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ABSTRACT This paper studies the fully distributed tracking problem for high-order nonlinear multi-
agent systems (MASs) with directed graph. Unlike global Lipschitz condition, the nonlinear function we
considered only needs to be a continuously differential one. A recursive state transformation and adaptive
control technique are employed to design the tracking controllers. First, a discontinuous fully distributed
tracking controller is developed for MASs. Under this controller, the follower agents track the leader agent
asymptotically. Second, a continuous fully distributed tracking controller is purposely presented for MASs
to avoid the chattering problem may caused by discontinuous controller. Finally, a numerical example is
given to verify the effectiveness of those two fully distributed controllers.

INDEX TERMS Multi-agent systems, fully distributed, tracking control, directed graph, nonlinear system.

I. INTRODUCTION
Past two decades witnessed the rapid development of dis-
tributed control ofMASs for its practical applications in engi-
neering. Typical designs of distributed controllers for MASs
can be found in books [1]–[3] and the references therein.
However, those distributed controllers need the global topol-
ogy information of MASs, such as the spectral set of Lapla-
cian matrix. When a MAS contains too many agents, it is
difficult to compute such global topology information. It is
a challenge to design distributed controllers for nonlinear
MASs without using any global topology information.

For nonlinear MASs, there are three basic assumptions for
the nonlinear functions: global Lipschitz assumption, neural
network approximation assumption and manifold assump-
tion. The global Lipschitz condition is the most common
assumption for nonlinear MASs. Most cooperative control
targets of such kind of nonlinear MASs can be achieved by
linear state feedback control methods [14]–[17]. A nonlinear
function satisfies neural network approximation assumption
means that it can be approximated by the product of a known
basis function and an unknown neural network weight matrix.
The control mechanism is that the unknown neural network
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weight matrix is cancelled by a neuro-adaptive one [18]–[23].
Manifold assumption is a standard assumption for cooper-
ative output regulation of nonlinear MASs. The manifold
assumption is the key to ensure solvability of cooperative out-
put regulation [24]–[27]. Apart from those three assumptions
of nonlinear MASs mentioned above, other kinds of assump-
tions of nonlinear MASs were seldom studied [8], [9], [13].

Fully distributed control, which does not use any global
topology information, has attracted many researchers’ atten-
tion. Yu and his coauthors firstly studied fully distributed
cooperative control problems for second-order nonlinear
MASs with undirected graph via agent-based adaptive
gains [4]. Li et al. [5] proposed both edge-based and node-
based fully distributed algorithms for general linear MASs.
Li also extended edge-based adaptive protocol to MASs
with Lipschitz nonlinear dynamics [6]. Based on edge-based
adaptive technique, Zhang studied fully distributed robust
synchronization of Lur’s MASs with incremental nonlineari-
ties in [7]. Papers [4]–[7] only took MASs with undirected
graph into account for the reason of symmetrical Lapla-
cian matrix of undirected graph. By using Lyapunov design
method,Wang firstly proposed a new kind of adaptive control
method for fully distributed tracking problem of first-order
nonlinear leader-follower MASs with directed graph in [8],
and extended this control method to second-order nonlinear
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MASs [9] and general linear MASs [10]. Based on adaptive
control method in [8], Li et al. [11] and Wang et al. [12]
studied fully distributed control for general linear and high-
order nonlinear MASs with directed graph. Wang studied
the fully distributed tracking problem of nonlinear strict-
feedback MASs with directed graph in [13].

Inspired by works mentioned above, this paper investigates
the fully distributed tracking problem of high-order nonlinear
MASs with directed graph. Unlike global Lipschitz assump-
tion, neural network approximation assumption and manifold
assumption, the nonlinear function in this paper only needs
to be a continuously differential function. Wang and his
coauthors had studied fully distributed tracking problems for
first-order and second-order nonlinear MASs with such kind
of nonlinearity in [8], [9]. Fully distributed tracking control
for high-order nonlinear MASs with continuous differential
function is still unsolved. Although fully distributed con-
tainment control of high-order nonlinear MASs was studied
by Wang in [12], the nonlinear function should satisfy an
assumption stricter than global Lipschitz condition. Moti-
vated by backstepping control technique, we firstly give a dis-
continuous controller. In consideration of chattering problem
that may be brought by discontinuous controller, we present
a continuous controller to achieve fully distributed tracking
task. In the end, simulation examples are employed to verify
the proposed fully distributed tracking algorithms.

