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ABSTRACT In this paper, we introduce a systematic and unified stochastic tool to determine the joint
statistics of partial products of ordered random variables (RVs). With the proposed approach, we can
systematically obtain the desired joint statistics of any partial products of ordered statistics in terms of
the Mellin transform and the probability density function in a unified way. Our approach can be applied
when all the K -ordered RVs are involved, even for more complicated cases, for example, when only the Ks
(Ks < K ) best RVs are also considered. As an example of their application, these results can be applied to the
performance analysis of various wireless communication systems including wireless optical communication
systems. For an applied example, we present the closed-form expressions for the exponential RV special case.
Wewould like to emphasize that with the derived results based on our proposed stochastic tool, computational
complexity and execution time can be reduced compared to the computational complexity and execution time
based on an original multiple-fold integral expression of the conventional Mellin transform based approach
which has been applied in cases of the product of RVs.

INDEX TERMS Joint PDF, partial products, Mellin transform (MT), order statistics, probability density
function (PDF), exponential random variables, information combining.

I. INTRODUCTION
Order statistics that deal with ordered random variables (RVs)
and distributions of those functions are an important sub-field
of statistical theory and have been applied in a wide-range
of fields [1]. Over the years, it has been applied to a vast
variety of areas of statistical theory and practice [1], including
signal and image processing as well as quality control, life-
testing, and so on [2]–[4]. In particular, order statistics have
been increasingly emerging in communications engineering
and advanced signal processing fields [5]. For example, in
[6], to determine the joint statistics of partial sums of ordered
RVs, a moment generating function (MGF) based unified
analytical framework was applied.With this analytical frame-
work, when both all the ordered RVs are involved and only the
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best RVs are considered, we can obtain the target joint PDF of
arbitrary partial sums of RVs as the closed-form expressions.

As one of the applied problems in statistics, the distri-
butions that deal with the product of RVs have been raised
and studied [7]–[9]. However, most of these studies have
been limited to independent cases. Therefore, approaches
applied to these independent case studies and related results
can not be applied to dependent random variable cases such
as ordered RV cases. In [10], a new characterization that
involves a distributional relation of products of order RVs
is introduced but this study is limited to simple/fundamental
cases (i.e., the product of two independent order RVs).
Recently, in [11], the distribution of products of dependent
RVs is studied but the results and the approach applied
to derive them are only valid for simple cases taking into
account the product of two ordered RVs. It directly means
that these results and approaches can not be applied to more
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complicated/general cases. These problem has not been tack-
led earlier, yet.

Many studies of the applications ofMellin transform to sta-
tistical distribution theory have been considered in [12]–[14],
including the methods in problems relating to exact distri-
butions of multivariate statistics in [15], [16]. In particular,
[7], [9], [11], [13], [17] studied how to obtain the probability
density function (PDF) of the product of RVs (e.g., the prod-
uct of two independent RVs or two dependent RVs) based on
the Mellin transform has been made. Similar to Laplace and
Fourier transforms, the Mellin transform is one of integral
transforms. In terms of probability theory, the Mellin trans-
form of a random variable is related to its PDF and according
to the properties of theMellin transform, theMellin transform
of a product of RVs is the product of the Mellin transforms
of the individual RVs [7], [9]. The definition and the related
properties of the Mellin transforms allow us to derive the
joint statistics of the product of ordered RVs in a systematic
and unified manner with the help of the MGF-based unified
framework.

In this paper, we introduce a Mellin-transform-based sys-
tematic stochastic tool to determine the multidimensional
joint statistics of arbitrary partial products of ordered RVs
in a unified way. More specifically, by combining the MGF-
based framework introduced in [6] with the Mellin trans-
form, we introduce a method for systematically obtaining
the desired joint statistics of an arbitrary partial product of
ordered RVs in a unified way. As a special case based on
this, we provide some selected new closed-form results for
exponential RV case. To our best knowledge, this system-
atic and unified stochastic tool and the related closed-form
results have never been investigated. These results are not
easily obtained by direct integration calculations of the series
that represent the probability densities due to high compu-
tational complexity and long execution time. However, with
our results, computational complexity and execution time
can be reduced because it is in the form of a summation
expression rather than a multiple-fold integral expression.
The above mentioned points are very important in imple-
menting the proposed tool on computer-based systems or in
calculating the numerical result. Further, we would like to
emphasize that such generalization may lay a foundation for
other researchers to build a more rich theory of order statistics
in the general order statistics theory.

II. EXAMPLES OF APPLICATION SYSTEM MODELS
In this section, as feasible application examples in which
our systematic and unified stochastic tool to determine the
multidimensional joint statistics can be applied, we consider
the following two application examples.

A. EXAMPLE SCENARIO 1: INFORMATION
ACCUMULATION
Wireless optical communications are recently considered as
a promising technology that provides high-speed, improved-
capacity, cost-effective, secure and easy-to-deploy wireless
networks. In an optical wireless communication system,

the coexistence of multiple wavelength division multiplex-
ing (WDM) channels on a single optical channel allows
simultaneous transmission of high-speed signals having
multiple information, thereby expanding network capacity.
Conventional optical fiber communication systems and opti-
cal wireless communication systems use similar system com-
ponents. In a conventional fiber optic communication system,
all signals received at the receiver are always valid, but in
a wireless optical communication system, all multi-beams
generated by WDMmay not always be valid or may not have
an acceptable signal-to-noise ratio (SNR) due to atmospheric
attenuation [18]–[23]. Therefore, considering only the best
valid signal, not all signals, the receiver can combine multiple
information received only on the best valid signals and reduce
unnecessary complexity in terms of hardware components
and signal processing.

In another example, the accumulation of information for
relay transmission, in particular, the use of rateless codes, can
be seen as a method to achieve the information-theoretical
capacity of a channel with multiple relays [24]–[26]. More
specifically, ideal rateless codes and decoders at the receiver
can distinguish information streams from different relay
nodes, and mutual information of signals transmitted by the
relay nodes can be accumulated. For example in [26], if chan-
nels between source (S) and destination (D) and between
relay (R) and D have different propagation delays, then D can
apply a Rake receiver for (maximal-ratio) combining signals
from S and Rs. Accumulation of information is implemented
when relays with distinct forwarding times use different sub-
channels/codes. In this case, due to the different spreading
codes, D can distinguish signals from S and R, and the S-D
and R-D links combine information as they use different gen-
erating vectors. In this case, an information packet is reliably
decodable at the receiver once the instantaneous accumulated
information is more than a certain specified threshold Rth,
i.e.,

∑
i
Log (1+ SNRi) > Rth.

Based on these examples, to reduce the complexity without
any significant loss in terms of performance, we can consider
that the receiver combines the received information from
the best Ks signals among total K (> Ks) signals. Then,
the combined rate can be formulated as

Ks∑
i=1

Log (1+ SNRi), (1)

where SNR1 ≥ SNR2 ≥ · · · ≥ SNRKs ≥ · · · ≥ SNRK . Here,
if we consider the high SNR regime assumption, then we can
rewrite as

Ks∑
i=1

Log (1+ SNRi) ≈
Ks∑
i=1

Log (SNRi). (2)

Then, we can rewrite it as the product form
Ks∑
i=1

Log (1+ SNRi) ≈
Ks∑
i=1

Log (SNRi)

= Log

(Ks∏
i=1

SNRi

)
=Log

(
γproduct

)
,(3)
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FIGURE 1. Process flowchart for deriving joint statistics of partial products of ordered RVs.

where γproduct =
Ks∏
i=1

SNRi. In order to find an analytical result

(e.g., average combined rate,
∫
∞

0 Log (γ )fγproduct (γ ) dγ )
based on this system model assumptions, we need to derive
the PDF of partial product of ordered random variables,
fγproduct (γ ), from the best one to the Ks-th ordered one among
K ordered random variables.

