
Received August 31, 2019, accepted September 16, 2019, date of publication September 19, 2019, date of current version October 7, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2942362

ezswap: Enhanced Compressed Swap
Scheme for Mobile Devices
JONGSEOK KIM1, CHEOLGI KIM2, AND EUISEONG SEO 1
1Department of Computer Science and Engineering, Sungkyunkwan University, Seoul 16419, South Korea
2Department of Software and Computer Engineering, Korea Aerospace University, Goyang 10540, South Korea

Corresponding author: Euiseong Seo (euiseong@skku.edu)

This work was supported in part by the Next-Generation Information Computing Development Program through the National Research
Foundation of Korea funded by the Ministry of Science, ICT (MSIT) under Grant 2017M3C4A7080245 and in part by the Institute for
Information and Communications Technology Promotion Grant funded by the MSIT under Grant 2017-0-00068 (A Development of
Driving Decision Engine for Autonomous Driving Using Driving Experience Information).

ABSTRACT The limited memory capacity of mobile devices leads to the popular use of compressed swap
schemes, which reduce the I/O operations involving the swapping in and out of infrequently accessed pages.
However, most of the current compressed swap schemes indiscriminately compress and store all swap-out
pages. Considering that both energy and computing power are scarce resources in mobile devices, and
modern applications frequently deal with already-compressed multimedia data, this blind approach may
cause adverse impacts. In addition, they focus only on anonymous pages and not on file-mapped pages,
because the latter are backed by on-disk files. However, our observations revealed that, in mobile devices,
file-mapped pages consume significantly more memory than anonymous pages. Last but not least, most
of the current compressed swap schemes blindly follow the least-recently-used (LRU) discipline when
choosing the victim pages for replacement, not considering the compression ratio or data density of the
cached pages. To overcome the aforementioned problems and maximize the memory efficiency, we propose
a compressed swap scheme, called enhanced zswap (ezswap), for mobile devices. ezswap accommodates
not only anonymous pages, but also clean file-mapped pages. It estimates the compression ratio of incoming
pages with their information entropy, and selectively compresses and caches the pages only with beneficial
compression ratios. In addition, its admission control and cache replacement algorithms are based on a cost-
benefit model that considers not only the access recency of cached pages but also their information density
and expected eviction cost. The proposed scheme was implemented in the Linux kernel for Android. Our
evaluation with a series of commercial applications demonstrated that it reduced the amount of flash memory
read by up to 55%, thereby improving the application launch time by up to 22% in comparison to the original
zswap.

INDEX TERMS Compressed swap, paging, compression, replacement algorithm, memory management,
mobile devices.

I. INTRODUCTION
The main memory capacity of mobile devices has been
rapidly increasing due to the ever-increasing degree of multi-
tasking and improving quality of multimedia data. For exam-
ple, the random access memory (RAM) size of the refer-
ence Android smart phone was 4 GB in 2018, while it was
only 512 MB in 2010, an eight-fold increase in 8 years.
The demand for a larger memory capacity is still strong.
However, increasing the memory capacity is a challenging

The associate editor coordinating the review of this manuscript and
approving it for publication was Victor Sanchez.

issue because it results in higher manufacturing costs and
poor energy efficiency [1], [2].

Conventional computing systems, such as personal com-
puters and servers, have achieved larger main memory space
than RAM capacity by swapping out infrequently accessed
pages to secondary storage devices. However, because the
access speed of swap storage devices is usually lower than
that of the RAM by up to 100 times, the swap-to-secondary
storage scheme is undesirable for consumer electronics,
which requires an immediate response to user inputs. In addi-
tion, the structure of flash memory, which is being popu-
larly used for storage device in mobile consumer electronics

139678 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-2103-8019

J. Kim et al.: : Enhanced Compressed Swap Scheme for Mobile Devices

for their high speed, robustness, and small form-factors,
is transitioning from single- (SLC) to multi-level cell (MLC),
including a triple- and quadruple-level cell (TLC and QLC,
respectively) technology [3]. Because the write endurance
cycles of TLCs and QLCs are 10–100 times smaller than
those of SLCs [4], the frequent small random writes caused
from page swap-out adversely impact the life span of mobile
devices.

In the last two decades, various in-memory compressed
swap schemes have been proposed to accommodate more
data than the RAM size and improve the system perfor-
mance by reducing page swapping I/O operations [5]–[10].
As shown in Fig. 1, such compressed swap schemes compress
cold pages, which are not expected to be accessed in the
meantime, and store the compressed pages, called zpages, in a
swap page in the compressed swap pool in the RAM.When a
zpage stored in the pool is requested from the main memory,
it is decompressed and moved back to the main memory.
In turn, the decompressed zpage will be removed from its
swap page.

FIGURE 1. Design overview of compressed swap schemes.

As previously mentioned, the compressed swap schemes
reduce the number of paging I/O operations, which are
usually small random writes. Consequently, they improve
the performance and, at the same time, the life span of
the product. Therefore, to reduce the gap between mem-
ory demand and memory capacity limitation in mobile con-
sumer electronics, compressed swap schemes are commonly
used [11].

Currently, the Linux kernel provides two kinds of
in-memory compressed swap schemes; zram [12] and
zswap [13]. The Android OS have been using zram by
default after its 4.4 release. This saves up to approximately
a half of the memory usage [14]. zswap improved the critical

drawback of zram that it cannot evict its zpages to the swap
space in the secondary storage. Therefore, it is expected to
perform better than zram under heavy memory capacity pres-
sure. However, the current Linux compressed swap schemes
in common do not consider the characteristics of memory
contents and access patterns in mobile devices and hence,
have significant room for improvement.

First, both zram and zswap blindly compress all pages
evicted from the main memory and store them in the com-
pressed swap pool. Because most of the applications that run
in smart phones or hand-held devices deal with multimedia
data in some way and the size of such multimedia contents
is usually larger than that of text or numerical data, a large
portion of the memory pages in such systems is expected
to be already compressed. Compressing and storing such
already-compressed pages will incapacitate the compressed
swap schemes.

Second, most of the existing compressed swap schems,
including zswap, evict the least-recently-used swap page to
the swap file in the secondary storage when there are no
more free space in the pool available for the newly incoming
zpages. Depending on the compression ratios of the zpages
stored in the victim swap page, the number of evicted zpages
may differ when the swap page is evicted. However, because
the existing compressed swap schemes do not consider the
compression ratio or information density of swap pages when
choosing the victim page, a swap page with many zpages is
treated in the same way as a swap page with few zpages and
their access recency will be the sole criterion in determining
the victim. If the replacement algorithm considers the infor-
mation density and access recency of swap pages at the same
time, the compressed swap scheme will significantly improve
the overall information density, and consequently the hit rate
of the compressed swap pool.

Finally, both current zswap and zram target only anony-
mous pages, which are not backed by files and hence require
backing up to the swap space when evicted. However, a sig-
nificant portion of the main memory is dedicated to file-
mapped pages, especially in mobile devices dealing with
multimedia data. Moreover, clean (unmodified) file-mapped
pages are evicted from the main memory before the anony-
mous pages because they can be reloaded from their cor-
responding files when they are necessary and thus, can be
simply discarded without any storage writes. However, owing
to their large size, their reloading may take a significantly
long time. Therefore, a compressed swap scheme should
accommodate the evicted file-mapped pages while consider-
ing the eviction cost difference between them and anonymous
pages.

To overcome the aforementioned drawbacks and meet the
demand of memory usage characteristics of mobile devices,
in this study, we propose a compressed swap scheme opti-
mized for mobile devices, called enhanced zswap (ezswap).