II. PROBLEM STATEMENT AND PRELIMINARIES
A. PROBLEM STATEMENT
In this paper, we consider fully distributed tracking con-
trol problem of high-order nonlinear MASs with directed
topology.

Consider a networked system of N + 1 agents depicted by
the following high-order nonlinear dynamic:

ẋi,1 = xi,2,

ẋi,2 = xi,3,
...

ẋi,n = f (xi)+ ui, i = 1, . . . ,N , N + 1, (1)

where xi = [xi,1, . . . , xi,n]T ∈ Rn, ui ∈ R are the state and
input of agent i, respectively; f (·) : Rn→ R is a continuously
differential function. The agent labelled byN+1 is the leader
agent, others are the follower agents.

The concerned tracking problem is depicted as follows.
Definition 1: For MASs (1), if there exists a distributed

controller ui(t), such that

lim
t→∞
||xi(t)− xN+1(t)|| = 0, ∀i = 1, . . . ,N . (2)

then follower agents track leader agent asymptotically.
For leader agent, we have the following Assumptions.
Assumption 1: The state xN+1 of leader agent is bounded

by an unknown number bN+1 > 0, i.e., ||xN+1|| ≤ bN+1.
Assumption 2: The input uN+1 of leader agent is bounded

by a known constant τ ≥ 0, i.e., |uN+1| ≤ τ .

B. PRELIMINARIES
In this paper, a directed graph G = (V, E,A) is used
to describe the topology of MASs (1), where V =

{v1, . . . , vN , vN+1} denotes the agent set, E ∈ V × V denotes
the edge set, and A = [aij] ∈ R(N+1)×(N+1) denotes the
adjacency matrix. If agent vi can get relative state information
from agent vj, then there is a directed edge (vi, vj) ∈ E and
the adjacency weights aij > 0; otherwise aij = 0. In this
paper, we only consider directed graph without self-loop, i.e.
aii = 0. di =

∑N+1
j=1 aij denotes the degree of agent vi and

D = diag{d1, . . . , dN+1} denotes the degree matrix of G.
Edge sequence (vil, vi(l−1)), l = 1, . . . , k, denotes a directed
path from agent vi0 to agent vi,k . Agent vi is said to be the
root of G if there exists at least one directed path from vi to
any other agent vj, j 6= i, j ∈ {1, . . . ,N + 1} and di = 0.
L = D − A denotes the Laplacian matrix of graph G.
The following Assumption and lemmas are needed to

design fully distributed tracking controllers.
Assumption 3: Leader agent vN+1 is the root agent of

digraph G.
If Assumption 3 holds, the associated Laplacian matrix L

of G can be expressed into the following form:

L =
[

L1 L2
01×N 0

]
, L1 ∈ RN×N , L2 ∈ RN×1.

Lemma 1 [20]: If Assumption 3 holds, then L1 is non-
singular. Denote 1N = [1, . . . , 1]T , q = [q1, . . . , qN ]T =
L−11 1N and Q = diag{1/q1, . . . , 1/qN }. Then, both Q and
QL1 + LT1 Q are positive definite matrices.
Lemma 2 [28]: If a and b are nonnegative real numbers

and p and q are positive real numbers such that 1
p +

1
q = 1,

then ab ≤ ap
p +

bq
q .

III. DISCONTINUOUS TRACKING CONTROLLER DESIGN
In this sector, we will give a discontinuous controller for
MASs (1) to solve fully distributed tracking problem.

Let ξi = [ξi,1, . . . , ξi,n]T =
∑N+1

j=1 aij(xi − xj) be the local
cooperative state of agent i, i = 1, . . . ,N . Hence, we get the
dynamics of ξi as follows:

ξ̇i,1 = ξi,2,

ξ̇i,2 = ξi,3,
...

ξ̇i,n =

N+1∑
j=1

aij(ui − uj)+
N+1∑
j=1

aij(f (xi)− f (xj)). (3)

For each follower agent, we perform the following state
transformation

ζi = Dξi, (4)

where ζi = [ζi,1, . . . , ζi,n]T and satisfies

ζi,1 = ξi,1,

ζi,2 = ζ̇i,1 + 2ζi,1,
· · ·

ζi,n = ζ̇i,n−1 + 2ζi,n−1. (5)
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From (5), one can easily verify that transformation matrix D
is a lower triangular matrix with diagonal elements being 1,
i.e.,

D =


1 0 0 . . . 0
d2,1 1 0 . . . 0
d3,1 d3,2 1 . . . 0
...