B. EXAMPLE SCENARIO 2: OUTAGE CAPACITY OF
MULTI-CARRIER SYSTEMS
Due to robustness to frequency-selective fading and the
consequent inter-symbol interference (ISI), many current
wireless communication systems are being deployed using

multi-carrier modulation. In addition, where channel state
information is available at the transmitter, adaptive modula-
tion can be used to allowmulti-carrier systems to achieve bet-
ter system spectral efficiency. To quantify this gain in spectral
efficiency, it is important to calculate the outage capacity of
these systems, which corresponds to the probability that the
aggregate rate over all carriers fails to exceed a predetermined
rate threshold [27], [28].

For considering the multi-carrier system, assume that each
carrier is affected by Rayleigh fading, such that its instan-
taneous SNR of the l-th carrier, γl , follows an exponential
distribution. Here, it is clear that the logarithmic sum of some
numbers is equal to the logarithm of the product of these
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numbers. As such, the instantaneous sum capacity of the
multi-carrier system is given by

Cs =
∑
l

Log2 (1+ γl) = Log2

(∏
l

(1+ γl)

)
. (4)

Here, if we consider i) the high SNR regime assumption
and ii) only the best Ks carriers/tones among the total K (>
Ks) multi-carrier instead of considering all theK carriers, then
the instantaneous sum capacity of the multi-carrier system
can be obtained as

Cs =
Ks∑
l=1

Log2 (1+ γl) ≈ Log2
(
γproduct

)
, (5)

where γproduct =
Ks∏
l=1
γl for γ1 ≥ γ2 ≥ · · · ≥ γKs ≥ · · · ≥ γK .

With (5), our objective is to find the outage capacity of this
system. It is defined as the probability that the instantaneous
sum capacity, Cs falls below a certain specified threshold Cth,
i.e.,

Cout = Pr [0 ≤ Cs < Cth] =
∫ Cth

0
fCs (γ ) dγ . (6)

If we let γproduct =
Ks∏
l=1
γl , then we can rewrite it as the func-

tion of PDF of partial product of ordered random variables
as

Cout =
∫ 2Cth

1
fγproduct (γ ) dγ . (7)

Then, we also need to derive the PDF of partial product of
ordered random variables, fγproduct (γ ), from the best one to
the Ks-th ordered one among K ordered random variables.
In what follows, we show how to determine the key joint
statistics systematically with our proposed unified stochastic
tool followed by some selected examples.

III. THE MAIN FRAMEWORK
We assume that∞ ≥ γ1:K ≥ γ2:K ≥ γ3:K · · · ≥ γK :K ≥ 0
are the ordered RVs which are obtained by arranging K non-
negative i.i.d. RVs, {γi}Ki=1, in decreasing order of magnitude.
Here, we adopt the analytical framework proposed in [6] to
systematically derive the target multidimensional joint PDF
of arbitrary partial products of ordered RVs involving either
all K or the first Ks (Ks < K ) ordered RVs. Specifically,
we adopt i) the interchange of multiple integrals of ordered
RVs and ii) a general two-step approach when all the ordered
RVs are considered including extra steps when these condi-
tions do not hold, especially in the flowchart given in Fig. 1.
More specifically, as shown in the general case in Fig. 1, after
deriving the analytical expressions of multidimensional joint
Mellin transform in step one, in step two, proceed to apply
inverse Mellin transform to obtain the joint PDF. Note that
additional integration may be required to obtain the desired
joint PDF.

For the special case1, following the special steps sys-
tematically as shown in Fig. 1, we first divide these RVs
into smaller products. Then, after applying a general two-
step approach based on newly divided group of RVs,
we transform the result obtained through a general two-
step approach to a lower dimensional desired joint PDF
with finite integration. Because the unified MGF-based
approach and results were limited to the cases when the
joint statistics of partial sums of ordered RVs were desired,
although new useful closed-form results on ordered statistics
have been provided, systematically obtaining the multidi-
mensional joint statistics in a unified manner still remains
a challenge.

In this paper, the analytical framework is slightly modi-
fied making it suitable for multidimensional joint statistics
of partial products of ordered RVs. Specifically, in order
to systematically obtain the multidimensional joint statistic
results in closed-form, a systematic and unified stochastic
framework based on the Mellin transform and related fun-
damental/essential common core functions is provided. The
main challenge is to establish a unified method for systemati-
cally deriving the target multidimensional joint PDFs. In this
case, we can systematically obtain the joint Mellin transform
function by applying the Mellin transform instead of joint
MGF function. Note that the original expression of joint
Mellin transform involves a multi-fold integral expression as
shown in the following example

M (s1, s2) =

∞∫
0

dγ1:K (γ1:K )s2−1f (γ1:K )

· · ·

γm−2:K∫
0

dγm−1:K (γm−1:K )s2−1f (γm−1:K )

×

γm−1:K∫
0

dγm:K (γm:K )s1−1f (γm:K )

×

γm:K∫
0

dγm+1:K (γm+1:K )s2−1f (γm+1:K )

· · ·

γK−1:K∫
0

dγK :K (γK :K )s2−1f (γK :K ) . (8)

Therefore, as we can see from (8), even if we apply the
conventional Mellin transform-based approach which has
been applied in cases of the product of RVs, we still need
to compute this multi-fold integral expression.

Here, by adopting the interchange of multiple integral
techniques in [6], (8) can be re-arranged

M (s1, s2) =

∞∫
0

dγm:K (γm:K )s1−1f (γm:K )

1When the RVs separated by the other RVs, i.e., the RVs involved in at
least one partial product is not continuous
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×

γm:K∫
0

dγm+1:K (γm+1:K )s2−1f (γm+1:K )

· · ·

γK−1:K∫
0

dγK :K (γK :K )s2−1f (γK :K )

×

∞∫
γm:K

dγm−1:K (γm−1:K )s2−1f (γm−1:K )

· · ·

∞∫
γ2:K

dγ1:K (γ1:K )s2−1f (γ1:K ). (9)

With this re-arranged result, the joint Mellin transform based
expression, especially both multi-fold integral expressions
from γm+1:K to γK :K and from γm−1:K to γ1:K , can be made as
compact as possible with the help of common core functions
derived in the following sections.

Then, with the Mellin transform-based expression as the
joint compact form, we can derive joint PDF results of
selected partial products through the inverse Mellin trans-
form. In most cases we are interested, the joint Mellin trans-
form function involves basic functions, for which the inverse
Mellin transform can be analytically computed. In the worst
case, the results of the final non-closed form needs to be
computed numerically using conventional standard mathe-
matical packages, such as Matlab and Mathematica. Note
that with original multi-fold integral expressions (e.g., the
K -fold integrals given in (9)), it is difficult to estimate them
accurately as K increases even with the conventional math-
ematical tools due to high computational complexity. Then,
by applying three common core functions of a special fading
case for obtaining the joint Mellin transform expression in a
compact form, the desired multidimensional joint PDF can
be obtained in a closed-form expression through the inverse
Mellin transform. Here, we basically adopt a general two-
step approach in Sec. II [6] as shown in Fig. 1 similar to
the case of joint statistics of partial sums of ordered RVs,
especially when all K ordered RVs are considered. When
only the best Ks (Ks < K ) ordered RVs are involved in
the partial sums), similarly, to obtain a valid-joint Mellin
transform function, we adopt extra steps. Specifically, the last
(i.e., Ks-th) ordered-RV γKs:K is considered separately. In the
next sections, our focus is to get the joint Mellin transform
functions in a compact expression, which can be greatly
simplified with the application of the following common core
functions and relations.