To increase the data density of the compressed swap
pool, a compressed swap scheme should accommodate only

VOLUME 7, 2019 139679

J. Kim et al.: ezswap: Enhanced Compressed Swap Scheme for Mobile Devices

zpages with low compression ratios.1 However, compressing
all evicted pages to test their compression ratios is unde-
sirable due to the limited performance and energy source
of mobile devices. The selective admission (SA) scheme of
ezswap enables rapid estimation of the compressibility of a
swap-out page through entropy sampling, and therefore, can
determine the pages that have low compression ratios and
high-performance benefits to selectively store themwith little
overhead.

In addition, to improve the aforementioned naive least-
recently-used (LRU) cache replacement algorithm, ezswap
chooses the eviction victims based on a cost-benefit model
that simultaneously considers the data density, access
recency, and eviction cost. To determine a victim page at the
constant time without costly sorting or linear searching, this
compressibility-aware (CA) replacement algorithm adopts
the lottery selection technique [15].

Last but not least, ezswap employs the all-page accom-
modation (APA) scheme, which enables the accommodation
of both anonymous pages and file-mapped pages. For this,
the cost-benefit model of the page replacement algorithm also
incorporates the eviction cost difference between these two
pages types.

The proposed schemewas implemented in the Linux kernel
3.10.9 for Android 7.1.2. The kernel was ported to an embed-
ded board with 2 GB RAM, which is being used in commer-
cial smart phones. The prototype system was evaluated with
the commodity applications, which are publicly obtainable
from the application stores.

The remainder of this paper is organized as follows.
In Section II, we introduce the related work on memory over-
committing techniques, and explain the design of the current
Linux compressed swap schemes and their limitations. After
proposing ezswap in Section III, we evaluate its prototype
implementation in Section IV. Finally, in Section V, we out-
line the conclusions drawn from our research.

II. BACKGROUND AND RELATED WORK
A. MEMORY OVERCOMMITMENT TECHNIQUES
Being a spatial sharing resource, the RAM has been the
major limiting factor of the degree of multitasking of com-
puting systems since their inception. Therefore, overcommit-
ting memory management techniques that enable storage of
more data than the given RAM capacity have been actively
researched.

The delta encoding scheme, which groups similar data
blocks together and stores only the base block and their
differences from the base block, has been proposed to save
disk space of file systems that have a large number of similar
files [16], [17]. It is known to be unsuitable for the main
memory because it rarely contains similar pages and it is
frequently updated. However, its application to the main

1The compression ratio in this paper is defined as (compressed
size/uncompressed size) for the easiness of formulation and explanation
because this keeps the ratio to stay in the range (0.0, 1.0].

memory in virtualized servers showed promising results
because, in them, two or more virtual machines (VMs) gen-
erally run the same OS and share the same software frame-
works [18]. However, delta encoding requires a large amount
of energy and computing resources for permutation opera-
tions between similar pages; this is unacceptable in mobile
devices, which have strict limitation in energy source and
computing performance. In addition, unlike virtualized server
environments, mobile devices have few similar pages, which
makes delta encoding ineffective.

The page sharing technique, which unifies and stores mul-
tiple pages with the same content into a single page, has
been also widely used to reduce memory usage in systems
with redundant data. The Linux kernel provides the kernel
same-page merging (KSM) scheme [19]; the VMware ESX
Server also provides an identical-page sharing feature [20].
The KSM scheme saves a significant amount of memory
consumption in virtualized server systems [21]. However,
in embedded systems,most of the benefit from applyingKSM
was gained from deduplicating zero pages [21], [22]. The
overhead of page sharing is also inappropriate for mobile
devices because it continually scans through the entire mem-
ory space and compares the fingerprint of each page to that
of the others to find identical pages [23].

Three decades ago, the memory compression technique,
which compresses and stores infrequently accessed data,
was proposed for the Sprite OS [6]. However, it was
known to have high computational overhead and cause long
read latency with inconsistent amounts of memory savings.
Wilson et al. analyzed the causes of these phenomena and
proposed a compression algorithm suited to in-memory data
compression. They also presented a dynamic capacity adjust-
ment scheme of the compressed cache area that reacts to
memory access patterns [5].

Memory compression can significantly reduce disk I/O for
swap operations and thus reduce the execution time when
there are sufficient computing power and energy. Therefore,
it has been used in one way or another by most commercial
OSs for personal computers [24], [25]. A few compressed
swap schemes for server systems have also been proposed
to meet the strong memory demand of highly consolidated
VMs or memory-intensive workloads [26]–[28].

To reduce the compression overhead, a few hardware com-
ponents that are dedicated to memory compression were
proposed [29], [30]. These hardware components are com-
monly placed between the content-compressed main mem-
ory and the processor; they retrieve contents requested from
the processor and decompress them to the processor cache.
Although these dedicated units can effectively compress the
main memory with negligible impact on performance, they
are hardly applicable to mobile devices owing to their energy
consumption and manufacturing cost.

B. SWAP SCHEMES FOR MOBILE DEVICES
The overhead from compression operations prevents the
application of compressed swaps to mobile devices.

139680 VOLUME 7, 2019

J. Kim et al.: : Enhanced Compressed Swap Scheme for Mobile Devices

In particular, as mentioned earlier, the blind compression of
all pages may result in significant performance loss because
modern consumer electronics systems frequently process
audio and video data, which are already compressed.

CRAMES is a compressed swap scheme designed for
embedded systems [9]. It reduces energy and computing
resources consumption for compression by dynamically
adjusting the compressed swap area. However, because it
compresses all swap-out pages, it still incurs significant com-
pression overhead.

Han et al. proposed a hybrid swap scheme that stores
frequently accessed data in the in-memory compressed swap
area and sends infrequently accessed data to the swap space in
the secondary storage [14]. This scheme improved the hit rate
of the compressed swap by accommodating only the pages
with low compression ratios and access frequencies in the
compressed swap.

The Cloudswap scheme evicts read-intensive pages to
local storage and write-intensive pages to cloud storage to
extend the life span of flash memory secondary storage [31].
Fundamentally, it is similarly to the hybrid swap approach.
However, it focused on the read-latency optimization tech-
niques, such as prefetching and read-ahead, to mitigate the
long access latency of the cloud storage.

Song et al. reduced the wear-and-tear of flash mem-
ory caused by the page swap operations by proposing the
Enhanced Flash Swap (EFS) file system that combines com-
pression, deduplication, and flash-friendly writing method-
ologies [32]. When swapping out to the EFS file system,
the degree of wear-out could be reduced by up to 138 times
when compared to the conventional swap mechanism. The
use of the ezswap on top of the EFS file system can further
extend the life span of flash memory because the ezswap
shrinks the number of pages flowing down to the swap file
stored in the flash memory.

When numerous identical pages or zero pages are present
in the compressed swap pool, the deduplication technique,
which merges them into a single page, enables the pool
to accommodate a considerably larger number of zpages.
Desireddy et al. showed that the zswap with deduplication
could store up to 20% more zpages [33]. The incorpora-
tion of the deduplication technique into the ezswap scheme
may increase the effective pool size. However, deduplication
requires additional processor cycles to compare the page
fingerprints, and it degrades the cache hit ratio because of
page traversing. We believe that an analysis of the trade-off
between the overhead and benefit is beyond the scope of this
paper.

A memory management scheme that temporarily stores
swapped-out pages of a VM in the surplus memory space
of the other VMs was proposed for virtualized embedded
systems [27], [28]. This approach is effective only in the vir-
tualized environments where the memory space is managed
separately into multiple isolated entities.

Non-volatile RAM (NVRAM) can be equipped in mobile
devices to overcome the limitation in DRAM capacity.

In-memory file systems on NVRAM, which provide file
storage, improve the performance through rapid file I/O oper-
ations. Choi et al. proposed an in-memory file system with
efficient swap support for NVRAM that evicts a portion of
its files to the flash memory storage [34]. Our approach can
be applied to the main memory swap as well as to the swap
module of the in-memory file systems.