...
...

. . .
...

dn,1 dn,2 dn,3 . . . 1

 , (6)

where di,j, i = 2, . . . , n, j = 1, . . . , i − 1, are positive
constants. Then, we obtain the dynamics of ζi as follows:

ζ̇i,1 = ζi,2 − 2ζi,1,

ζ̇i,2 = ζi,3 − 2ζi,2,
...

ζ̇i,n =

n−1∑
k=1

dn,kξi,k+1 +
N+1∑
j=1

aij(ui − uj)

+

N+1∑
j=1

aij(f (xi)− f (xj)). (7)

Remark 1: For nonlinear MASs, the most typical assump-
tion is global Lipschitz condition (see references [14]–[17]).
Since nonlinear function f (·) does not satisfy global Lip-
schitz condition, the commonly used linear state feedback
control method can not complete the tracking control task.
Inspired by backstepping control technique of nonlinear sys-
tems, we propose recursive state transformation (5). Unlike
virtual control law of backstepping control method, transfor-
mation (4) is a linear one and transformation matrixD is only
determined by dimension n.
Let ei = xi− xN+1 be the tracking error of agent i. Denote

e = [eT1 , . . . , e
T
N ]

T ,

ξ = [ξT1 , . . . , ξ
T
N ]

T ,

ζ = [ζ T1 , . . . , ζ
T
N ]

T .

It is easy to obtain the following equation

ζ = (IN ⊗ D)ξ = (L1 ⊗ D)e. (8)

If Assumption 3 holds, L1 is nonsingular. Hence, tracking
control problem of MAS (1) is solved if there exists a dis-
tributed control law ui, i = 1, . . . ,N , such that

lim
t→∞

ζ (t) = 0. (9)

Based on transformation state ζi,n, i = 1, . . . ,N , we pro-
pose the following dynamical tracking controller for each
follower agent

κ̇i = φi(ζi,n)ζ 2i,n, κi(0) = 1,

ui = −5κiψi(ζ 2i,n)ζi,n − τ sgn(ζi,n), (10)

where φi(·) is a nonlinear function determined later,

ψi(·) ≥ 1 is a nondecreasing function satisfying ψ
2
5
i (ζ

2
i,n) ≥

max{φi(ζi,n), |ζi,n|
12
5 } and sgn(·) is the signum function.

Theorem 1: Suppose Assumptions 1, 2 and 3 hold, the
fully distributed tracking problem of MASs (1) is solved by
discontinuous controller (10).

Proof: Take the Lyapunov function as follows:

V =
λ0

2

N∑
i=1

κ̃2i +
1
2

N∑
i=1

n−1∑
k=1

∫ ζ 2i,k

0
βi(s)ds

+

N∑
i=1

κi

2qi

∫ ζ 2i,n

0
ψi(s)ds, (11)

where λ0 is the minimum eigenvalue of QL1 + LT1 Q, κ̃i =
κi − κ̄i with κ̄i being a constant parameter to be determined,
and βi(·) is a continuous nondecreasing positive function to
be determined, i = 1, . . . ,N .
The time derivative of V along with trajectory of (7)

and (10) is

V̇ = λ0
N∑
i=1

κ̃i ˙̃κi +

N∑
i=1

n−1∑
k=1

βi(ζ 2i,k )ζi,k (ζi,k+1 − 2ζi,k )

+

N∑
i=1

κi

qi
ψi(ζ 2i,n)ζi,nζ̇i,n +

N∑
i=1

κ̇i

2qi

∫ ζ 2i,n

0
ψi(s)ds. (12)

Since βi(·) is a nondecreasing function, we have

βi(ζ 2i,k )ζi,kζi,k+1 ≤ βi(ζ
2
i,k )ζ

2
i,k + βi(ζ

2
i,k+1)ζ

2
i,k+1.