IV. COMMON CORE FUNCTIONS
A. FOR GENERAL DISTRIBUTION CASES
This section introduces some common core functions and
their properties. They are used to simplify the derivation of
theMellin transform-based joint result in a simple and unified
form with the help of:

i) A mixture of a CDF and a Mellin transform

cm (γ, s) =
∫ γ

0
dxxs−1f (x) , (10)

where f (x) represents the distribution function of the
RV of interest. In (10), cm (γ, 1) = c (γ ) leads to the
CDF and cm (∞, s) is the Mellin transform, where the
variable γ is real while s is complex.

ii) A mixture of an exceedance distribution function (EDF)
and a Mellin transform

em (γ, s) =
∫
∞

γ

dxxs−1f (x). (11)

In (11), em (γ, 1) = e (γ ) represents the EDF and
em (0, s) leads the Mellin transform.

iii) An interval Mellin transform

µm (γa, γb, s) =
∫ γb

γa

dxxs−1f (x). (12)

In (12), µm (0,∞, s) represents the Mellin transform.
The functions defined in (10), (11), and (12) have the follow-
ing relationships:

cm (γ, s) = cm (∞, s)− em (γ, s)
or
= em (0, s)− em (γ, s) , (13)

em (γ, s) = em (0, s)− cm (γ, s)
or
= cm (∞, s)− cm (γ, s) , (14)

im (γa, γb, s) = cm (γb, s)− cm (γa, s)
or
= em (γa, s)− em (γb, s) . (15)

B. FOR SPECIAL CASES: i.i.d. EXPONENTIAL RVs
Here, we specialize in the closed-form results of the com-
mon core functions for an i.i.d. Exponential RV case with a
common PDF, f (γ ) = 1

γ
exp

(
−
γ
γ

)
; i) a mixture of a CDF

and a Mellin transform, ii) a mixture of an EDF and a Mellin
transform, and iii) an interval Mellin transform, including the
n-th power of these functions for arbitrary n as
i) Closed-form results for a mixture of a CDF and a Mellin

transform
For exponential case, cm (γ, s) can be written as

cm (γ, s) =
∫ γ

0
dxxs−1

1
γ
exp

(
−
x
γ

)
. (16)

Then, with the help of [29, (3.381.1)], the closed-form
expression of (16) can be obtained as

cm (γ, s) =
(
1
γ

)−s+1
γ

(
s,
γ

γ

)
, (17)

or with the help of [29, (3.381.3) and (3.381.4)], it can
also be written as the form of the gamma function

cm (γ, s) =
(
1
γ

)−s+1 [
0 (s)− 0

(
s,
γ

γ

)]
, (18)

where 0(·) and γ (·, ·) denote the gamma function
and the incomplete gamma function [29, (8.310.1) and
(8.350.2)], respectively.
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Then, with (17) and (18), the n-th power of cm (γ, s) for
arbitrary n can be written as

[cm (γ, s)]n =
(
1
γ

)−n(s−1)[
γ

(
s,
γ

γ

)]n
or
=

(
1
γ

)−n(s−1)[
0(s)−0

(
s,
γ

γ

)]n
. (19)

Note that by applying the binomial theorem, (19) can be
rewritten as the following sum of the form

[cm (γ, s)]n =
(
1
γ

)n n∑
l=0

(
n
l

)
(−1)n−l

(
1
γ

)−n·s
×[0 (s)]l

[
0

(
s,
γ

γ

)]n−l
. (20)

ii) Closed-form results for a mixture of a EDF and a Mellin
transform
Similar to case i) (i.e., cm (γ, s)), with the help of [29,
(3.381.3)], we can obtain the closed-form expression of
em (γ, s) for exponential case as

em (γ, s) =
∫ γ

0
dxxs−1

1
γ
exp

(
−
x
γ

)
=

(
1
γ

)−s+1
0

(
s,
γ

γ

)
. (21)

With (21), the closed-form expression for n-th power can
be written as

[em (γ, s)]n =
(
1
γ

)−n(s−1)[
0

(
s,
γ

γ

)]n
or
=

(
1
γ

)n( 1
γ

)−n·s[
0

(
s,
γ

γ

)]n
. (22)

iii) Closed-form results for an interval Mellin transform
In this case, by applying (15) with closed-form results
of cm(γ, s) and em(γ, s) cases, we can obtain the closed-
form results of im (γa, γb, s) and its n-th power form for
exponential case, respectively, as

im (γa, γb, s) =
∫ γb

γa

dxxs−1
1
γ
exp

(
−
x
γ

)
or
=

(
1
γ

)−s+1 [
0

(
s,
γa

γ

)
−0

(
s,
γb

γ

)]
or
=

(
1
γ

)−s+1 [
γ

(
s,
γb

γ

)
−γ

(
s,
γa

γ

)]
,

(23)

and

[im (γa, γb, s)]n =
(
1
γ

)−n(s−1)[
0

(
s,
γa

γ

)
−0

(
s,
γb

γ

)]n
or
=

(
1
γ

)n n∑
l=0

(
n
l

)
(−1)n−l

(
1
γ

)−n·s
×

[
0

(
s,
γa

γ

)]l[
0

(
s,
γb

γ

)]n−l
.

(24)

V. EXAMPLES
A. EXAMPLE 1: TWO-DIMENSIONAL JOINT PDF OF THE
LARGEST RV AND THE PRODUCT OF REMAINING RVs
In this subsection, we discuss one simple example to derive a
two-dimensional joint PDF of the largest RV and the product

of remaining RVs. Let z1 = γ1:K , z2 =
K∏
n=2

γn:K , and Z =

[z1, z2]. Since the original RVs {γn} are i.i.d. with common
PDF f (x), the K -dimensional joint PDF of the ordered RVs
{γn:K } is simply for γ1:K ≥ γ2:K ≥ · · · ≥ γK :K

g (γ1:K , γ2:K , · · · , γK :K )

= K !f (γ1:K ) f (γ2:K ) · · · f (γK :K ) . (25)

In this case, K ordered RVs can be viewed as

γ1:K︸︷︷︸
z1

, γ2:K , γ3:K , · · · , γK−1:K , γK :K︸ ︷︷ ︸
z2

. (26)

In (26), all the K ordered RVs are considered. Therefore,
as shown in Fig. 1, we directly derive the 2-dimensional
joint PDF by adopting a general two-step approach. More
specifically, following the step one in general case system-
atically as shown in Fig. 1, we can first formulate the original
2-dimensional Mellin Transform as the following K -fold
integral expression

M (s1, s2)=K !
∫
∞

0
dγ1:K (γ1:K )s1−1f (γ1:K )

×

∫ γ1:K

0
dγ2:K (γ2:K )s2−1f (γ2:K )

· · ·

∫ γK−1:K

0
dγK :K (γK :K )s2−1f (γK :K ). (27)

With (27), to facilitate the inverse Mellin Transform calcula-
tion, this 2-dimensional Mellin Transform should be made as
compact as possible. Here, we can simplify the (K − 1)-fold
integral expression in (27) from γ2:K to γK :K with the help
of Appendix I (especially, by applying (57)) as the following
(K − 1)-th power of cm (·, ·) function∫ γ1:K

0
dγ2:K(γ2:K)s2−1f (γ2:K)

· · ·

∫ γK−1:K

0
dγK :K(γK :K)s2−1f (γK :K)

=
1

(K−1)!
[cm (γ1:K , s2)]K−1. (28)

Thus, with (28), (27) can be simplified as the 1-fold integral
expression

M (s1, s2)

=
K !