Thememory paging patterns inmobile devices have a close
relationship with the application life cycles. For example,
termination of a background task that has not been used
for a long time for an out-of-memory exception results in
a collective reclamation of the pages that were allocated for
that task. However, the chances are high that the pages were
evicted before the out-of-memory condition occurs because
the task has not recently accessed its pages. In such cases,
the I/O operations performed for evicting the pages become
obsolete. Kim et al. proposed an application-aware swapping
approach formobile devices [35] that links the eviction victim
selection policy to the application life cycle management.
Their approach is orthogonal to the ezswap; thus, we expect
that the combination of the application-aware eviction policy
and the ezswap will bring about synergic effects in terms
of the number of I/O operations and the quality of user
experiences.

A selective compression scheme that only stores data with
a low compression ratio to remove unnecessary decompres-
sion delay and data bloat from having metadata was also
proposed for managing compressed entries [36], [37]. The
existing selective compression schemes, unlike the one pro-
posed in this paper, compress the incoming data to deter-
mine their compression ratio. This results in performance and
energy losses, especially when the data mostly have a high
compression ratio. To reduce the computing power required,
the selective compression scheme proposed for ezswap uses
a rapid lightweight filter to estimate the compression ratio of
a given page accurately.

C. COMPRESSED SWAP IN LINUX
As previously mentioned, the Linux kernel also provides
memory compression features. The users can choose between
two compressed swap schemes, namely zram and zswap,
which are integrated in the mainline kernel. zram and zswap
commonly use a small portion of memory for storing com-
pressed pages. However, zram provides the compressed swap
area as a block device while zswap locates the compressed
space between themainmemory and the swap file. Therefore,
zram functions as a conventional swap storage while zswap
works as a swap cache.

Because of this difference in their design, zram has to
bypass incoming pages to the swap file stored in the sec-
ondary storage when the compressed space is full. However,
zswap evicts some of the cached swap pages to the secondary
storage first and receives newly incoming pages when it is
full. Therefore, when there are many long-living inactive
tasks in a system, for example a smart phone, zram can be
easily filled upwith cold data and lose its effectiveness; on the

VOLUME 7, 2019 139681

J. Kim et al.: ezswap: Enhanced Compressed Swap Scheme for Mobile Devices

other hand, zswap continually replaces cold pages with hot
pages, which are frequently accessed pages. Consequently,
considering the memory usage patterns of the target systems,
we chose zswap as the design basis in this research.

FIGURE 2. Interaction among swap front-end, zswap and zpool.

As shown in Fig. 2, zswap intercepts swap-out requests
issued by the swap front-end to the block I/O layer, and
forwards them to the compressed swap pool, which is called
zpool, where they are stored. When a page swap-in request
is triggered by the swap front-end, zswap intercepts it and
determines whether it has the matching zpage in its zpool.
If it is in the pool, the zswap will decompress the zpage and
deliver the restored page to the swap front-end. Otherwise,
the requested page will be loaded from the swap file directly
by the swap front-end.

When the zpool has nomore free space, a swap page, which
is a unit of the zpool management and may hold multiple
zpages, will be chosen as a victim, and all zpages stored in
the victim swap page will be evicted to the swap file in the
storage device.

The actual compressed swap pool management of zswap
is performed by the zpool memory manager. In fact, zswap
only intercepts the requests coming from the swap front-end
and delivers them to the zpool manager. The zpool manager
allocates an available swap page for an incoming swap-out
page, compresses the incoming page to a zpage, and stores
the zpage in the allocated swap page.

zswap keeps track of the location of each zpage in the zpool
with a red-black tree. The key of the red-black tree is the
offset of the target page in the original swap file. Even when
a swapped-out page has been stored not in the swap file but in
the zpool, the swap system allocates space for the page in the
swap file. Thus, the zpage’ s offset in the swap storage can
be used as its identifier. With this red-black tree, zswap can

easily and rapidly find the requested page in the zpool. The
actual decompression and removal of the requested zpages
are also performed by the zpool manager.

As shown in Fig. 2, the zpool manager provides multiple
alternative swap page allocation schemes and compression
algorithms. zswap is configured to use a specific combina-
tion of the compression algorithm and swap page allocation
scheme in advance. The kernel currently provides the lzo,
lz4, lz4hc, deflate, and 842 compression algorithms, with the
default one being the lzo, which exhibits low overhead and
high compression speed.

The zpool manager provides three swap page allocation
schemes: the zbud, z3fold, and zsmalloc. The user chooses
one of these three for the zpool management. Each zpage
cannot be stored across the boundary between two swap pages
for the ease of management and efficiency of the CPU cache.
Because each zpage has a different compression ratio, it is
difficult to predict the number of zpages that will be packed
in a single swap page.

The zsmalloc allocator vigorously packs as many zpages
as possible in a single swap page to maximize the space
utilization. However, as zpages are repetitively removed and
inserted, a large number of holes, or free spaces, will be
generated with various sizes scattered over swap pages. This
leads to an internal fragmentation that, although there is
free space available, does not allow new zpages into the
pool.

The zbud stores up to two zpages in a swap page even
when there are sufficient space sections in the swap page to
accommodate more zpages. Therefore, there can only be a
free section in a swap page and it is always located at the
front- or read-end of a swap page when it has only one or zero
zpage in it. This approach solves the internal fragmentation
issue. However, the space utilization under zbud will be sig-
nificantly low, especially when the average compression ratio
is below 0.3 because it cannot utilize the surplus free space in
a swap page after storing two zpages.

z3fold was proposed to improve the inefficient space uti-
lization of zbud. It aims at storing up to three zpages in a
swap page. As illustrated in Fig. 3, z3fold splits and manages
a swap page into 64 fixed-size chunks. Every swap page must
belong to either a buddied or an unbuddied list. The buddied
list is a list of pages that already have three zpages in them.
The unbuddied list is a list of 64 swap page lists. Each node
in the unbuddied list is the list head of a swap page list,
of which pages have the same number of free chunks. For
example, the 17th node in the unbuddied list points to the
list that links all swap pages with 17 free chunks and with
two or fewer zpages in them. The unbuddied list is used for
chunk allocation for a new zpage. For instance, if a new zpage
requires (1764×page size) bytes, the first swap page of the 17th
list of the unbuddied list will be removed from the list and be
used for storing the zpage. If there are no swap pages in the
list, then the next list will be explored. Every list follows the
LRU discipline. The newest swap page in a list is placed at
its head and the oldest one at its tail. Therefore, after strong

139682 VOLUME 7, 2019

J. Kim et al.: : Enhanced Compressed Swap Scheme for Mobile Devices

FIGURE 3. zpool management with the z3fold scheme.

the new zpage, the swap page will be placed at the head of
the proper list according to its new state.

Because a swap page can have up to three zpages, frag-
mentation occurs when the first and last zpages are removed
from a swap page filled with three zpages. Therefore, z3fold
performs compaction when a zpage is removed so that all
free chunks are placed consecutively at the rear-end of a
swap page. With this design, z3fold can improve the space
usage efficiency by up to 50% in comparison to zbud at
the cost of marginally increased zpage removal overhead,
while resolving the internal fragmentation issue of zsmalloc.
Therefore, we chose z3fold as the swap page allocator for our
research.

Separate from the above mentioned lists, the zpool man-
ages another list that holds all swap pages in the compressed
swap pool. This list is managed with the LRU policy. When
a swap page stores a new zpage, it will be moved to the head
of the list. Consequently, the swap page that has not stored a
new zpage for the longest time is located at the tail of the list.
When eviction of a swap page is necessary to create free space
for incoming zpages, the zpool, regardless of the underlying
allocation scheme, chooses the swap page at the tail as the
eviction victim.

III. OUR APPROACH
A. ALL-PAGE ACCOMMODATION
When the free pages in themainmemory become few, the ker-
nel iterates the pages and frees them according to the page
reclamation policy. The current Linux kernel evicts the clean
file-mapped pages before dirty (modified) file-mapped pages
and anonymous pages. The anonymous pages are kept last
because their eviction causes unnecessary write operations to
the swap file.