Hence, for the second term of V̇ (12), we obtain

N∑
i=1

n−1∑
k=1

βi(ζ 2i,k )ζi,k (ζi,k+1 − 2ζi,k )

≤ −

N∑
i=1

n−1∑
k=1

βi(ζ 2i,k )ζ
2
i,k +

N∑
i=1

βi(ζ 2i,n)ζ
2
i,n. (13)

Denote

4 = [κ1ψ1(ζ 21,n)ζ1,n, . . . , κNψN (ζ
2
N ,n)ζN ,n]

T ,

f̃i = f (xi)− f (xN+1)+
n−1∑
k=1

dn,k (xi,k+1 − xN+1,k+1),

and F̃ = [f̃1, . . . , f̃N ]T . For the third term of V̇ (12), we get

N∑
i=1

κi

qi
ψi(ζ 2i,n)ζi,nζ̇i,n

=

N∑
i=1

κi

qi
ψi(ζ 2i,n)ζi,n ·

N+1∑
j=1

aij(ui − uj)

+

N+1∑
j=1

aij(f (xi)− f (xj))+
n−1∑
k=1

dn,kξi,k+1


=

N∑
i=1

N∑
j=1

aijτ
κi

qi
ψi(ζ 2i,n)ζi,n(sgn(ζj,n)− sgn(ζi,n))

+

N∑
i=1

ai,N+1
κi

qi
ψi(ζ 2i,n)ζi,n(−τ sgn(ζi,n)− uN+1)

− 54TQL14+4TQL1F̃ . (14)
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Notice that, for any ζi,n ∈ R,

κi

qi
ψi(ζ 2i,n)ζi,n(sgn(ζj,n)− sgn(ζi,n)) ≤ 0,

κi

qi
ψi(ζ 2i,n)ζi,n(−τ sgn(ζi,n)− uN+1) ≤ 0. (15)

From Lemma 1, one has

−54TQL14 = −
5
2
4T (QL1 + LT1 Q)4

≤ −
5
2
λ04

T4. (16)

By Young’s inequality, one gets

4TQL1F̃ ≤
λ0

2
4T4+

1
2λ0

F̃TLT1 QQL1F̃

≤
λ0

2
4T4+

λ1

2λ0
F̃T F̃, (17)

where λ1 = ||LT1 QQL1||. Since leader state xN+1 is bounded
and f (·) is continuous differential, there exists a smooth func-
tion ρ(·) > 0, such that

|f̃i| ≤ ρ(ei, bN+1)||ei||, i = 1, . . . ,N .

Notice that ζ = (L1 ⊗D)e. According to Lemma 7.8 in [30],
there exist continuous functions ϑi,k (·) > 0, such that

F̃T F̃ =
N∑
i=1

f̃i f̃i ≤
N∑
i=1

n∑
k=1

bi,kϑi,k (ζi,k )ζ 2i,k , (18)

with bi,k being the unknown constants related to bN+1, D
and L1.

Since positive function ψi(·) is nondecreasing, one can get
the following inequality:

κ̇i

2qi

∫ ζ 2i,n

0
ψi(s)ds ≤

1
2qi
φi(ζi,n)ζ 2i,nψi(ζ

2
i,n)ζ

2
i,n.

Letting

a = q
−

5
6

i λ
−

5
6

0 κ
−

5
3

i φ
1
6
i ζ

1
3
i,n, p = 6,

b = q
5
6
i λ

5
6
0 κ

5
3
i φ

5
6
i ψiζ

11
3
i,n , q =

6
5
.

According to Lemma 2, we obtain

φi(ζi,n)ζ 2i,nψi(ζ
2
i,n)ζ

2
i,n

≤
1

6q5i λ
5
0κ

10
i

φi(ζi,n)ζ 2i,n +
5qiλ0κ2i

6
φi(ζi,n)ψ

6
5
i (ζ

2
i,n)ζ

22
5
i,n .

Because κ̇i ≥ 0, κi is nondecreasing and 1
κi
≤ 1. Since

ψi(·) ≥ 1, i = 1, . . . ,N , are nondecreasing and satisfy

ψ
2
5
i (ζ

2
i,n) ≥ max{φi(ζi,n), |ζi,n|

12
5 }, we obtain

κ̇i

2qi

∫ ζ 2i,n

0
ψi(s)ds≤

1

12q6i λ
5
0

φi(ζi,n)ζ 2i,n +
5λ0
12
κ2i ψ

2
i (ζ

2
i,n)ζ

2
i,n.