(K−1)!

∫
∞

0
dγ1:K(γ1:K )s1−1f (γ1:K)[cm (γ1:K , s2)]K−1.

(29)

With (29), for an i.i.d. exponential RV case, by applying (19),
(28) can be rewritten as

M (s1, s2)=
K !

(K−1)!

(
1
γ

)K K−1∑
j=0

(
K−1
j

)
(−1)K−1−j
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×

{∫
∞

0
dγ1:K(γ1:K )s1−1exp

(
−
γ1:K

γ

)(
1
γ

)−(K−1)s2
× [0 (s2)]j

[
0

(
s2,

γ1:K

γ

)]K−1−j}
. (30)

Then, with the compact form of (27) in (30), following the
step two in general case in Fig. 1, we apply the inverse Mellin
transform to obtain the target PDF expression as

f (z1, z2)

=M−1
s1,s2 {M (s1, s2)}

=
K !

(K − 1)!

(
1
γ

)K K−1∑
j=0

(
K − 1
j

)
(−1)K−1−j

×M−1
s1

{∫
∞

0
dγ1:K(γ1:K )s1−1exp

(
−
γ1:K

γ

)

×M−1s2

{(
1
γ

)−(K−1)s2
[0(s2)]j

[
0

(
s2,

γ1:K

γ

)]K−1−j}}
.

(31)

In (31), with the help of Appendix II, m = K − 1, l = 0,
p = 0 , and q = K − 1 for the inverse Mellin transform of
s2. Thus, the inverse Mellin transform result of s2 is obtained
in the form of the generalized incomplete Fox’s H functions
which is defined in Appendix II

M−1
s2

{(
1
γ

)−(K−1)s2
[0 (s2)]j

[
0

(
s2,

γ1:K

γ

)]K−1−j}

=UHK−1,0
0,K−1

 z2
(γ )K−1

∣∣∣∣∣∣∣
−−−−−−−

(0, 1, 0)· · ·(0, 1, 0)︸ ︷︷ ︸
#=j

(
0, 1,

γ1:K

γ

)
· · ·

(
0, 1,

γ1:K

γ

)
︸ ︷︷ ︸

#=K−1−j

.
(32)

Here, if we let
f (γ1:K )|γ1:K=z1

= exp
(
−γ1:K

γ

)
×UHK−1,0

0,K−1

[
z2

(γ )K−1

∣∣∣ −−−−−−−

(0, 1, 0)· · ·(0, 1, 0)
(
0, 1, γ1:K

γ

)
· · ·

(
0, 1, γ1:K

γ

)
]∣∣∣∣∣γ1:K
=z1

,

(33)

with the following inverse Mellin transform property;
M−1

s {
∫
∞

0 dx(x)s−1f (x)} = f (x), then the inverse Mellin
transform result of s1 can be obtained as the following sim-
plified form

M−1
s1

{∫
∞

0
dγ1:K (γ1:K )s1−1f (γ1:K )

}
= f (γ1:K )|γ1:K=z1

= exp
(
−z1
γ

)
× UHK−1,0

0,K−1

[
z2

(γ )K−1

∣∣∣∣ −−−−−−−

(0, 1, 0)· · ·(0, 1, 0)
(
0, 1, z1

γ

)
· · ·

(
0, 1, z1

γ

)] .
(34)

Subsequently, we can finally obtain the closed-form result of
the target two-dimensional joint PDF as

f (z1, z2)=
K !

(K−1)!

(
1
γ

)K K−1∑
j=0

(
K−1
j

)
(−1)K−1−jexp

(
−
z1
γ

)

×UHK−1,0
0,K−1

[
z2

(γ )K−1

∣∣∣∣ −−−−−−−

(0, 1, 0)· · ·(0, 1, 0)
(
0, 1, z1

γ

)
· · ·

(
0, 1, z1

γ

)] .
(35)

Here, we would like to emphasize that our derived statistical
result is much simpler (i.e., low computational complexity)
than the original multiple-fold integral form (not the multiple
products of multiple one-fold integral form) based on the con-
ventional Mellin transform-based approaches. More specifi-
cally, if this closed-form result is not available, the numerical
estimation of K -fold integrals in (27) is required. In this
section, we only showed the derivation process of the simple
case which is the derivation of two-dimensional joint PDF of
the largest RV and product of remaining (K−1) RVs amongK
ordered RVs. However, similarly, by following the Fig. 1 with
the help of common core functions, we can obtain the desired
joint statistics of any partial products of ordered RVs.

B. EXAMPLE 2: JOINT PDF OF THE PRODUCT OF THE
BEST KS ORDERED RVs AMONG THE TOTAL K (≥ KS )
ORDERED RVs
In this subsection, we discuss the application example to
derive a joint PDF of the product of the best KS ordered RVs
among the totalK (≥ KS ) ordered RVs which was considered
as the key statistics in Sec. II-A and Sec. II-B. According

to Fig. 1, we first let Z1 =
KS−1∏
n=1

γn:K , Z2 = γKS :K , and

Z = [z1, z2], where γ1:K ≥ γ2:K ≥ · · · ≥ γK :K . Since the
original RVs {γn} are i.i.d. with common PDF f (x), the K -
dimensional joint PDF of the ordered RVs γn:K is simply

g (γ1:K , γ2:K , · · · , γK :K )

=K !f (γ1:K ) f (γ2:K ) · · · f
(
γKS :K

) [
F
(
γKS :K

)]K−KS
=K !f (γ1:K ) f (γ2:K ) · · · f

(
γKS :K

) [
cm
(
γKS :K , 1

)]K−KS ,
(36)

With (36), based on Fig. 1, we first need to derive the
2-dimensional Mellin Transform and it can be formulated as
the following multi-fold integration form

M (s1, s2)

= K !
∫
∞

0
dγ1:K (γ1:K )s1−1f (γ1:K )

×

∫ γ1:K

0
dγ2:K (γ2:K )s1−1f (γ2:K )

· · ·

∫ γKS−2:K

0
dγKS−1:K

(
γKS−1:K

)s1−1f (γKS−1:K )
×

∫ γKS−1:K

0
dγKS :K

(
γKS :K

)s2−1f (γKS :K )
×
[
cm
(
γKS :K , 1

)]K−KS , (37)
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Then, by applying the interchange of multiple integrals,
we can rewrite (37) as

M (s1, s2)

=K !
∫
∞

0
dγKS :K

(
γKS :K

)s2−1f (γKS :K ) [cm (γKS :K , 1)]K−KS
×

∫
∞

γKS :K

dγKS−1:K
(
γKS−1:K

)s1−1f (γKS−1:K )
· · ·

∫
∞

γ2:K

dγ1:K (γ1:K )s1−1f (γ1:K ). (38)

In (38), the multi-fold integral expression can be simplified
as the following multiple-product of a mixture of a EDF and
a Mellin transform∫

∞

γKS :K

dγKS−1:K
(
γKS−1:K

)s1−1f (γKS−1:K )
· · ·

∫
∞

γ2:K

dγ1:K (γ1:K )s1−1f (γ1:K )

=
1

(KS − 1)!

