain, VLAD has been successfully
applied to gesture recognition for sign language recogni-
tion [56]. The FV approach [53] transforms an incoming
set of descriptors into a fixed-size vector representation,
which describes how the sample of the descriptors deviates
from a probabilistic visual vocabulary usually modeled by
a GMM. FV has also been used for gesture recognition.
In [57], the authors combined the generative approach of
Hidden Markov Model (HMM) dealing with spatio-temporal
motion data with the discriminative approach of SVM for
classification. In their approachmotion segments are encoded
into HMMs, and each segment is converted to FV; the SVM
is subsequently trained on the FV.

Lately, based on FV and VLAD, deep learnable pooling
techniques have been developed. FisherNet [58] is a dif-
ferential approach of FV that is incorporated into a CNN
network for features aggregation. Inspired by the great advan-
tages of the deep learning model, Arandjelovic et al. [32]
extended the traditional VLAD coding model to an end-
to-end model called NetVLAD. They chose the outputs
of the last convolutional layer of a deep CNN to feed a
VLAD layer. The entire network trained all the parameters
by the back propagation algorithm. NetVLAD introduces a
soft assignment of each descriptor to a cluster. To this end,
it makes use of Softmax and records the sum of the residuals
in the same way as VLAD. The descriptors, once aggre-
gated, are intra-column L2-normalized [59] then squeezed
into a final vector that is afterwards L2-normalized. Extend-
ing NetVLAD for video-based action classification, Gird-
har et al. [30] proposed ActionVLAD using NetVLAD for
aggregating frame-level features however at different levels
of the network.

Gatingmechanisms have been actively applied in sequence
models through gated RNNs. These mechanisms give RNNs
the basis to allow information flows and so gradients do
not vanish neither explode. Moreover, the gates, empower
RNNs to focus attention towards the most representative
components of the input cues. Different variants of gating
mechanisms have been explored in RNNs, however most
of them exploit the relevant, past and current, information
at the present time step. More recently, Dauphin et al. [60]
incorporated gating mechanisms in feed forward CNN and
achieved competitive results on Language Modeling task.
In addition, Squeeze-and-Excitation Networks [61] also look
for attention mechanisms aggregating information from con-
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FIGURE 1. Schematic representation of the proposed framework. CNN features are extracted from input gestures composed by range-Doppler
images. These features are temporally aggregated and the final representation is used to recognize the gestures.

volutional layers and capturing dependencies among feature
channels through a gated mechanism.

Based on FisherNet and NetVLAD,Miech et al. [31] intro-
duced a non-linear learnable network unit, named Context
Gating (CG). CG aims at better capturing the non-linear
inter-dependencies between features as well as among output
labels. This approach overcomes the limitations of NetVLAD
for creating relationships between descriptors. Moreover,
NetVLADwith CG has shown good generalization capability
even when trained with small number of samples [31]. In this
work, we introduce this approach for Doppler-radar hand
gesture recognition. We therefore, make use of NetVLAD
combined with CG, to temporally pool frame-level features
extracted from Doppler-radar images.

III. PROPOSED FRAMEWORK
A general overview of the proposed framework is given
in Figure 1. It is composed by three modules. The first mod-
ule, denoted as Unsupervised Frame Representation (UFR),
is in charge of inferring features from range-Doppler images.
The second module, Sequence Representation, aggregates in
time the frame-level features to yield a robust representation
of the gestures. Finally, a recognition module is used to
classify each gesture.

A. UNSUPERVISED FRAME REPRESENTATION
Generally, representation learning aims at disentangling
the underlying explanatory factors hidden in the observed
data [38]. In the particular case of hand gesture recognition,
variabilities such as timing and morphology complicate rep-
resentation.

Deep CNNs have shown outstanding performance in sev-
eral recognition tasks. Furthermore, it has been widely
documented in the literature that Deep CNNs pretrained
on huge datasets can achieve features representations
that are intra-class invariant and retain generalization
properties [62], [63]. The success of Deep CNNs suggests
that their compositional and hierarchical structure induces
increasingly invariant data representations by progressively
flattening and separating the manifold-shape of the observed

data [64]. However, when the CNN structures are not
such deep it is required learning strategies to empower the
model with capabilities for fine-grained recognition. Indeed,
in this work we follow an unsupervised layer-wise learn-
ing approach that will ideally drives toward a model that
can achieve sufficient representational power, by learning
from data potentially subtle differences between very similar
classes, whereas remains invariant to nuances within the same
class.