(19)

Substituting (13) - (19) into (12) gives

V̇ ≤ −
N∑
i=1

n−1∑
k=1

βi(ζ 2i,k )ζ
2
i,k +

N∑
i=1

βi(ζ 2i,n)ζ
2
i,n

+
λ1

2λ0

N∑
i=1

n∑
k=1

bi,kϑi,k (ζi,k )ζ 2i,k −
19λ0
12

4T4

+ λ0

N∑
i=1

κ̃iφi(ζi,n)ζ 2i,n +
1

12q6i λ
5
0

φi(ζi,n)ζ 2i,n.

Let bi = maxk=1,...,n bi,k and θi(s) = maxk=1,...,n ϑi,k (s),
∀s ∈ R. Choosing

βi(ζ 2i,k ) =
λ0

3
+
λ1

2λ0
biθi(ζi,k ), φi(ζi,n) = 2θi(ζi,n).

We get

V̇ ≤ −
λ0

3

N∑
i=1

n−1∑
k=1

ζ 2i,k +
λ0

3

N∑
i=1

ζ 2i,n

+
λ1

λ0

N∑
i=1

biθi(ζi,n)ζ 2i,n −
19λ0
12

4T4

+ λ0

N∑
i=1

κ̃iφi(ζi,n)ζ 2i,n +
1

12q6i λ
5
0

φi(ζi,n)ζ 2i,n.

Selecting κ̄i =
λ1
2λ20

bi + 1
12q6i λ

6
0
. We obtain

V̇ ≤ −
λ0

3

N∑
i=1

n−1∑
k=1

ζ 2i,k +
λ0

3

N∑
i=1

ζ 2i,n

+ λ0

N∑
i=1

κiφi(ζi,n)ζ 2i,n −
19λ0
12

4T4.

Note that

4T4 =

N∑
i=1

κ2i ψ
2
i (ζ

2
i,n)ζ

2
i,n,

ψi(ζ 2i,n) ≥ 1, κi ≥ 1,

ψ
2
5
i (ζ

2
i,n) ≥ φi(ζi,n).

We get

V̇ ≤ −
λ0

3

N∑
i=1

n−1∑
k=1

ζ 2i,k −
λ0

4

N∑
i=1

ζ 2i,n. (20)

According to LaSalle’s Theorem (see Theorem 4.4 of [29]),
(20) means that ζ will converge to zero asymptotically and
adaptive parameters κi, i = 1, . . . ,N are bounded. Since ζ =
(L1 ⊗ D)e, we obtain limt→∞ e(t) = 0, i.e., tracking control
problem of MASs (1) is solved. Note that κ̇i ≥ 0. κi are not
only bounded but also monotonically increasing, i.e., κi will
converge to some finite values.
Remark 2: From (11), one can observe that Lyapunov

function V depends on λ0 and qi, i = 1, . . . ,N , which
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are global topology information. However, Lyapunov func-
tion V are only used to prove that tracking controller (10)
can solve fully distributed tracking control problem of MASs
(1). Dynamical controller (10) is generated by ζi,n, which
can be got by state transformation (4) of local cooperative
state ξi. Hence, dynamical controller (10) is a fully distributed
controller.

IV. CONTINUOUS TRACKING CONTROLLER DESIGN
Due to the discontinuity of signum function sgn(·), fully
distributed tracking controller (10) is discontinuous as well.
In fact, discontinuous control input may yield chattering
problem, and even damage the actuator. In this section, we
use boundary layer technique to approximate discontinuous
function sgn(·) and σ -modification technique to modify the
dynamics of adaptive gains.

We give continuous fully distributed tracking controller as
follows

κ̇i = φi(ζi,n)ζ 2i,n − σ (κi − 1), κi(0) = 1,

ui = −5κiψi(ζ 2i,n)ζi,n − τh(ζi,n), (21)

where σ is a small positive number, h(·) is a continuous
function defined as:

h(s) =


s
|s|
, if |s| > δ,

s
δ
, if |s| ≤ δ,

with δ > 0 being the width of boundary layer.
Theorem 2: Suppose Assumptions 1, 2 and 3 hold, track-

ing error e and adaptive gains κi, i = 1, . . . ,N , are
uniformly ultimately bounded under continuous tracking
controller (21).