[
em
(
γKS :K , s1

)]KS−1. (39)

Thus, (37) can be finally simplified as the following single
integral expression

M (s1, s2) =
K !

(KS − 1)!

∫
∞

0
dγKS :K

(
γKS :K

)s2−1f (γKS :K )
×
[
cm
(
γKS :K , 1

)]K−KS [em (γKS :K , s1)]KS−1,
(40)

where, in (40) for i.i.d Rayleigh fading,[
em
(
γKS :K , s1

)]KS−1
=

(
1
γ

)−(KS−1)(s1−1)[
0

(
s1,

γKS :K

γ

)]KS−1
or
=

(
1
γ

)(KS−1)( 1
γ

)−(KS−1)·s1[
0

(
s1,

γKS :K

γ

)](KS−1)
,

(41)[
cm
(
γKS :K , 1

)]K−KS
=

[
0 (1)− 0

(
1,
γKS :K

γ

)]K−KS
=

[
1− exp

(
−
γKS :K

γ

)]K−KS
=

K−KS∑
j=0

(
K − KS

j

)
(−1)j

(
exp

(
−
γKS :K

γ

))j
. (42)

Then, substituting (41) and (42) in (40), (40) can be finally
rewritten as

M (s1, s2)

=
K !

(KS − 1)!

K−KS∑
j=0

(
K − KS

j

)
(−1)j

(
1
γ

)(KS−1)+1
×

∫
∞

0
dγKS :K

(
γKS :K

)s2−1(exp(−γKS :K
γ

))j+1

×

(
1
γ

)−(KS−1)·s1[
0

(
s1,

γKS :K

γ

)]KS−1
. (43)

After obtaining this joint Mellin transform result in a com-
pact form, we can derive a target joint PDF through inverse
Mellin transform. Note that this result involves a single one-
dimensional integration, which can be easily and accurately
evaluated numerically using standard mathematical packages
such as Mathematica and Matlab while the original Mellin
transform expression in (37) involves Ks-fold integrations.
With this 2-dimensional Mellin transform result in (43),

in the next step, we now need to apply the inverse Mellin
transform to obtain the 2-dimensional joint PDF result as

f (z1, z2) =M−1
s1,s2 {M (s1, s2)}

=
K !

(KS − 1)!

K−KS∑
j=0

(
K − KS

j

)
(−1)j

(
1
γ

)(KS−1)+1

×M−1
s2

{∫
∞

0
dγKS :K

(
γKS :K

)s2−1(exp(−γKS :K
γ

))j+1
× M−1

s1

{(
1
γ

)−(KS−1)·s1[
0

(
s1,

γKS :K

γ

)]KS−1}}
.

(44)

In (44), based on [27], the inverse Mellin transform with s1
becomes as the function of generalized incomplete Fox’s H
function

M−1
s1

{(
1
γ

)−(KS−1)·s1[
0

(
s1,

γKS :K

γ

)]KS−1}

= UHKS−1,0
0,KS−1

( 1
γ

)KS−1
z1

∣∣∣∣∣∣
−−−−−−−(

0, 1,
γKS :K

γ

)
· · ·

(
0, 1,

γKS :K

γ

)
︸ ︷︷ ︸

#=KS−1

 .
(45)

Then, substituting (45) in (44), (44) can be rewritten as

f (z1, z2) =M−1
s1,s2 {M (s1, s2)}

=
K !

(KS − 1)!

K−KS∑
j=0

(
K − KS

j

)
(−1)j

(
1
γ

)(KS−1)+1

×M−1
s2


∫
∞

0
dγKS :K

(
γKS :K

)s2−1(exp(−γKS :K
γ

))j+1

× UHKS−1,0
0,KS−1

( 1
γ

)KS−1
z1

∣∣∣∣∣∣
−−−−−−−(

0, 1,
γKS :K

γ

)
· · ·

(
0, 1,

γKS :K

γ

)
︸ ︷︷ ︸

#=KS−1

 .
(46)

With this simplified result in (46), by applying the following
inverse Mellin transform property

M−1
s

{∫
∞

0
dx(x)s−1f (x)

}
= f (x) , (47)

139780 VOLUME 7, 2019



S. S. Nam et al.: Systematic and Unified Stochastic Tool to Determine the Multidimensional Joint Statistics

we can obtain the 2-dimensional joint PDF as

f (z1, z2)

=
K !

(KS − 1)!

K−KS∑
j=0

(
K − KS

j

)
(−1)j

×

(
1
γ

)(KS−1)+1(
exp

(
−
z2
γ

))j+1

×UHKS−1,0
0,KS−1

( 1
γ

)KS−1
z1

∣∣∣∣∣∣∣∣
−−−−−−−(

0, 1,
z2
γ

)
· · ·

(
0, 1,

z2
γ

)
︸ ︷︷ ︸

#=KS−1

 .
(48)

Here, let Z ′ = Z1 · Z2 where Z1 =
KS−1∏
n=1

γn:K , Z2 = γKS :K ,

then Z1 = Z ′
Z2

and ZKS2 < Z ′. Therefore, with the help
of integration by part, we can finally obtain the following
one-dimensional target PDF by taking a single-integration
while the original approach based on the conventional Mellin
transform needs to consider Ks-fold integrations in (37)

fZ ′ (z) =
∫ z

1
KS

0
f
(
z
z2
, z2

)
dz2.

or
=

∫
∞

z
KS−1
KS

f
(
z1,

z
z1

)
dz1. (49)

As a validation of our analytical result, we compare
in Fig. 2 the analytical PDF in (49) with an empirical PDF
obtained byMonte-Carlo simulation. Note that some selected
result shows that simulation results match our analytical
results well.

FIGURE 2. PDF comparison between the analytical and the simulation

results of PDF of Z ′ =
KS∏

n=1
γn:K for K = 5, KS = 3, SNR = 0 dB, and i.i.d.

Rayleigh fading condition.

VI. CONCLUSION AND DISCUSSION
In this work, we newly introduced the Mellin transform
based systematic stochastic tool to determine the desired

multidimensional joint statistics of arbitrary partial products
of ordered RVs in a unified way. Specially according to
Fig. 1 step-by step with the unified stochastic framework,
we can systematically obtain the desired joint statistics. As an
example of applying our proposedmethod, we provided some
selected closed-form results on ordered statistics of partial
products of ordered exponential RVs as a special case. To our
best knowledge, this systematic and unified stochastic tool
and related closed-form results have never appeared in the
literature.

Note that if the results of the closed-form are not available
in the joint statistics, especially the order statistics, the numer-
ical computation of multi-fold integral expressions (e.g., the
K -fold integrals given in (27) are required based on the
conventional Mellin transform approaches. However, even
with conventional mathematical computing tools, estimating
them accurately as K increases is difficult because these
multi-fold integral expressions require very high complexity,
in contrast to simply multiplying multiple one-fold integrals
in terms of computation. In particular, when K is large, it is
almost impossible to estimate the analytical results. How-
ever, as a result of the closed-form derived from this paper,
probabilistic analysis is numerically feasible using existing
mathematical calculation tools. This is because it is a form
of summing, not an multiple-fold integral expression. More
specifically, with this multiple-fold integral expression, it is
almost impossible to obtain numerical results physically due
to estimation difficulties (i.e., high computational complexity
and long execution time).