The unsupervised representation learning problem can be
posed as the optimization of the parameters of a CNN given
an unlabelled dataset, subject to discovering the local proper-
ties of the data-generating distribution.We choose to discover
such properties using an auto-encoder (AE) [38]. Previous
experimental evidences show that whenAEs are trained using
a reconstruction contraction criterion, they learn local prop-
erties of the data-generating distribution [40], which is what
we aim for. Among the different AEs variants, the reconstruc-
tion contractive auto-encoders (RCAEs) scheme has been
proven to yield representations that capture the high-density
regions of the data-generating distribution [40]. Nonetheless,
most previous methods have been widely applied in vision
recognition tasks where the input signal are not Doppler-radar
images. For this reason, we decided to make use of the
approach proposed by [43] which has been proved to be
effective dealing with Doppler-radar images in classification
tasks [44].

The primary goal of the solution presented in [43] is
to transform the RCAE objective [40] into a convex opti-
mization problem via: (i) random convexification, i.e. fixing
the non-linear encoding filters randomly and only learning
the (untied) linear decoding filters, (ii) spectral minimization,
i.e. learning the decoding filters in the frequency domain. As
a direct consequence, the main computational advantages are:
(i) very few hyper-parameters to tune, and (ii) fast and guar-
anteed convergence. For the general case of multi-channel
range-Doppler images, we consider a convolutional recon-
struction function using 1 convolutional layer with K filters
and input space X ⊂ RH×W×C , i.e. the space of C-channel
H × W images x =

(
x(1), . . . , x(C)

)
. We then define the
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following per-channel convolutional reconstruction function:

r(c)(x(c); θ ) ,
K∑
k=1

w(k,c)

︸ ︷︷ ︸
linear decoding

∗ g(a(k) ∗ x+ b(k))︸ ︷︷ ︸
random nonlinear encoding

=

K∑
k=1

w(k,c)
∗ h(k) (1)

with g(·) denoting the element-wise application of an activa-
tion function g : R → R. The model parameters θ consist
of encoding filters a(k), encoding biases b(k) and decoding
filtersw(k,c). Themethod in [43] proposes to sample the (non-
linear) encoding parameters a(k) and b(k) from predetermined
density functions p(a) and p(b) respectively, and keep them
fixed while learning the (linear) decoding parameters w(k,c).

Using a complex-valued spectral (re)parametrization,
the complex-valued decoding parameters associated to w(k,c)

are defined as W(k,c), with W(k,c)
= F{w(k,c)

} ∈ CH×W ,
H(k)

= F{h(k)}, and X = F{x}, where F is the discrete
Fourier transform (DFT).

Then, following the Parseval’s theorem along with the
convolution theorem [65], the convolution operation is trans-
formed into an element-wise multiplication. As a direct
consequence, minimizing the spectral reconstruction error
is reduced to solve H � W independent K -dimensional
complex-valued regularized linear least-squares problems,
which are solved using the Gauss-Seidel (GS) algorithm [66],
[67] (see [43] for a complete derivation of the GS itera-
tions). Once the decoding filters are learned in the frequency
domain, they are transformed back to the spatial domain using
the inverse DFT: ŵ(k,c)

= F−1{W(k,c)
}.

Similar to the convolutional layer, the authors in [43] pro-
posed a zero-bias fully connected (FC) auto-encoder. In the
case of FC layer, the input space is considered to be X ⊂
Rd , i.e. the space of d-dimensional vectors. By fixing the
(non-linear) encoding parameters {A} randomly, the (linear)
decoding parameter θ =W are fitted optimally using a con-
vex minimization strategy resulting in a linear least-squares
minimization problem with Tikhonov regularization, which
has a closed-from solution.

Finally, the feature representation for a given range-
Doppler image x is obtained by:

f = UFR(x; θ ) (2)

where f stands for the frame-level descriptor, given the
learned hyper-parameters θ of the convolutional and FC lay-
ers of the UFR module.