Proof: Consider the following Lyapunov function
candidate

V =
λ0

2

N∑
i=1

κ̃2i +
1
2

N∑
i=1

n−1∑
k=1

∫ ζ 2i,k

0
βi(s)ds

+

N∑
i=1

κi

2qi

∫ ζ 2i,n

0
ψi(s)ds. (22)

Then, we get the time derivative of V as follows

V̇ = λ0
N∑
i=1

κ̃i ˙̃κi +

N∑
i=1

n−1∑
k=1

βi(ζ 2i,k )ζi,k (ζi,k+1 − 2ζi,k )

+

N∑
i=1

κi

qi
ψi(ζ 2i,n)ζi,nζ̇i,n +

N∑
i=1

κ̇i

2qi

∫ ζ 2i,n

0
ψi(s)ds. (23)

For the first term of V̇ (23), we have

κ̃iκ̇i = κ̃iφi(ζi,n)ζ 2i,n − σ κ̃i(κi − 1),

and

−σ κ̃i(κi − 1) = −σ κ̃2i − σ (κ̄i − 1)κ̃i,

≤ −
σ

2
κ̃2i +

σ

2
(κ̄i − 1)2. (24)

For the third term of V̇ (23), we have
N∑
i=1

κi

qi
ψi(ζ 2i,n)ζi,nζ̇i,n

=

N∑
i=1

N∑
j=1

aijτ
κi

qi
ψi(ζ 2i,n)ζi,n(h(ζj,n)− h(ζi,n))

+

N∑
i=1

ai,N+1
κi

qi
ψi(ζ 2i,n)ζi,n(−τh(ζi,n)− uN+1)

− 54TQL14+4TQL1F̃ . (25)

Notice that, for any |ζi,n| > δ,
κi

qi
ψi(ζ 2i,n)ζi,n(h(ζj,n)− h(ζi,n)) ≤ 0,

κi

qi
ψi(ζ 2i,n)ζi,n(−τh(ζi,n)− uN+1) ≤ 0. (26)

And, for any |ζi,n| ≤ δ,

τ
κi

qi
ψi(ζ 2i,n)ζi,n(h(ζj,n)− h(ζi,n)) ≤

2
qi
τκiψi(δ2)δ,

κi

qi
ψi(ζ 2i,n)ζi,n(−τh(ζi,n)− uN+1) ≤

2
qi
τκiψi(δ2)δ.

Since κi = κ̃i + κ̄i, one gets

2
qi
τκiψi(δ2)δ =

2
qi
τ κ̃iψi(δ2)δ +

2
qi
τ κ̄iψi(δ2)δ

Hence, we get

N∑
i=1

N∑
j=1

aijτ
κi

qi
ψi(ζ 2i,n)ζi,n(h(ζj,n)− h(ζi,n))

+

N∑
i=1

ai,N+1
κi

qi
ψi(ζ 2i,n)ζi,n(−τh(ζi,n)− uN+1)

≤

N∑
i=1

2
qi
diτ κ̃iψi(δ2)δ +

N∑
i=1

2
qi
diτ κ̄iψi(δ2)δ

≤

N∑
i=1

σ

4
κ̃2i + ς, (27)

where ς =
∑N

i=1

(
4
q2i σ

d2i τ
2ψ2

i (δ
2)δ2 + 2

qi
diτ κ̄iψi(δ2)δ

)
.

For the fourth term of V̇ (23), we have

κ̇i

2qi

∫ ζ 2i,n

0
ψi(s)ds ≤

1
2qi
φi(ζi,n)ζ 2i,nψi(ζ

2
i,n)ζ

2
i,n

−
σ

2qi
(κi − 1)

∫ ζ 2i,n

0
ψi(s)ds.

From the dynamics of κi in (21), it is easy to verify that
κi(t) ≥ 1 for all t ≥ 0. Both κi ≥ 1 and ψi(·) ≥ 1 ensure

that σ
2qi

(κi − 1)
∫ ζ 2i,n
0 ψi(s)ds ≥ 0. Thus, one gets

κ̇i

2qi

∫ ζ 2i,n

0
ψi(s)ds ≤

1
2qi
φi(ζi,n)ζ 2i,nψi(ζ

2
i,n)ζ

2
i,n. (28)
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We only analyse the differences in this proof, the rest
analysis is same as that of Theorem 1. Then, we have

V̇ ≤ −
λ0

3

N∑
i=1

n−1∑
k=1

ζ 2i,k −
λ0

4

N∑
i=1

ζ 2i,n −
σ

4

N∑
i=1

κ̃2i + ς̃ , (29)

with ς̃ = ς +
∑N

i=1
σ
2 (κ̄i − 1)2.