APPENDICES
APPENDIX I: SIMPLIFIED EXPRESSIONS OF
MULTI-DIMENSIONAL INTEGRAL EXPRESSIONS
In this section, we apply an approach similar to that used in [6]
to provide three simplified expressions of multi-fold integral
expressions
a) The simplified expression of themulti-fold integral form

with the upper limit, Jm:
In this case, we consider the following multi-fold inte-
gral with the upper limit, Jm, as

Jm =
∫ γm−1:K

0
dγm:K (γm:K )s−1f (γm:K )

×

∫ γm:K

0
dγm+1:K (γm+1:K )s−1f (γm+1:K )

· · ·

∫ γK−1:K

0
dγK :K (γK :K )s−1f (γK :K ). (50)

First, for a single integral term in (50), we can rewrite the
following single integral term as the function of cm (·, ·)
as ∫ γK−1:K

0
dγK :K (γK :K )s−1f (γK :K )

=

∫ γK−1:K

0
dγK :K cm′ (γK :K , s)

= cm (γK :K , s)|
γK−1:K
0
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= cm (γK−1:K , s)− cm (0, s)

= cm (γK−1:K , s) . (51)

With the simplified result in (51), a following double
integral form can be rewritten as the function of cm (·, ·)
as∫ γK−2:K

0
dγK−1:K (γK−1:K )s−1f (γK−1:K )

×

∫ γK−1:K

0
dγK :K (γK :K )s−1f (γK :K )

=

∫ γK−2:K

0
dγK−1:K cm′ (γK−1:K , s) cm (γK−1:K , s).

(52)

Then, with (52), integration by parts gives∫ γK−2:K

0
dγK−1:K cm′ (γK−1:K , s) cm (γK−1:K , s)

= [cm (γK−1:K , s)]2
∣∣∣γK−2:K
0

−

∫ γK−2:K

0
dγK−1:K cm (γK−1:K , s) cm′ (γK−1:K , s).

(53)

Thus, by re-arranging them, the double integral form in
(52) can be rewritten as the form of the second power of
cm (γ, s) function∫ γK−2:K

0
dγK−1:K (γK−1:K )s−1f (γK−1:K )

×

∫ γK−1:K

0
dγK :K (γK :K )s−1f (γK :K )

=
1
2
[cm (γK−2:K , s)]2. (54)

Similarly, by applying results and approaches used in
(51) and (54), we can rewrite the triple integral form as∫ γK−3:K

0
dγK−2:K (γK−2:K )s−1f (γK−2:K )

×

∫ γK−2:K

0
dγK−1:K (γK−1:K )s−1f (γK−1:K )

×

∫ γK−1:K

0
dγK :K (γK :K )s−1f (γK :K )

=

∫ γK−3:K

0
dγK−2:K cm′ (γK−2:K , s)

1
2
[cm (γK−2:K , s)]2

=
1
2
[cm (γK−2:K , s)]3

∣∣∣∣γK−3:K
0

−

∫ γK−3:K

0
dγK−2:K [cm (γK−2:K , s)]2cm′(γK−2:K , s).

(55)

Then, re-arranging these results gives the following third
power of cm (γ, s) function∫ γK−3:K

0
dγK−2:K (γK−2:K )s−1f (γK−2:K )

×

∫ γK−2:K

0
dγK−1:K (γK−1:K )s−1f (γK−1:K )

×

∫ γK−1:K

0
dγK :K (γK :K )s−1f (γK :K )

=
1

2 · 3
[cm (γK−3:K , s)]3. (56)

For general case, by generalizing the approaches used
in (51), (54), and (56), we can finally obtain the m-fold
integral form as the following multiple product from of
cm (·, ·) function as

Jm =
∫ γm−1:K

0
dγm:K (γm:K )s−1f (γm:K )

×

∫ γm:K

0
dγm+1:K (γm+1:K )s−1f (γm+1:K )

· · ·

∫ γK−1:K

0
dγK :K (γK :K )s−1f (γK :K )

=
1

(K − m+ 1)!
[cm (γm−1:K , s)]K−m+1.

(57)

b) The simplified expression of the multi-fold integral with
the lower limit, J ′m:
Using similar manipulations to the ones used in (57),
we have the following simplified expression of the
multi-fold integral with the lower limit, J ′m, as

J ′m =
∫
∞

γm+1:K

dγm:K (γm:K )s−1f (γm:K )

×

∫
∞

γm:K

dγm−1:K (γm−1:K )s−1f (γm−1:K )

· · ·

∫
∞

γ2:K

dγ1:K (γ1:K )s−1f (γ1:K )

=
1
m!

[em (γm+1:K , s)]m. (58)

c) The simplified expression of the multi-fold integral with
the interval, J ′′a,b (for a < b): Similar to two previ-
ous cases in (57) and (58), we also have the following
simplified expression of the multi-fold integral with the
interval, J ′′a,b, as

J ′′a,b =
∫ γa:K

γb:K

dγb−1:K (γb−1:K )s−1f (γb−1:K )

×

∫ γa:K

γb−1:K

dγb−2:K (γb−2:K2 : K )s−1f (γb−2:K )

· · ·

∫ γa:K

γa+2:K

dγa+1:K (γa+1:K )s−1f (γa+1:K )

=
1

(b− a− 1)!
[im (γb:K , γa:K , s)]b−a−1.

(59)

APPENDIX II: INVERSE MELLIN TRANSFORM
We can take several approaches to get the PDF expressions
fromMellin transform expressions. For example, we consider

139782 VOLUME 7, 2019



S. S. Nam et al.: Systematic and Unified Stochastic Tool to Determine the Multidimensional Joint Statistics

the existing inverse Mellin transformation table and proper-
ties in [30]. However, applying known tables and attributes
directly to our cases is difficult. Residual theorem [31]may be
suitable for our case, but too complicated and not for uniform
solutions. Please refer to Appendix III. As an alternative,
we can apply the generalized upper incomplete Fox’s H func-
tion in [27], [32], which is a suitable approach for uniform
solutions, where the generalized upper incomplete Fox’s H
function is defined as

UHm,l
p,q (c · γ )

=
1
2π j

×

∮ m∏
i=1
0 (bi+βi ·s,Bi)

l∏
k=1
0(1−ak−αk ·s,Ak)

p∏
k=l+1

0(ak+αk ·s,Ak)
q∏

i=m+1
0(1−bi−βi ·s,Bi)

(c·γ)−sds

1
= UHm,l

p,q

[
c · γ

∣∣∣∣ (a1, α1,A1) · · · (ap, αp,Ap)(b1, β1,B1) · · ·
(
bq, βq,Bq

) ] , (60)

where
• m, l, p, and q are integers such that 0 ≤ m ≤ q and

0 ≤ l ≤ p.
• ak , bi ∈ C and ak ,Ak , βi,Bi, c ∈ R+ with 1 ≤ k ≤ p

and 1 ≤ i ≤ q.

•

n−1∏
k=n

0(bk+βk ·s,Bk)=
n−1∏
k=n

0 (1− bk − βk · s,Bk)

=

n−1∏
k=n
0(ak+αk ·s,Ak)=

n−1∏
k=n
0(1−ak−αk ·s,Ak)

= 1.
Note that

γ (α, x; b)= γ (α, x; b; 1) ,

γ (α, x)= γ (α, x; 0)=γ (α, x; 0; 1) ,

0(α, x; b)=0(α, x; b; 1) ,

0(α, x)=0(α, x; 0)=0 (α, x; 0; 1) ,

0(α)=0(s, 0) .