B. SUPERVISED SEQUENCE REPRESENTATION
In general, when dealingwith sequences the intermediate rep-
resentations obtained at frame-level are subsequently aggre-
gated to exploit the temporal information from the input
signal, which leads to a sequence representation. As stated
above, most methods have relied on RNNs to model the
dynamics of gestures. In this work, we cope with sequences

FIGURE 2. Frame-level descriptors are temporally pooled to attain the
synthesized sequence representation.

of gestures that have different lengths, therefore it could drive
our framework to model the dynamics using LSTMs as in
previous studies [10], [19], [27]. However, loosely speaking
there are two reasons why we do not select LSTMs in our
framework. Firstly, the gestures used in this study are not
such long sequences, therefore they have high short-term
correlation across frames, and secondly LSTMs increase the
computational demand, which is not cost-effective for ubiqui-
tous deployment towards ‘‘real-time’’ recognition. Indeed, all
that we require is modeling the dynamics of gestures and cap-
ture ‘‘relevant’’ cues from the intermediate frame-level rep-
resentations to yield a synthesized sequence representation,
whose will ideally allow to recognize gestures at high rates
during the inference phase. Therefore, in this work we adopt
NetVLAD [32] to capture the dynamics of Doppler-radar
hand gestures across time.

Considering a sequence of T range-Doppler frames, and
their corresponding N -dimensional frame-level descriptors ft
provided by the UFR module, we aggregate the descriptors
using the NetVLAD [32] approach withM clusters (a param-
eter we can adjust as a trade-off between computation cost
and performance). To this end, each frame-level descriptor is
firstly encoded to be a feature matrix of N × M dimension
using the following equation:

Vt (j,m) = αm(ft )(ft (j)− cm(j)) (3)

with t ∈ {1, · · · ,T }, j ∈ {1, · · · ,N }, m ∈ {1, · · · ,M},
cm is the N -dimensional anchor point of cluster m and
αm(ft ) is a soft assignment of ft to cluster m (which mea-
sures the proximity of ft to cluster m). The proximity func-
tion is modeled using a single FC layer with a Softmax
activation:

αm(ft ) =
eW

T
mft+bm∑M

s=1 e
WT

s ft+bs
(4)
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FIGURE 3. Portrayal of the set of gestures used in the experiments. Illustration taken from [10].

Secondly, a sequence-level descriptor z is obtained by
column-wise intra-normalization of the feature
matrix Vt , followed by column-wise vectorization and
L2-normalization.

In figure 2 we schematically illustrate the steps to yield the
sequence representation.

C. CONTEXT GATING AND GESTURE RECOGNITION
We assume that the components of the vector z con-
tain the representation of relevant information from each
range-Doppler image belonging to hand gestures. Moreover,
we aim to model inter-dependencies among these feature
representations.

The Context Gating (CG), to recalibrate the relevance of
each dimension in the sequence-level descriptor z, obtained
via NetVLAD, allows to capture inter-feature relationships
from range-Doppler features as follows [31]:

ẑ = g(W� z+ b) (5)

here g represents a non linear activation function, z is the input
vector, ẑ the transformed output vector,W and b are learnable
parameters.

Finally, the constructed sequence-level descriptor ẑ is
passed to a Softmax layer to yield the gesture recognition
probability score y, formally referred to us as:

y = Softmax(ẑ) (6)

IV. EXPERIMENTS
We performed qualitative and quantitative experiments to
evaluate the effectiveness of the proposed framework in terms
of representation learning, gesture recognition accuracy and
speed. Furthermore, to compare with previous works [10] and
validate the effectiveness of our core pipeline, we conducted
experiments to explore alternative approaches using LSTMs
in the Sequence Representation module to recognize gestures
at frame and sequence-level.

A. DATASET
We make use of a publicly available1 dataset, that was col-
lected in the study of Wang et al. [10], the reader is referred

1https://github.com/simonwsw/deep-soli (accessed 2 January 2019)

to [10] for the data acquisition details. The dataset contains
range-Doppler images of size 32×32 with 4 channels. These
range-Doppler images correspond to 11 gestures recorded
from 10 different subjects in 25 times, accounting for a total
of 2750 gesture sequences. The considered gestures are illus-
trated in Figure 3. In addition, the authors provided a set of
2750 sequences from a single subject. In summary, the dataset
has three benchmarks:

1) 50% − 50%. In this benchmark the 2750 sequences
from 10 subjects were equally split into training and
testing sets. We used the provided annotations to create
the training and testing splits.