As stated earlier, the conventional compressed swap
schemes do not store clean file-mapped pages because they
can be simply re-read from files when necessary. However,
swapping out a large number of clean file-mapped pages may
considerably delay the system, especially when a significant
portion of file-mapped pages will be reused because reading
from the storage device takes a long time although it is faster
than writing.

FIGURE 4. Number of file pages and anonymous pages evicted from the
main memory during the execution of each application.

Fig. 4 shows the number of anonymous pages and clean
file-mapped pages evicted from the main memory during the
execution of a series of 14 applications listed in Table 2.
Each bar represents results collected during the execution of
each application. The details of the experimental set up are
explained in Section IV.

The results showed that, for all applications, the number of
file-mapped pages evicted was 20.3 times larger than that of
anonymous pages. If the evicted file-mapped pages are to be
never reused in the future, discarding themwill not impact the
performance. However, most of them are likely to be reloaded
in the target environment because of the nature of mobile
systems, i.e., a few applications are repetitively executed one
at a time [38], [39]. Therefore, eviction of such a large number
of file-mapped pages ends up with significant performance
loss.

A dirty file-mapped page must be eventually written back
to its originating file to permanently apply the changes to
the file. Therefore, caching the dirty file-mapped pages in
the compressed swap may produce inconsistency at the file
system level. For example, a committed write operation may
be lost when the system crashes while retaining the written
page in the compressed swap pool. For this, the ezswap
only considers clean file-mapped pages. The APA scheme
proposed for the ezswap compresses file-mapped pages that
are discarded from themainmemory and stores them together
with anonymous pages in the compressed swap pool.

When a read request to a file occurs, the Linux kernel
checks whether the requested file block exists in the buffer
cache. If it does not exist, the kernel allocates the buffer
page and submits a read request to the block I/O layer to
actually read the file blocks from the storage to the allocated

VOLUME 7, 2019 139683

J. Kim et al.: ezswap: Enhanced Compressed Swap Scheme for Mobile Devices

buffer pages. The ezswap intercepts every block I/O request
and checks whether the requested file blocks are stored in
the compressed swap pool. When all the required file blocks
are stored in the zpool, the block I/O operation will be sim-
ply ignored and the matching zpages will be decompressed,
forwarded to the buffer cache layer, and removed from the
zpool. If only a part of the requested file blocks is held in
the compressed swap pool, the ezswap will create new read
requests to read the non-existing parts and submit them to
the block I/O layer. When finishing the file read operations,
the ezswap merges the read data with its zpage contents.

Because the number of evicted file-mapped pages is signif-
icantly larger than that of evicted anonymous pages, adoption
of the APA scheme causes the following three issues.

First, the number of pages to be possibly accommodated in
the swap pool increases dramatically. Consequently, a signifi-
cantly larger number of anonymous page evictions may occur
due to the excessively large number of file-mapped pages.

Second, when the zswap accommodates an anonymous
page, it can additionally save a page write operation, unlike
the case of storing a file-mapped page. Write operations to
the flash memory are critically slower than read operations.
In addition, they reduce the life span of the flash memory
storage. Therefore, APA may reduce the life span and per-
formance due to the increased write operations arising from
storing the lower number of anonymous pages in the zpool.

Last but not least, a large portion of the file-mapped pages
contains already compressed media data. Therefore, the APA
crucially lowers the data density in the compressed swap pool.

To overcome these issues and the problems of the con-
ventional compressed swap schemes mentioned previously,
we propose selective admission and compressibility-aware
replacement schemes for the ezswap.

B. SELECTIVE ADMISSION
Compressed swap schemes trade off memory consumption
with compressing and decompressing overheads. However,
when the page compression ratio is high, they waste com-
puting resources, while only slightly reducing the memory
usage. Because mobile devices frequently use media data,
such as videos, photos, and audio, and ezswap accommodates
file-mapped pages, the proportion of the incoming pages
with extremely low compression ratio is expected to be a lot
higher with ezswap than with conventional compressed swap
schemes.

When the distribution of the page compression ratio is
wide, it is possible to store more pages in the swap pool with
the same capacity by selectively accommodating only pages
with low compression ratios. For example, assume that the
zpool stores 200 zpages on average with a half of the swap-
out pages having compression ratios of 1.0 and the other half
having compression ratios of 0.5. If the swap pool holds pages
with the compression ratio of 0.5 only, the number of zpages
stored in the swap pool will increase to 300. The selective
accommodation of highly compressible pages would increase

the data density of the swap pool, and thus improve the
effectiveness of the compressed swap.

In addition, if an anonymous page and a file-mapped page
have the same compression ratio and reuse probability, it is
more profitable in terms of performance and flash memory
wear to store the anonymous page in the compressed swap
pool than the file-mapped counterpart, because it will reduce
additional write operations.

We propose the SA technique to prevent waste of comput-
ing resources due to blind compression and to maximize the
benefits of the ezswap. SA determines whether the ezswap
accepts a swap-out page in the pool based on its estimated
compression ratio, probability of reuse, and eviction cost.
The ezswap admits a page only when the Expected benefit
of keeping it in the zpool is greater than or equals to the
Average Benefit of retaining the existing zpages in the zpool.

The Expected Benefit of a target page is determined by
Equation (1). Cost is the sum of the cost of abandoning the
target page and reloading it from the storage in the future.
In other words, the larger this value, the more beneficial it is
to keep the target page in the zpool. In general, a randomwrite
in a flash memory storage is two to four times slower than
a random read [40]. Thus, we set Cost to 1 for file-mapped
pages because they require one read operation, and to 4 for
anonymous pages because abandoning an anonymous page
requires a read operation and an additional write operation.
Compression Ratio represents the expected compression ratio
of the target page. The lower is this value, the higher are the
benefits of the ezswap by retaining the target page.

Expected Benefit =
Cost

Compression Ratio
(1)

Equation (2) calculates the average benefit of zpages in
the zpool. AvgCost and AvgCompressionRatio represent the
average eviction cost and compression ratio of the zpages
held in the zpool, respectively.Hit Rate represents the hit rate
of recent page-in requests to the ezswap. To calculate this,
the ezswap maintains a 256-bit map called the hit window.
When a page-in request is delivered to the ezswap, it performs
a bit-wise right shift operation over the hit window. Then,
it sets the MSB of the hit window if the requested page exists
in the zpool. Otherwise, it clears the MSB. With this bit map,
the ezswap can count the number of hits occurred during
the last 256 accesses. Capacity is the ratio of the number
of used chunks to the number of total chunks in the zpool.
This encourages the ezswap to more aggressively admit the
incoming pages into the zpool by lowering Average Benefit
as the zpool is less occupied.

AverageBenefit=Capacity×
AvgCost × Hit Rate
AvgCompression Ratio

(2)

If the ezswap actually compresses all the incoming pages
to determine their Compression Ratio, a significant waste of
computing resources will occur because a large number of
incoming pages will be simply discarded after compression
by the SA feature.

139684 VOLUME 7, 2019

J. Kim et al.: : Enhanced Compressed Swap Scheme for Mobile Devices

It is well known that information entropy has a strong
positive correlation with the compression ratio [41]–[43].
To avoid meaningless compression, the ezswap uses the
information entropy of a target page, which is calculated
by Equation (3), to estimate its Compression Ratio. Pi is
the probability that a randomly sampled byte has an integer
value of i. To suppress the overhead, we used only the first
512 bytes of a page to approximate its Pi, and we verified that
such approximation method produces sufficiently accurate
estimation as shown in Fig. 6. The entropy ranges from 0,
the perfectly regular data, to 8, the complete chaos. This
entropy value is scaled and mapped to the estimated com-
pression ratio, ranging from 0 to 1.