A. EXAMPLE 1) THE INVERSE MELLIN TRANSFORM OF
KN
CN

N∏
i=1

0
(
s, αiβi

) ( 1
CN

)−s

In this case, the inverseMellin transform can be written as the
following residue theorem formation

1
2π j

∮
C

KN
CN

N∏
i=1

0 (s, αiβi)
(

1
CN

)−s
(x)−sds

=
KN
CN
·

1
2π j

∮
C

N∏
i=1

0 (s, αiβi)
(
x
CN

)−s
ds. (61)

Here, in (60), m = n and l = 0. Therefore, p should become
0 and q should become N . As a result, the closed-form result
of (61) with UHm,l

p,q (·) can be obtained

1
2π j

∮
C

KN
CN

N∏
i=1

0 (s, αiβi)
(
x
CN

)−s
ds

=
KN
CN
·UHN ,0

0,N

[
x
CN

∣∣∣∣ −−−−−−−

(0, 1, α1β1)(0, 1, α2β2)· · ·(0, 1, αNβN)

]
.

(62)

B. EXAMPLE 2) THE INVERSE MELLIN TRANSFORM OF(
1
γ

)−n·s
[0 (s)]k

[
0
(

s, γ
γ

)]n−k

Similarly, in this case, the inverse Mellin transform can be
written as

M−1
s

{(
1
γ

)−n·s
[0 (s)]k

[
0

(
s,
γ

γ

)]n−k}

=
1
2π j

∮
C
[0 (s)]k

[
0

(
s,
γ

γ

)]n−k(( 1
γ

)n
x
)−s

ds.

(63)

Then, in (60), m = n and l = 0, which leads to p = 0 and
q = n. Thus, the inverse Mellin transform closed-form result
of (63) can be obtained as

M−1
s

{(
1
γ

)−n·s
[0 (s)]k

[
0

(
s,
γ

γ

)]n−k}

= UHn,0
0,n

 x
(γ )n

∣∣∣∣∣∣∣
− − − −

(0, 1, 0) · · · (0, 1, 0)︸ ︷︷ ︸
k

(
0, 1,

γ

γ

)
· · ·

(
0, 1,

γ

γ

)
︸ ︷︷ ︸

n−k

 .
(64)

C. EXAMPLE 3) THE INVERSE MELLIN TRANSFORM OF(
1
γ

)−n·s[
0
(

s, γ
γ

)]n

In the following inverse Mellin transform,

M−1
s

{(
1
γ

)−n·s[
0

(
s,
γ

γ

)]n}

=
1
2π j

∮
C

[
0

(
s,
γ

γ

)]n(( 1
γ

)n
x
)−s

ds. (65)

the inverse Mellin transform becomes similar to example 2)
when m = n and l = 0 (i.e., p = 0 and q = n) in (60).
Thus, the closed-form result of the inverse Mellin transform
(65) can be obtained as

M−1
s

{(
1
γ

)−n·s[
0

(
s,
γ

γ

)]n}

= UHn,0
0,n

 x
(γ )n

∣∣∣∣∣∣∣∣
− − − −(

0, 1,
γ

γ

)
· · ·

(
0, 1,

γ

γ

)
︸ ︷︷ ︸

n

 . (66)

D. EXAMPLE 4) THE INVERSE MELLIN TRANSFORM OF(
1
γ

)−n·s[
0
(

s, γa
γ

)]k[
0
(

s, γb
γ

)]n−k

Similarly, the inverse Mellin transform expression can be
written as the following residue theorem format

M−1
s

{(
1
γ

)−n·s[
0

(
s,
γa

γ

)]k[
0

(
s,
γb

γ

)]n−k}
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=
1
2π j

∮
C

[
0

(
s,
γa

γ

)]k[
0

(
s,
γb

γ

)]n−k(( 1
γ

)n
x
)−s

ds.

(67)

Similar to previous cases, m = n and l = 0 in (60). As a
result, with p = 0 and q = n, the inverse Mellin transform
closed-form result of (67) can be obtained as

M−1
s

{(
1
γ

)−n·s[
0

(
s,
γa

γ

)]k[
0

(
s,
γb

γ

)]n−k}

= UHn,0
0,n

 x
(γ )n

∣∣∣∣∣∣
− − − −(

0, 1,
γa

γ

)
· · ·

(
0, 1,

γa

γ

)
︸ ︷︷ ︸

k

(
0, 1,

γb

γ

)
· · ·

(
0, 1,

γb

γ

)
︸ ︷︷ ︸

n−k

 .
(68)

APPENDIX III: INVERSE MELLIN TRANSFORM APPROACH
BASED ON THE RESIDUE THEOREM
In this section, we show an example of a residue theorem
based derivation process to demonstration of the advantages
(i.e., simplicity and unification) of our proposed unified
stochastic tool compared to the conventional residue theorem
based derivation process.

E. THE INVERSE MELLIN TRANSFORM OF 0 (s)
If we let F (s) = 0 (s), then based on the residue theorem,
the inverse Mellin transform of F (s) can be written as

f (x) =
1
2π j

∫ c+j∞

c−j∞
F (s) x−sds for c > 0. (69)

Here, F (s) x−s has poles at s = 0,−1,−2, · · · . Therefore,
(69) can be rewritten as

f (x) =
1
2π j
· 2π j · Res

s=0,−1,−2···
F (s) x−s, (70)

where each residue can be obtained as

at s = 0 : sF (s) x−s
∣∣
s=0= F(s+1)x

−s∣∣
s=0

= 0 (1)=1

at s =−1 : (s+1)F(s) x−s
∣∣
s=−1=

F(s+2)
s

x−s
∣∣∣∣
s=−1

= −0 (1) x1 = −x

at s = −2 : (s+2)F(s) x−s
∣∣
s=−2=

F(s+3)
s (s+1)

x−s
∣∣∣∣
s=−2

=
0 (1)

(−2) (−1)
x2 =

x2

2

and so on. Therefore, (70) can be written as

f (x) = Res
s=0,−1,−2···

F (s) x−s

= 1+(−x)+
x2

2
+
−x3

6
· · ·

=

∞∑
n=0

(−x)n

n!
= exp (−x) . (71)

F. THE INVERSE MELLIN TRANSFORM OF [0 (s)]n

Similar to the previous case based on the residue theorem,
the inverse Mellin transform of F (s) = [0 (s)]n can be
written as

fn (x) =
1
2π j

∫ c+j∞

c−j∞
[0 (s)]nx−sds for c > 0. (72)

Here, F (s) x−s has poles at s = 0,−1,−2, · · · . Therefore,
based on the residue theorem, the residue values are as

Res
s=0,−1,−2···

F (s) x−s

=
1

(n−1)!
·
dn−1

dsn−1
(s−s0)n[0(s)]nx−s

∣∣∣∣
s=s0

,

for s0=0,−1,−2,· · ·
or
=

1
(n−1)!

·
dn−1

dsn−1
(s+s0)n[0(s)]nx−s

∣∣∣∣
s=−s0

,

for s0= 0, 1, 2, · · · . (73)

Therefore, (72) can be rewritten as the summation form of
residues

fn (x)=
∞∑
j=0

1
(n−1)!