2) Leave one out cross subject evaluation on the 2750
sequences from 10 subjects. We used this benchmark
to train our models on the data from 9 subjects and
testing them on the subject out of the training set. This
was done 10 times and the reported results measure the
final average recognition accuracy over the 10 subjects.

3) Leave one out cross session evaluation on the 2750
sequences recorded from a single subject. This subset
of hand gestures has 6 sessions recorded from a single
user. It is used to evaluate the classification perfor-
mances as a personalized classifier. Thus, we trained
our models using the data from 5 sessions and tested
on the remaining session.

B. IMPLEMENTATION DETAILS
We implemented the UFR module using MATLAB with
MatConvNet [68]. The Supervised Sequence Representation
module was implemented on top of TensorFlow [69]. Addi-
tionally, we made use of the Tensorflow Toolbox: Learnable
mOdUle for Pooling fEatures (LOUPE) [31]. A graphics
process unit, NVIDIA TITAN Xp, with 12 GB of RAM
has been used for training and evaluating (unless indicated
otherwise) our framework.

1) ARCHITECTURES
For all our experiments, we used the same CNN shallow
architecture in the UFR module: consisting of one convo-
lutional layer of 64 3 × 3 filters with the Rectified Linear
Unit (ReLU) as activation function, followed by a FC layer
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FIGURE 4. Illustration of the UFR-ELM pipeline implemented to validate
the UFR module.

FIGURE 5. UFR-LSTM pipeline to asses the recognition rate and speed
using recurrent neural networks in the supervised sequence
representation module.

with 512 neurons and ReLU as activation function. Following
the UFR methodology explained in section III, the encoding
filters were randomly fixed by sampling their entries indepen-
dently from a zero-mean normal distribution with standard
deviation 1e− 4.

To validate the resulting frame-level descriptors ft ,
we considered a frame-based classification scheme using an
Extreme Learning Machine (ELM) [70] with 512 neurons.
This processing pipeline, denoted as UFR-ELM, is illustrated
in Figure 4.

To compare to state-of-art CNN-LSTM approaches,
in terms of frame-based and sequence-based accuracies,
we considered a LSTM architecture on top of the UFR mod-
ule, as illustrated in Figure 5. This processing pipeline is
denoted as UFR-LSTM. The used LSTM has 512 recurrent
neurons, followed by a FC layer with 512 neurons and as
activation function the ReLU. In this pipeline Softmax was
selected as classifier after the FC layer.

In order to asses the performance using short spatio-
temporal features followed by global sequence representa-
tions, we explored the 3D CNN to obtain intermediate short
spatio-temporal features along with LSTM as in [29] for
the final sequence representation. Such pipeline is referred
to as 3D-CNN-LSTM. It should be noted, however, that in
this alternative approach the model is completely trained in
a supervised manner since the UFR module has not been
employed.

Figure 6 portrays the schematic representation of the
3D-CNN-LSTM. 3D tensors consiting of 3 frames (defined
empirically) are input to the 3D convolutional layer of
64 3× 3× 3 filters with the Rectified Linear Unit (ReLU) as
activation function, followed by a FC layer with 512 neurons
and ReLU as activation function. The employed LSTM has
512 recurrent neurons, followed by a FC layer with 512 neu-
rons and as activation function the ReLU. Finally, Softmax
was used to classify the sequences after the FC layer.

FIGURE 6. Illustration of the 3D-CNN-LSTM pipeline to asses the
recognition rate and speed employing 3D convolutions and recurrent
neural networks.

FIGURE 7. Details of the UFR-NetVLAD implementation to evaluate the
recognition rate and speed using our proposal.

The proposed framework for Doppler-radar based gesture
recognition, denoted as UFR-NetVLAD, is depicted in Fig-
ure 7. UFR has the same configuration as explained above
and NetVLAD is employed with 256 clusters and 512 dimen-
sional output descriptor z, followed by Context Gating to
obtain ẑ. It must be noted that, different from prior works
using CNN-LSTM [10], we did not sub-sample any sequence
of the dataset, neither applied any preprocessing to the input
frames.

2) TRAINING
The different implemented architectures have a wide range
of options for training. Thus, we explored different configu-
rations aiming at validating our approach.