−

255∑
i=0

Pilog2Pi (3)

Calculating entropy is a lot faster than compression owing
to its simplicity. However, the calculation may still consume
a significant amount of processor cycles when it is per-
formed across all the evicted pages. The ezswap suppresses
the overhead arising from entropy calculation by estimating
the Shannon entropy of a page through calculation of the
entropy of its leading 512 bytes. Fig. 5 shows the relationship
between the estimated entropy based on the 512-byte sample
of a target page and the actual entropy of the whole page.
The Pearson correlation coefficient between the estimated
entropy and actual value was 0.955. The coefficient was
0.938 when sampling only 256 bytes. Therefore, the ezswap
secures sufficient accuracy while keeping low overhead by
using the leading 512 bytes of an incoming page as the sample
to estimate its entropy.

FIGURE 5. Relationship between entropy values obtained from leading
512 bytes of pages and that from whole bytes of them.

Fig. 6 shows the relationship between the information
entropy of the leading 512 bytes of the pages that the ezswap
receives and their actual compression ratio obtained from
the lzo algorithm. The number of pages observed in this
experiment was 200,000. The Pearson correlation coefficient
between the entropy and compression ratio was 0.88, which
indicates a strong positive correlation. The lzo algorithm
is approximately 16 times faster than the widely-used zip

FIGURE 6. Relationship between estimated compression ratios of
incoming pages based on their 512-byte entropy and actual compression
ratios.

algorithm when using the system described in Table 1. The
time taken to calculate the entropy was only 14% of that taken
to compress the pages with the lzo.

C. COMPRESSIBILITY-AWARE PAGE REPLACEMENT
The ezswap chooses a victim page among the swap pages
in use when there is no more free space in the pool for
the new incoming zpages. Once a swap page is chosen as
the victim, all zpages in the swap page are either evicted
to the swap storage or simply discarded, depending on their
types (anonymous pages or file-mapped pages) and, in turn,
the swap page becomes a free page.

As stated earlier, the compressed swap poolmanagement in
the zswap depends entirely on the zpool module, and its swap
page allocator is in charge of victim selection for eviction.
All three swap page allocation schemes of the zpool com-
monly follow the LRU discipline for victim selection, which
chooses the swap page unmodified for the longest time.

The zpages stored in the compressed swap pool usually
have various compression ratios, and therefore, their infor-
mation densities are also diverse. In other words, different
zpages have different sizes. If the compression ratio is the
only variable, it is desirable for the hit rate of the zpool to
retain a zpage with low compression ratio rather than a poorly
compressed zpage. Therefore, the swap page replacement
policy should consider both the modification recency of a
swap page and its data density.

Unlike conventional compressed swap schemes, ezswap
holds both file-mapped pages and anonymous pages.
As aforementioned, these two-page types have different evic-
tion costs. Therefore, a swap page replacement algorithm
should also consider the type of swap pages, which relates
to their eviction cost, when choosing a victim.

As the swap page replacement policy of ezswap, we pro-
pose the CA replacement algorithm. This aims at maximizing
both hit rate and performance gain from page hits. To achieve
these goals, it simultaneously considers the age, data density,
and eviction cost of swap pages with the following cost-
benefit model.

VOLUME 7, 2019 139685

J. Kim et al.: ezswap: Enhanced Compressed Swap Scheme for Mobile Devices

FIGURE 7. Categorization of swap pages and victim selection weight of each category.

In z3fold, each swap page can hold up to three zpages
with different compression ratios. The CA algorithm uses the
number of zpages and the number of remaining free chunks
in a swap page combined to denote its data density. The fewer
free chunks a swap page has and the fewer zpages the swap
page stores, the more likely it is to be chosen as a victim.
In addition, if every condition is the same, the more file-
mapped pages a swap page stores, the more likely it is to be
chosen as a victim, as this policy will lower the eviction cost.

The ezswap classifies its zpages into 18 categories,
as shown in Fig. 7, depending on the number of its total
zpages, the number of its file-mapped pages, and the amount
of free space. It maintains a swap page list for each of these
categories, and all non-free swap pages must belong to one of
these lists.

Each list has its weight for victim selection that means the
likelihood to be chosen as a victim. The weight values are
determined by Equation (1). The weight should be inversely
proportional to Equation (1) because the loss caused by the
eviction of a swap page is the opposite of the benefit achieved
from keeping it in the pool.

We use the lowest number in the free space range of a
category to represent its average compression ratio or data
density. For example, when a swap page holds one file-
mapped page and one anonymous page, and 30% of its space
is free, its compression ratio is approximately calculated
to 0.75/2, and its eviction cost is five, one from the file-
mapped page and four from the anonymous page. Therefore,
its weight is 1/(5/0.375) = 0.075. Because floating point
calculations inside the kernel require saving and restoring of
the floating point registers, floating point operations in the
kernel context are avoided as much as possible to prevent per-
formance degradation [44]. Therefore, the value, i.e., 0.075,
is multiplied by 10,000 to convert it to an integer, i.e., 750.

A larger weight of a swap page means lower performance
loss caused from evicting it. Therefore, evicting the swap
page with the largest weight is expected to minimize the
performance loss. However, if ezswap always evicts the
swap pages with the largest weight, recently modified swap
pages with only one or two zpages will always be expelled
before full old pages. This will completely deprive recent and
unfilled swap pages of maturing opportunities and ultimately
lower the performance. To address this issue, ezswap operates
a lottery to actually determine the victim.

Each swap page list is given tickets for a lottery. The
number of tickets given to list i, denoted as Ti, is determined
by Equation (4) and is proportional to the number of swap
pages in the list, Ni, and the victim selection weight of the
list, Wi.

Ti = Ni ×Wi (4)

When a free swap page becomes necessary, the ezswap
produces a random value ranging from 0 to

∑
Ti. If the

random value falls in the range of a list, that list will become
the victim list. The swap pages in a swap page list are ordered
with the approximated LRU discipline, with the oldest swap
page being located at the tail. Therefore, when a victim list is
selected by the lottery, the last swap page in that list will be
finally selected as the victim swap page. After evicting or dis-
carding the zpages in the victim page, it will be put back to
the free page list of the pool.

When a zpage is removed from or inserted to a swap page,
the swap page will be migrated to the swap page list that
matches its changed state. To ensure the list complies with the
approximated LRU order, the list insertion of a swap page is
performed as follows.

ezswap maintains a global clock, which is a monotonically
increasing integer value. When a new zpage enters the pool,

139686 VOLUME 7, 2019

J. Kim et al.: : Enhanced Compressed Swap Scheme for Mobile Devices

it receives a time stamp of the current global clock, and then
the clock value is increased by 1. A swap page manages the
sum of the time stamps of its zpages, by adding or deducting
the time stamp of a zpage to or from the sum when the zpage
enters or leaves the swap page, respectively. The time stamp
sum is recorded in the swap page header.

When a swap page is inserted into a swap page list, ezswap
compares the time stamp sum of the swap page with the
average time stamp sum of the swap pages that currently
belong to the list. If the time stamp sum of the to-be-inserted
page is bigger than the list average, the swap page will be
attached to the list head. Otherwise, it will be placed at the
list tail. With this approach, the head side of each list will
have the recently-modified swap pages, and the tail side will
have the old swap pages.

The proposed replacement scheme reflects the cost-benefit
model so that it resolves the performance loss from the naive
LRU-based swap page replacement and from the blind evic-
tion of the recent unfilled swap pages. In addition, by adopt-
ing the lottery selection approach, regardless of the zpool size,
it decides the eviction victim within a constant amount of
time.

TABLE 1. Evaluation system configurations.