·
dn−1

dsn−1
(s+j)n[0 (s)]nx−s

∣∣∣∣
s=−j

(74)

In (74), if we let G (s) = x−s(s+ j)n[0 (s)]n, then we
still need to derive the n-th derivative term of G (s). Here,
if we let G

(n)(s)
G(s) = Zn (s), then for mathematical convenience,

Zn (s) can be expressed in terms ofA (s) ,A′ (s) , · · · ,A(n) (s),
which are regardless of n. For the first derivative term ofG (s),
it can be written as

G′ (s) = G (s)Z1 (s) = G (s)A (s) , (75)

and in (75), Z1 (s) = A (s). Similarly, the second and the third
derivative term of G (s) can be written as

G(2)(s)=G(s)Z2(s)=G′(s)Z1(s)+G(s)Z1′(s) , (76)

and

G(3)(s)=G(s)Z3(s)=G′(s)Z2(s)+G(s)Z2′(s) , (77)

where (76) and (77) can be rewritten in terms of A(s),
A′(s), · · · ,A(n)(s), respectively, as

G(2) (s) = G (s)
{
(A (s))2 + A′ (s)

}
, (78)

and

G(3)(s) = G(s)
{
A(s)Z2(s)+Z2′(s)

}
= G(s)

{
(A(s))3+3A(s)A′(s)+A(2)(s)

}
. (79)

Here, Z2 (s) and Z3 (s) can be written with low-order deriva-
tive terms as

Z2 (s) = (A (s))2 + A′ (s) = A (s)Z1 (s)+ Z1′ (s) , (80)

Z3 (s) = (A (s))3 + 3A (s)A′ (s)+ A(2) (s)

= A (s)Z2 (s)+ Z2′ (s) . (81)
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As a result, by generalizing the above special cases, we can
obtain the following generalized result as the recursive
expressions

G(n+1)(s) = G(s)Zn+1(s)

= G(s)
{
A (s)Zn(s)+Zn′(s)

}
, (82)

where

Zn+1(s)=A(s)Zn(s)+Zn′(s) for Z1(s)=A(s) . (83)

With (82) and (83), we can now derive the (n − 1)-th
derivative term of G (s) at s= −j, G(n−1)(s)

∣∣
s=−j. Here, G (s)

can be rewritten as

G (s) = x−s
{
(s+ j)

0 (s+ j+ 1)
s (s+ 1)· · ·(s+ j− 1)(s+ j)

}n
= x−s

{
0 (s+ j+ 1)

s (s+ 1) · · · (s+ j− 1)

}n
, (84)

where G (s)|s=−j = x j
{
(−1)j 1j!

}n
=

xj(−1)j·n

(j!)n . Then, we need

to derive Zn (s)
(
=

G(n)(s)
G(s)

)
in (82) as A (s) functions. For

Z1 (s), Z1 (s) is
G′(s)
G(s) and it also can be written as d

ds lnG (s)
where

lnG(s) = −s ln x+n ln
(

0 (s+ j+ 1)
s (s+ 1) · · · (s+ j− 1)

)
or
=−s ln x+n

ln (0(s+j+1))−
j−1∑
k=0

ln(s+k)

.
(85)

Thus, with (85), G
′(s)
G(s)

(
=

d
ds lnG (s)

)
can be obtained as

G′ (s)
G (s)

= − ln x + n

ψ (s+ j+ 1)−
j−1∑
k=0

1
s+ k

 , (86)

where ψ (x) = d
dx ln0 (x) is the psi (Digamma) function.

Therefore, based on (75), A (s) becomes d
ds lnG (s) and it can

be written as

A (s)|s=−j = − ln y+ n

ψ (1)−
j−1∑
k=0

1
k − j


= − ln y+ n

ψ (1)+
j∑

k=1

1
k

 . (87)

Here, for integer j, ψ (j+ 1) = −C +
j∑

k=1

1
k , where ψ (1) =

−C (Euler constant). Therefore, (87) can be rewritten as

A (s)|s=−j = − ln y+ nψ (j+ 1) . (88)

Similarly, for A (s) family function case, we can obtain the
following results

A′ (s)
∣∣
s=−j = n

ψ ′ (1)+
j−1∑
k=0

1

(s+ k)2

∣∣∣∣
s=−j



= n

ψ ′ (1)+
j∑

k=1

1

(k)2

 , (89)

and

A(2)(s)
∣∣∣
s=−j
= n

ψ (2) (1)−
j−1∑
k=0

2

(s+k)3

∣∣∣∣
s=−j


= n

ψ (2) (1)+2
j∑

k=1

1

(k)3

 . (90)

Thus, generalizing the above special cases, we can obtain the
following generalized result as

A(l) (s)
∣∣∣
s=−j
= n

ψ (l) (1)+ l
j∑

k=1

1

(k)l+1

 . (91)

Here, (74) can be written as the function G (s)

fn (x) =
∞∑
j=0

1
(n− 1)!

dn−1

dsn−1
G (s)|s=−j, (92)

where

G (s) = x−s
{

0 (s+ j+ 1)
s (s+ 1) · · · (s+ j− 1)

}n
, (93)

G (s)|s=−j =
x j(−1)j·n

(j!)n
, (94)

and the generalized derivative result becomes

G(n−1) (s)
∣∣∣
s=−j
= G (s)Zn−1 (s)|s=−j

=
(−1)j·n

(j!)n
Zn−1 (s)|s=−j. (95)

As results, for arbitrary integer n, the inverseMellin transform
of [0 (s)]n can be rewritten in terms of Z (s) family functions
as

fn (x) =
1

(n− 1)!

∞∑
j=0

x j(−1)j·n

(j!)n
Zn−1 (s)|s=−j, (96)

where Zn−1 (s)|s=−j can be obtained with (83) and (91).

With (96), if we let L(x, n, j)=− ln x + n{ψ (1) +
j∑

k=1

1
k }

and Pl (j) = ψ (l) (1)+ l!
j∑

k=1

1
k l+1

, with the help of (83), then

f2 (x) can be written as

f2 (x) =
∞∑
j=0

x j

(j!)2
Z1 (s)|s=−j, (97)

where
Z1 (s)|s=−j = A (−j)

= − ln x + 2

ψ (1)+
j∑

k=1

1
k


= L (x, 2, j) . (98)
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Similarly, f3 (x) and f4 (x) can be obtained, respectively as

f3(x)=
1
2!

∞∑
j=0

x j(−1)j

(j!)3

[
{L (x, 3, j)}2+3P1 (j)

]
, (99)

and

f4(x) =
1
3!

∞∑
j=0

x j(−1)j

(j!)4

[
{L (x, 4, j)}3

+12L (x, 4, j)P1 (j)+ 4P2 (j)
]
. (100)

Based on the above derivation process, we can see that it is
difficult to systematically derive the results of inverse Mellin
transform in a unified way for all cases; this is particularly
the case when considering the application of residual theory
in this paper.

Note that for the inverse Mellin transform of [γ (s, a)]n,
similar to previous cases, if we let F (s) = [γ (s, a)]n, then
the inverse Mellin transform of F (s) can be written as

fn (x) =
1
2π j

∫ c+j∞

c−j∞
[γ (s, a)]nx−sds, (101)

where [γ (s, a)]n has the poles of order n at s = 0,−1,−2,
· · · as

1
(n−1)!

·
dn−1

dsn−1
(s−s0)nx−s[γ (s, a)]n

∣∣∣∣
s=s0

,

for s0=0,−1,−2,· · ·
or
=

1
(n−1)!

·
dn−1

dsn−1
(s+s0)nx−s[γ (s, a)]n

∣∣∣∣
s=−s0

,

for s0=0, 1, 2,· · · .

As a result, the inverse Mellin transform result can be
obtained as

fn(x)=
∞∑
s0=0

1
(n−1)!

·
dn−1

dsn−1
(s+s0)nx−s[γ (s, a)]n

∣∣∣∣
s=−s0

.

(102)

However, similar to previous cases, with this approach, it is
also difficult to systematically derive the desired result in a
unified way.
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