First, for all the experimental settings where the UFR
module was used, it has been trained with the full training
data as unlabelled data. To classify gestures at frame-level in
UFR-ELM, the learned UFR hyper-parameters are used to
infer the range-Doppler image features, which are then fed
into the ELM model trained in a supervised fashion. For
the proposed framework, UFR-NetVLAD, and its alternative
design, UFR-LSTM, once the UFR was trained, two super-
vised training strategies were followed:

1) Freezing the hyper-parameters in lower layers to infer
the features at UFR. Thus, training only the Supervised
Sequence Representation module. This strategy is used
to train the UFR-LSTM and UFR-NetVLAD models.

2) Fine-tuning the hyper-parameters in the lower layers,
by pairing supervised learning with the unsupervised
pretraining of UFR. We initialize the weights in lower
layers with the unsupervised learned hyper-parameters
from UFR and optimize all the learnable parameters
in the CNN-LSTM and CNN-NetVLAD frameworks
by training them in an end-to-end fashion. We denote
the fine-tuned models as UFR-CNN-LSTM and UFR-
CNN-NetVLAD receptively.

Second, for the alternative architectures, we have trained
the network structures entirely in an end-to-end manner;
to compare the performance by learning the networks

VOLUME 7, 2019 137129



A. D. Berenguer et al.: GestureVLAD: Combining Unsupervised Features Representation and Spatio-Temporal Aggregation

FIGURE 8. t-SNE visualization for 50% evaluation split in the 50% − 50% split benchmark. (a) UFR-NetVLAD and
(b) UFR-CNN-NetVLAD. Pinch index (red), Palm tilt (green), Finger slider (blue), Pinch pinky (cyan), Slow swipe (magenta), Fast
swipe (yellow), Push (black), Pull (grey), Finger rub (orange), Circle (purple) and Palm hold (maroon).

hyper-parameters completely supervised, instead of training
unsupervised the UFR module or fine-tuning it as exposed
above. The models that have been completely trained end-
to-end in a supervised manner are the CNN-LSTM and
3D-CNN-LSTM.

During training we required 1 epoch to optimize the UFR,
we used 200 cycles for Gauss-Seidel optimization and the
regularization parameter was set to 1e − 4. The ELM model
also required just 1 epoch. For training the UFR-LSTM and
UFR-CNN-LSTM, we used 200 epochs with Adam and a
learning rate of 1e− 3. For UFR-NetVLAD and UFR-CNN-
NetVLAD, we just changed the number of epochs to 50.
Similarly, for the end-to-endmodels, namely the CNN-LSTM
and 3D-CNN-LSTM, we used Adam with a learning rate of
1e− 3 and 200 epochs.

C. QUALITATIVE RESULTS
To qualitatively assess the learned representations of the
considered target gestures, we use a t-SNE plot. Figure 8
depicts the two-dimensional t-SNE embedding from the
FC layer before Softmax classifier in UFR-NetVLAD and
UFR-CNN-NetVLAD, respectively. As can be seen the fea-
tures belonging to different gestures are well separated; the
natural clusters formed during t-SNE embedding are an indi-
cation of the obtained discriminative representations. For
most of gestures, their instances are grouped, and the formed
clusters are clearly isolated, which suggests invariant and
discriminative representation properties.

In the case of UFR-NetVLAD, Pinch index (red), Pinch
pinky (cyan) and Palm hold (maroon) have instances
closely distributed and sometimes mixed. Pairing super-
vised learning with the unsupervised pretraining, using
UFR-CNN-NetVLAD, allowed further separating the Palm
hold cluster from Pinch index and Pinch pinky gestures. The
latter gestures stay close to each other. Indeed, from Figure 3
one can notice that it is difficult to discriminate between them
if we do not track the fingers.

D. QUANTITATIVE RESULTS
In the following, the outcomes of our quantitative experimen-
tation are compared to the accuracy scores reported in [10].

The results of our tests on the 50%-50% split bench-
mark are summarized in Table 1 for both, frame-based and
sequence-based recognition. Our proposed framework using
NetVLAD is very competitive compared to CNN-LSTM
based state-of-art approaches. This benchmark nearly resem-
bles real world conditions when a model is deployed for its
exploitation, as it should recognize gestures from different
potential users.