IV. EVALUATION
A. EVALUATION ENVIRONMENT
To evaluate ezswap, we used the experimental environment
described in Table 1. In order to obtain consistent results,
we used only theA7 cores and disabled theA15 cores because
the unpredictable task migration between these two hetero-
geneous core sets complicates the performance outcomes.
We used the Linux kernel 3.10.9 ported to the target board.
Because this version does not include the zswap and the
z3fold allocator, we imported the zswap and zpool modules
from the Linux kernel 4.7 to the experimental kernel. The
compressed swap pool size was set to 100 MB, which is 5%
of the total memory capacity and 10% of the free space after
loading the OS and application frameworks. To reduce the
variance in the results, we also disabled the lowmemory killer
(LMK) daemon.

We used 14 applications listed in Table 2 to apply mem-
ory pressure. These were commodity applications obtainable
from the Google Play Store. To simulate the smart phone
users’ usage pattern, we launched an application and let it run
for 30 s, returned to the home screen, and repeated these steps
for the next application in the list. An experiment run con-
sisted of a five-time repetition of the launch-run-termination

TABLE 2. List of applications used for evaluation.

cycles of the 14 applications. The system was rebooted
and the page cache was emptied through the drop_caches
interface after every experiment run. The data was collected
after finishing the first repetition so that the swap pool was
warmed up with cached contents. This excludes the delays
caused by the first access of each page from our analysis and
simulates the real-world usage patterns of mobile devices,
which usually run for days and weeks without rebooting. The
data shown in this paper were average values obtained by
performing the experiment run ten times.

B. OVERALL PERFORMANCE
Fig. 8 shows the launch time, the amount of read and written
data under varying configurations. To assess the effectiveness
of each feature in ezswap, we also created configurations
whereby SA, CA, and APA, combined and separated, are
applied to the original zswap. The label ezswap on the graphs
represents cases where all these three features are enabled,
and swap indicates the configuration without any compressed
swap schemes. The amounts of total read and written data
were 6.9 GB and 375 MB without any compressed swap
schemes, respectively.

FIGURE 8. Launch time and number of read and written pages
normalized to conventional swap.

As expected, the conventional zswap reduced the amount
of written data by 66% through absorbing the write opera-
tions for swapping out anonymous pages. However, because
100 MB of the main memory was allocated for the com-
pressed swap pool, the available space for the application
was reduced and, in turn, more swap-out operations were
triggered. This led to heavy loss of clean file-mapped pages
from the main memory. Because of this, the evicted clean

VOLUME 7, 2019 139687

J. Kim et al.: ezswap: Enhanced Compressed Swap Scheme for Mobile Devices

file-mapped pages had to be brought back from the storage
when the applications were launched again. As a result,
the number of read pages increased by 31% and delayed the
application launch time by 6% in comparison to the case
without any compressed swap schemes.

When APAwas applied, the amount of read data decreased
by 31 and 47% in comparison to swap and zswap, respec-
tively. On the contrary, APA increased the number of written
pages by 19% in comparison to zswap but decreased it com-
pared to the swap case. Therefore, APA alone slowed down
the launch time by 9% because of its reckless storage of a
large number of file-mapped pages.

APA+SA showed 11% less read operations than APA
alone. This means that SA provides higher data density and
hit rate through the proposed cost-benefit page selection
model. For this, although the number of written pages was
increased by 5% because the anonymous pages with high
compression ratios were dropped, the combination of APA
and SA improved the application launch time by 22 and 15%
in comparison to APA and zswap, respectively.

Every zpage had the same eviction cost under CA+SA
without APA, and thus the compression ratio of a zpage
critically determines the admission decision. Therefore, lots
of pages with high compression ratios were immediately
abandoned and forwarded to the swap storage even when
the zpool had plenty of free space. In the experiments, only
110,000 pages out of 340,000 swap-out pages were admitted
to the compressed swap pool.

The number of written pages was slightly increased in the
ezswap as well. However, due to the 55% reduction in read
operations, it improved the application launch time by 22%
compared to the zswap, the launch time ofwhichwas delayed.

FIGURE 9. Normalized application launch time and number of
file-mapped/anonymous pages evicted from the main memory while
varying number of applications executed.

To evaluate the effectiveness of ezswap under varying
memory pressure, we conducted the same experiments while
varying the number of applications executed in a run, ranging
from 8 to 16. Fig. 9 shows the observed application launch
time and the number of swap-out pages categorized by their
type. The applications used in these sets were sequentially

selected from Table 2. The 16-application set additionally
included Microsoft Excel (Utility) and 2048 (Game).

The benefit of the original zswap rapidly diminishing as the
memory pressure increased. Under high memory pressure,
zpages were evicted from the pool before they were reused
because of its blind compression and cost-benefit-agnostic
replacement policy. On the other hand, by surrendering value-
less zpages, ezswap improved the performance by more than
16% in all cases.

The performance of APA alone was generally better than
that of the original zswap. However, when applications with
a large amount of file data were included in the experimental
set, the performance diminished. The ezswap could eliminate
most of APA’s detrimental effects by preventing accommoda-
tion of fruitless zpages and keep the performance gain stable.

With 16 applications running, the APA and ezswap out-
performed the zswap by 4 and 10%, respectively. This is
because the number of pages that had to be loaded was
excessively large relative to the total memory capacity. The
conventional zswap had to reload all file-mapped pages,
which were 34 times more than the anonymous pages, and
thus many evictions occurred from the swap pool due to the
indiscriminate admission. On the other hand, the APA saved
30% of read operations.

When the number of applications was 8 or 10, the number
of pages evicted from the main memory was small so that
the SA and CA schemes lost their effectiveness because there
were fewer zpage evictions than the cases with a larger num-
ber of applications. The effectiveness of APA became larger
in these circumstances because a notable portion of file-
mapped pages could be accommodated in the pool and their
impact to the anonymous pages was small. ezswap performed
poorer than the zswap+APA configuration because ezswap’s
SA feature significantly slowed down the fill-up speed of the
compression pool due to the low memory pressure.

ezswap performed best among all when 12 and 14 appli-
cations were used. The difference between APA and ezswap
was especially substantial with 14 applications because the
number of anonymous pages evicted from the main mem-
ory was 51,408, while it was 4,050 and 8,085 when 8 and
10 applications were running, respectively. Most of these
evicted anonymous pages went directly to the swap storage
under APA, because APA treats them in the same way as file-
mapped pages although their eviction cost is a lot higher than
that of file-mapped pages.

These results showed that the effectiveness of compressed
swap schemes heavily depends on the memory pressure and
the swap pool size. However, the performance of the ezswap
remains stable under varying memory pressure and is sig-
nificantly higher than that of conventional zswap especially
under high memory pressure.

C. ANALYSIS OF PERFORMANCE GAIN
Wemeasured the reduction in computation overhead obtained
from the SA technique. Fig. 10 shows the number of actually
compressed pages under APA and APA+SA, respectively.

139688 VOLUME 7, 2019

J. Kim et al.: : Enhanced Compressed Swap Scheme for Mobile Devices

FIGURE 10. Number of actually-compressed pages and processor cycles
consumed for compression.

FIGURE 11. Constitution of swap pages evicted from zpool categorized by
a combination of (total zpage / file-mapped zpage).

It also exhibits the normalized processor cycles consumed for
the compressibility estimation and actual compression algo-
rithm, respectively, under each configuration. The number
of page compression instances was diminished by 76% with
SA and thus, the processor cycles consumed for compression
were accordingly reduced. Even when adding up the entropy
calculation time to the whole, the SA reduced the number of
processor cycles by 62%.

Fig. 11 shows the constitution of evicted swap pages
categorized by the combination of stored total zpage count
and stored clean file-mapped zpage count in a swap page
under varying configurations. When the CA algorithm was
not applied, the default LRU replacement policy was used
instead.

With the CA policy, regardless of whether SA was applied,
the proportion of evicted swap pages having only one file-
mapped page increased and that of the other types of swap
pages decreased. This is because ezswap prioritizes the evic-
tion of file-mapped pages with high compression ratios.
Accordingly, the data density of the zpool is expected to
increase. In fact, as shown in Fig. 8, when CA was applied
to APA and APA+SA, the number of write operations was
decreased by 19 and 10%, respectively, and the launch time
was shortened by 8 and 7%, respectively. The number of read
operations under APA+CA was incremented only by 4% in
comparison to APA. This demonstrates that the increased data
density from CA considerably offsets the detrimental effects
of prioritized eviction of file-mapped pages.