According to Ultimate Boundedness Theorem (see The-
orem 4.18 of [29]), (29) indicates that ζ will converge to a
neighbourhood of origin asymptotically and adaptive param-
eters κi, i = 1, . . . ,N are bounded.
Remark 3: In order to develop continuous tracking con-

troller, we introduce continuous function h(·) in fully dis-
tributed tracking controller (21). The cost is that tracking
error only asymptotically converges into a neighbourhood
of origin. According to the definition of ς̃ , we can guar-
antee a satisfactory tracking error e by choosing relatively
small δ and σ .

V. SIMULATIONS
We use a numerical example to verify the effectiveness of
both discontinuous and continuous tracking controllers (10)
and (21) in this section. Consider a nonlinear MAS with six
agents described by

ẋi,1 = xi,2,

ẋi,2 = xi,3,

ẋi,3 = −xi,2 − 0.5(1− xi,2)xi,3 + ui, i = 1, . . . , 6.

It can be easily verified that nonlinear function (1 − xi,2)xi,3
does not satisfy the common global Lipschitz condition.
The topology of MASs is described by following adjacency
matrix:

A =


0 0 1 0 0 1
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 1 0 0
0 0 0 0 0 0

 .

It can be seen that the leader agent is the root of directed
topology.

Since the dimension of agent state is 3, we give the trans-
formation matrix D as follows:

D =

1 0 0
2 1 0
4 4 1

 .
The initial states of leader agent are [−0.8, 0.5, 0]T , and the
control input of leader agent is u6 = −0.1 cos(t). The numer-
ical simulation shows that the leader state is bounded. Hence,
the leader agent satisfies both Assumption 1 and Assump-
tion 2. Next, we give simulations for both discontinuous and
continuous fully distributed tracking controllers.

FIGURE 1. Trajectories of MASs with discontinuous controller (10).

FIGURE 2. Adaptive parameters κi of discontinuous controller (10).

(i) Discontinuous tracking controller (10).
Since |u6| ≤ 0.1, we choose τ = 0.1 and give the following

discontinuous tracking controller

κ̇i = (1+ ζ 2i,3)ζ
2
i,3, κi(0) = 1,

ui = −5κi(1+ ζ 2i,3)
3ζi,3 − 0.1sgn(ζi,3). (30)

Under discontinuous fully distributed tracking controller
(30), states xi, adaptive gains κi, and inputs ui of follower
agents are shown in Figs. 1 - 3 respectively. One can observe
that follower agents track leader agents asymptotically, adap-
tive parameters converge to some finite values and control
input ui frequently changes its control directions in a short
period.

(ii) Continuous tracking controller (21).
We choose modification parameter σ = 0.1 and width of

boundary layer δ = 0.1. The continuous tracking controller
is given as follows

κ̇i = (1+ ζ 2i,3)ζ
2
i,3 − 0.1(κi − 1), κi(0) = 1,

ui = −5κi(1+ ζ 2i,3)
3ζi,3 − 0.1h(ζi,3). (31)

Under continuous fully distributed tracking controller (31),
the trajectories of MASs, adaptive gains and control inputs
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FIGURE 3. Control inputs ui of discontinuous controller (10).

FIGURE 4. Trajectories of MASs with continuous controller (21).

FIGURE 5. Adaptive parameters κi of continuous controller (21).

are shown in Figs. 4 - 6. We can see that boundary
layer and σ -modification techniques guarantee that track-
ing errors and adaptive parameters κi are uniformly ulti-
mately bounded, and control inputs ui are continuous. From
Fig. 5, the σ -modification technique can prevent κi from
growing infinitely. By comparing Fig. 3 and Fig. 6, we can

FIGURE 6. Control inputs ui of continuous controller (21).

conclude that continuous tracking controller can avoid fre-
quent changes of control direction effectively.

VI. CONCLUSIONS
Fully distributed tracking problem of high-order nonlinear
MASs with directed topology was studied in this paper.
We gave two kinds of fully distributed tracking controllers for
this problem. The first one is a discontinuous controller which
ensures follower agents track leader agent asymptotically.
The second one is a continuous controller which only guar-
antees relatively small tracking error by selecting suitable
parameters. At last, a third-order nonlinear MAS is given to
verify the proposed tracking controllers.
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