Considering the frame-based classification, the UFR-
ELM approach outperforms CNN-based approaches reported
in [10]. Moreover, one can notice that, adding a LSTM layer
on top of CNN (CNN-LSTM, UFR-LSTM and UFR-CNN-
LSTM) improves the recognition accuracy of frame-level
classification. This demonstrates the importance in captur-
ing dependencies among frame representations to get more
attributes and synthetic descriptions of the gestures. These
findings are in accordance with the works presented in [10]
and [19].

With respect to sequence-based classification, our
proposed framework, combining the unsupervised features
learning with NetVLAD and CG outperforms state-of-art
Convolutional Long Short-Term Memory Networks. Thus,
consistent with our assumptions about exploiting the pro-
gressive and time-sequential nature of the gestures by cap-
turing dependencies among features at frame-level. We also
notice that combining 3D CNN with LSTM improves the
recognition accuracy compared to CNN-LSTM, this is due
to the fact that 3D CNN captures spatio-temporal fea-
tures before feeding LSTM. Regarding, UFR-NetVLAD and
UFR-CNN-NetVLAD, better results are observable with
UFR-CNN-NetVLAD due to the fine-tuning of the convo-
lutional and FC layers. Moreover, the CG after NetVLAD
increases more than 2% and 1% the recognition scores
for UFR-NetVLAD and UFR-CNN-NetVLAD respectively.
In particular, UFR-NetVLAD clearly boosts the performance
to recognize Pinch index when using CG.

Analyzing the recognition scores of the considered ges-
tures, one can notice that UFR-NetVLAD and UFR-CNN-
NetVLAD recognize well gestures with very similar char-
acteristics. The gestures Slow swipe and Fast swipe, which
differ only in the velocity of motions, as well as Push and
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TABLE 1. Accuracy on 50% − 50% split of data for training and evaluation.

TABLE 2. Accuracy on leave one subject out, cross subject evaluation on 10 participants.

Pull, which just differ in their directions are recognized
accurately. On the other hand, Pinch index, Pinch pinky and
Palm hold are recognized with lower accuracy, however still
distinguishable.

Table 2 summarizes the obtained results for the leave one
out cross subject evaluation (using the 2750 sequences from
10 subjects). Comparing the reported accuracy scores to the
ones of Table 1, we notice a decrease, likewise reported
in [10]. Here also, the combination UFR, NetVLAD and
CG provides competitive results compared to state-of-art.
Regarding the accuracy scores per gestures, Pinch index and
Pinch pinky continue being difficult to classify.

Considering the single subject scenario, the recogni-
tion results in the leave-one-out evaluation are summarized
in Table 3. The overall sequence-based accuracy is dras-
tically improved compared to Table 2, clearly supporting
our approach of combining an unsupervised representation
learning step before fine-tuning and NetVLAD. On the other

hand, similar to the previous indicative results, it can be noted
that Pinch gestures have lower recognition scores.

All the results reported in Table 1 to Table 3 have
been obtained by training UFR in an unsupervised fashion
using all the training data. To further evaluate the effect of
the unsupervised learning, we conducted experiments using
a reduced set of training data to perform representation
learning using UFR. For these experiments we used the
50% − 50% benchmark, from the 50% training data we
randomly selected 25% for training UFR, and the remaining
25% for the Supervised Sequence Representation models
(UFR-LSTM and UFR-NetVLAD), as well as fine-tuning the
CNN for the UFR-CNN-LSTM and UFR-CNN-NetVLAD
models. The 50% testing data has been employed to assess
the learned models. Table 4 provides the obtained accuracies.
One can notice that our results are rather accurate, even
with reduced training data for both UFR and the Supervised
Sequence Representation models. Indeed, compared to [10]
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TABLE 3. Accuracy on leave one session out, cross session evaluation on single subject.

TABLE 4. Accuracy on the 50% − 50% benchmark, using 25% training data for UFR, 25% for training the supervised sequence representation and 50% for
testing.

for the 50% − 50% scenario of Table 1, it is noticeable
that, despite reduced training data, the shallow proposals
UFR-LSTM and UFR-CNN-LSTM still can achieve compet-
itive recognition scores for frame-level recognition. More-
over, for sequence-level recognition we also observe similar
trends. This is due to the proposed unsupervised learning
strategy that learns representations which are robust to varia-
tions. Furthermore, for sequence-based recognition, theUFR-
CNN-NetVLAD and UFR-NetVLAD yield the best average
accuracy values, slightly outperforming 3D-CNN-LSTM.