APA+SA and ezswap, both of which utilize the SA feature,
commonly showed low 1/* portion and high 3/* proportion in
comparison to their non-SA counterparts. These results are
attributed to the fact that the number of 3/* swap pages in
the zpool was increased while that of the 1/* swap pages was
decreased by applying SA.

TABLE 3. Average number of zpages per megabyte of swap pool.

Table 3 shows the average number of zpages stored per one
MB of zpool capacity measured after the execution of every
application in the experiment. The average compression ratio
of anonymous pages was significantly lower than that of file-
mapped pages because a large portion of anonymous pages
were zero pages, whose compression ratio is extremely low.
On the contrary, as expected, the compression ratio of most
file-mapped pages was poor because of their large portion of
multimedia data. Because of these, APA showed less density
than the original zswap.

In fact, ezswap without APA showed the highest density
among all configurations. Both SA and CA significantly
improved the data density, and thus ezswap could store 35%
more pages than zswap with APA.

V. CONCLUSION
The compressed swap improves the execution time under
high memory pressure by suppressing the number of pages
to be swapped out to the secondary storage. In addition,
it extends the life span of flash memory storage by reducing
the number of write operations and thus, the wear of flash
memory cells. Consequently, most commercial OSs are using
compressed swap.

In this paper, we proposed ezswap, an enhanced com-
pressed swap scheme for mobile devices. ezswap accommo-
dates both anonymous pages and clean file-mapped pages.
To increase the data density and thus, the hit rate, it selectively
admits pages with beneficial eviction costs and compression
ratios through entropy-based compression ratio estimation.
In addition, it comprehensively considers multiple factors,

VOLUME 7, 2019 139689

J. Kim et al.: ezswap: Enhanced Compressed Swap Scheme for Mobile Devices

such as the compression ratio, hit rate, access recency, and
page type, for replacement victim selection.

Through a series of evaluations with commercial applica-
tions on the Android OS, we verified that ezswap reduced
the number of read operations by up to 55%, and increased
the data density of the compressed swap pool by 35% in
comparison to the original zswap of the Linux kernel. The
computational overhead for compression was also repressed
by 62% with entropy-based compression ratio estimation.
Therefore, ezswap improved the application launch time by
up to 22%while providing a reduction rate of write operations
comparable to that of the conventional zswap. Consequently,
we concluded that ezswap significantly improves the respon-
siveness of mobile devices while extending the life span of
their storage.

As in most existing compressed swap schemes, the capac-
ity of the compressed swap pool in ezswap is fixed to the
predefined number. Therefore, it occupies the same amount
of memory even when the memory pressure is low, and does
not increase under heavy memory demand. We believe that
the dynamic adjustment of the pool capacity will further
improve the effectiveness of ezswap.

REFERENCES
[1] R. Duan, M. Bi, and C. Gniady, ‘‘Exploring memory energy optimizations

in smartphones,’’ in Proc. Int. Green Comput. Conf. Workshops, Jul. 2011,
pp. 1–8.

[2] K. Zhong, D. Liu, L. Liang, X. Zhu, L. Long, Y. Wang, and
E. H.-M. Sha, ‘‘Energy-efficient in-memory paging for smartphones,’’
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 35, no. 10,
pp. 1577–1590, Oct. 2016.

[3] T. Coughlin. Getting solid at FMS. Forbes. Accessed: Aug. 16 2019.
[Online]. Available: https://www.forbes.com/sites/tomcoughlin/2019
/08/16/getting-solid-at-fms/

[4] T. Yang, H. Wu, and W. Sun, ‘‘GD-FTL: Improving the performance and
lifetime of TLC SSD by downgrading worn-out blocks,’’ in Proc. IEEE
37th Int. Perform. Comput. Commun. Conf. (IPCCC), Nov. 2018, pp. 1–8.

[5] P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis, ‘‘The case for compressed
caching in virtual memory systems,’’ in Proc. USENIX Annu. Tech. Conf.,
1999, pp. 101–116.

[6] F. Douglis, ‘‘The compression cache: Using on-line compression to
extend physical memory,’’ in Proc. USENIX Winter Tech. Conf., 1993,
pp. 519–529.

[7] R. Cervera, T. Cortes, andY. Becerra, ‘‘Improving application performance
through swap compression,’’ in Proc. USENIX Annu. Tech. Conf., 1999,
pp. 207–218.

[8] R. S. de Castro, A. P. D. Lago, and D. da Silva, ‘‘Adaptive compressed
caching: Design and implementation,’’ inProc. 15th Symp. Comput. Archit.
High Perform. Comput., Nov. 2003, pp. 10–18.

[9] L. Yang, R. P. Dick, H. Lekatsas, and S. Chakradhar, ‘‘Online memory
compression for embedded systems,’’ ACM Trans. Embedded Comput.
Syst., vol. 9, no. 3, Feb. 2010, Art. no. 27.

[10] I. C. Tuduce and T. Gross, ‘‘Adaptive mainmemory compression,’’ inProc.
USENIX Annu. Tech. Conf., 2005, pp. 237–250.

[11] B. Lee, S. M. Kim, E. Park, and D. Han, ‘‘MemScope: Analyzing memory
duplication on Android systems,’’ in Proc. 6th Asia–Pacific Workshop
Syst., 2015, Art. no. 19.

[12] N. Gupta, ‘‘zram: Compressed RAM based block devices,’’ in Proc. Linux
Kernel User’s Administrator’s Guide, 2014.

[13] S. Jennings. LWN.net Article. (Feb. 12, 2013). The Zswap Compressed
Swap Cache. [Online]. Available: https://lwn.net/Articles/537422/

[14] J. Han, S. Kim, S. Lee, J. Lee, and S. J. Kim, ‘‘A hybrid swapping scheme
based on per-process reclaim for performance improvement of Android
smartphones,’’ IEEE Access, vol. 6, pp. 56099–56108, Aug. 2018.

[15] C. A. Waldspurger and W. E. Weihl, ‘‘Lottery scheduling: Flexible
proportional-share resource management,’’ in Proc. 1st USENIX Conf.
Oper. Syst. Design Implement., 1994, p. 1.

[16] U. Manber and S. Wu, ‘‘GLIMPSE: A tool to search through entire file
systems,’’ in Proc. USENIX Winter Tech. Conf., Berkeley, CA, USA, 1994,
pp. 23–32.

[17] A. Z. Broder, ‘‘Identifying and filtering near-duplicate documents,’’ in
Proc. 11th Annu. Symp. Combinat. Pattern Matching. Berlin, Germany:
Springer-Verlag, 2000, pp. 1–10.

[18] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Varghese,
G. M. Voelker, and A. Vahdat, ‘‘Difference engine: Harnessing memory
redundancy in virtual machines,’’ in Proc. 8th USENIX Conf. Oper. Syst.
Design Implement. (OSDI), 2008, pp. 309–322.

[19] A. Arcangeli, I. Eidus, and C. Wright, ‘‘Increasing memory density by
using KSM,’’ in Proc. Ottawa Linux Symp., 2009, pp. 19–28.

[20] C. A. Waldspurger, ‘‘Memory resource management in VMware ESX
server,’’ ACM SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 181–194, 2002.

[21] S. Barker, T. Wood, P. Shenoy, and R. Sitaraman, ‘‘An empirical study of
memory sharing in virtual machines,’’ in Proc. USENIX Annu. Tech. Conf.,
2012, pp. 273–284.

[22] S. Kim, H. Kim, J. Lee, and J. Jeong, ‘‘Group-based memory oversubscrip-
tion for virtualized clouds,’’ J. Parallel Distrib. Comput., vol. 74, no. 4,
pp. 2241–2256, 2014.