Regarding the recognition scores per gesture, we can notice
that Pinch index and Pinch picky gestures are the most dif-
ficult to recognize, as in previous experimental scenarios.
However, for the other gestures used in the experiments,
the proposed framework can achieve good sequence-based
recognition scores. These outputs confirm that the UFR
enforce invariance, even when it is trained with small amount
of data. Moreover, these results corroborate that combining
UFR with the NetVLAD approach, to aggregate frame-level
features, leads to quite accurate recognition of tiny hand

gestures from Doppler-radar images. Furthermore, the out-
comes shown in Table 4 illustrate the fact that the proposed
shallow architecture can generalizewell with reduced number
of samples.

Since the final goal of gesture recognition is to recognize,
in pseudo real time, gestures and translate them into system
commands to perform specific tasks. We therefore assessed
our framework in terms of recognition speed, measured as
the time required, during inference, to recognize a gesture
giving a full sequence with 62 frames in average. Table 5
reports the measured inference time. One can notice that
approaches based on CNN-LSTM are slower. On the other
hand, the UFR-NetVLAD and UFR-CNN-NetVLAD archi-
tectures required 4.8 ms, and 4.9 ms receptively to recognize
a sequence. These results represent a gesture recognition rate
of 208 Hz and 204 Hz for UFR-NetVLAD and UFR-CNN-
NetVLAD. Thus, very competitive compared to the 150Hz
frame rate recognition reported in [10].

Finally, we evaluated our framework in commodity CPU
hardware, an Intel i7 − 4800 at 2.70Ghz. In such hardware,
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TABLE 5. Time and recognition rate required for the different
implemented architectures to recognize gestures.

our proposal achieved gesture recognition at a rate of 28 Hz
and 26 Hz for UFR-NetVLAD and UFR-CNN-NetVLAD
respectively; which corroborate its potential for ubiquitous
deployment.

V. CONCLUSION AND DISCUSSION
In this paper, we presented a framework to recognize
hand gestures attributes combining Unsupervised Frame
Representation and Supervised Sequence Representation.
Our proposed framework is based on (i) an unsupervised
representation learning strategy for greedy layer-wise unsu-
pervised training of CNNs to extract range-Doppler features
at frame-level, followed by (ii) the NetVLAD learnable pool-
ing aggregation technique, that captures compact invariant
synthesis to recognize patterns in tiniest motion gestures
at sequence-level. Comprehensive experiments on publicly
available data proved the effectiveness of our approach in
terms of representation task, recognition accuracy and speed.
Furthermore, the spectrum of design alternatives illustrated
in the experimental section, shows the capability of the
framework to be expanded to different sequence aggregation
methods.

The proposed shallow CNN architecture (UFR) could be
directly used to generate feature representations from images
or fine-tuning the hyper-parameters in the lower layers of a
CNN architecture, by pairing supervised learning with the
unsupervised pretraining of UFR. UFR not only yields fea-
tures robust to noise but also discovers relevant factors in the
input frames, whereas it enforces invariance to slightly differ-
ences caused by variability among subjects; which leads to a
representation that could be directly used for the recognition
task or fine-tuned in supervised manner. UFR combined with
NetVLAD, as well as with LSTM, provide good recognition
results compared to the deeper CNN architecture used in [10].
Moreover, compared to 3D CNN-LSTM architectures, our
framework delivers better recognition accuracy. Addition-
ally, in contrast to 3D CNNs our UFR model requires less
parameters to train, as in our model we rely on NetVLAD
to learn the interframe temporal information. Indeed, 3D
CNNs compute feature maps from both spatial and temporal
dimensions and have exhibited promising spatio-temporal
feature learning ability, however, the number ofmodel param-
eters (depth and width of the network) and therefore the
number of required examples increase with the temporal
depth of input sequences, limiting their use to short-term
sequences [28], [29].

In the future, we plan to move towards an adaptive frame-
work able to personalize in an online manner the models,
considering different subjects as well as unseen gestures.
Moreover, we will investigate how to incorporate recent
learnable aggregation approaches which attempt increasing
attention [78] and dealing with unseen data [71], [72].
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