[23] S.-H. Kim, J. Jeong, and J. Lee, ‘‘Selective memory deduplication for
cost efficiency in mobile smart devices,’’ IEEE Trans. Consum. Electron.,
vol. 60, no. 2, pp. 276–284, May 2014.

[24] ‘‘OS X mavericks core technologies overview,’’ Apple, White Paper,
Oct. 2013.

[25] G. Richard, III, and A. Case, ‘‘In lieu of swap: Analyzing compressed
RAM in Mac OS X and Linux,’’ Digit. Invest., vol. 11, pp. S3–S12,
Aug. 2014.

[26] V. Beltran, J. Torres, and E. Ayguadé, ‘‘ImprovingWeb server performance
through main memory compression,’’ in Proc. 14th IEEE Int. Conf. Paral-
lel Distrib. Syst., Dec. 2008, pp. 303–310.

[27] J. Hwang, J. Jeong, H. Kim, J. Choi, and J. Lee, ‘‘Compressed memory
swap for QoS of virtualized embedded systems,’’ IEEE Trans. Consum.
Electron., vol. 58, no. 3, pp. 834–840, Aug. 2012.

[28] C. Lee, C. H. Hong, S. Yoo, and C. Yoo, ‘‘Compressed and shared swap
to extend available memory in virtualized consumer electronics,’’ IEEE
Trans. Consum. Electron., vol. 60, no. 4, pp. 628–635, Nov. 2014.

[29] R. B. Tremaine, P. A. Franaszek, J. T. Robinson, C. O. Schulz, T. B. Smith,
M. E. Wazlowski, and P. M. Bland, ‘‘IBM memory expansion technology
(MXT),’’ IBM J. Res. Develop., vol. 45, no. 2, pp. 271–285, Mar. 2001.

[30] L. Benini, D. Bruni, A.Macii, and E.Macii, ‘‘Hardware-assisted data com-
pression for energy minimization in systems with embedded processors,’’
in Proc. Conf. Design, Autom. Test Eur., 2002, p. 449.

[31] D. Chae, J. Kim, Y. Kim, J. Kim, K.-A. Chang, S.-B. Suh, and H. Lee,
‘‘CloudSwap: A cloud-assisted swap mechanism for mobile devices,’’ in
Proc. 16th IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput. (CCGrid),
May 2016, pp. 462–472.

[32] T. Song, G. Lee, and Y. Kim, ‘‘Enhanced flash swap: Using NAND flash
as a swap device with lifetime control,’’ in Proc. IEEE Int. Conf. Consum.
Electron. (ICCE), Jan. 2019, pp. 1–5.

[33] S. Desireddy and D. R. Pathireddy, ‘‘Optimize in-kernel swap memory by
avoiding duplicate swap out pages,’’ in Proc. Int. Conf. Microelectron.,
Comput. Commun. (MicroCom), Jan. 2016, pp. 1–4.

[34] J. Choi, J. Ahn, J. Kim, S. Ryu, and H. Han, ‘‘In-memory file system with
efficient swap support for mobile smart devices,’’ IEEE Trans. Consum.
Electron., vol. 62, no. 3, pp. 275–282, Aug. 2016.

[35] S.-H. Kim, J. Jeong, and J.-S. Kim, ‘‘Application-aware swapping for
mobile systems,’’ ACM Trans. Embedded Comput. Syst., vol. 16, no. 5s,
Oct. 2017, Art. no. 182.

[36] J.-S. Lee, W.-K. Hong, and S.-D. Kim, ‘‘Design and evaluation of a
selective compressed memory system,’’ in Proc. IEEE Int. Conf. Comput.
Design, Oct. 1999, pp. 184–191.

[37] S. Park, H. Lim, H. Chang, and W. Sung, ‘‘Compressed swapping for
NAND flash memory based embedded systems,’’ in Proc. Int. Workshop
Embedded Comput. Syst., 2005, pp. 314–323.

[38] C. Shin, J.-H. Hong, and A. K. Dey, ‘‘Understanding and prediction of
mobile application usage for smart phones,’’ in Proc. ACM Conf. Ubiqui-
tous Comput., 2012, pp. 173–182.

[39] Q. Xu, J. Erman, A. Gerber, Z. Mao, J. Pang, and S. Venkataraman,
‘‘Identifying diverse usage behaviors of smartphone apps,’’ in Proc. ACM
SIGCOMM Conf. Internet Meas. Conf., 2011, pp. 329–344.

139690 VOLUME 7, 2019

J. Kim et al.: : Enhanced Compressed Swap Scheme for Mobile Devices

[40] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and
R. Panigrahy, ‘‘Design tradeoffs for SSD performance,’’ in Proc. USENIX
Annu. Tech. Conf., 2008, pp. 57–70.

[41] G. Hansel, D. Perrin, and I. Simon, ‘‘Compression and entropy,’’ in Proc.
Annu. Symp. Theor. Aspects Comput. Sci., 1992, pp. 513–528.

[42] S. Meguerdichian, H. Noshadi, F. Dabiri, and M. Potkonjak, ‘‘Semantic
multimodal compression for wearable sensing systems,’’ in Proc. IEEE
SENSORS, Nov. 2010, pp. 1449–1453.

[43] C. Ji, L.-P. Chang, L. Shi, C. Gao, C. Wu, Y. Wang, and C. J. Xue,
‘‘Lightweight data compression for mobile flash storage,’’ ACM Trans.
Embedded Comput. Syst., vol. 16, no. 5s, 2017, Art. no. 183.

[44] R. Love, Linux Kernel Development, 3rd ed. Reading, MA, USA:
Addison-Wesley, 2010, ch. 2, p. 20.

JONGSEOK KIM received the B.S. degree
in computer science and engineering from
Sungkyunkwan University, South Korea, in 2018,
where he is currently pursuing the M.S. degree
with the Department of Computer Science and
Engineering. His research interests include mem-
ory management, non-volatile memory, flash
SSDs, and file systems.

CHEOLGI KIM received the B.S. degree in com-
puter science and the Ph.D. degree from the Korea
Advance Institute of Science and Technology
(KAIST), in 1996 and 2004, respectively. He is
currently an Associate Professor with the Software
and Computer Engineering Department, Korea
Aerospace University, South Korea. He founded
Ratio LLC., South Korea, an IoT device com-
pany, in 2017. His research interests include safety
critical system software architecture, low-energy
embedded systems, and real-time systems.

EUISEONG SEO received the B.S., M.S., and
Ph.D. degrees in computer science from KAIST,
in 2000, 2002, and 2007, respectively. He is cur-
rently an Associate Professor with the Depart-
ment of Computer Science and Engineering,
Sungkyunkwan University, South Korea. Before
joining SungkyunkwanUniversity, in 2012, he was
an Assistant Professor with the Ulsan National
Institute of Science and Technology (UNIST),
South Korea, from 2009 to 2012, and a Research

Associate with Pennsylvania State University, from 2007 to 2009. His
research interests include system software, embedded systems, and cloud
computing.

VOLUME 7, 2019 139691

	INTRODUCTION
	BACKGROUND AND RELATED WORK
	MEMORY OVERCOMMITMENT TECHNIQUES
	SWAP SCHEMES FOR MOBILE DEVICES
	COMPRESSED SWAP IN LINUX

	OUR APPROACH
	ALL-PAGE ACCOMMODATION
	SELECTIVE ADMISSION
	COMPRESSIBILITY-AWARE PAGE REPLACEMENT

	EVALUATION
	EVALUATION ENVIRONMENT
	OVERALL PERFORMANCE
	ANALYSIS OF PERFORMANCE GAIN

	CONCLUSION
	REFERENCES
	Biographies
	JONGSEOK KIM
	CHEOLGI KIM
	EUISEONG SEO

