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ABSTRACT By exploiting the continuity structure of target scene, the problem of interrupted synthetic
aperture radar (SAR) imaging for change detection is studied in this paper. Timeline constraints imposed
on multi-function modern radars lead to gapped SAR data collections, which in turn results in corrupted
image that degrades reliable coherent change detection (CCD). In this paper we extrapolate the missing
data using the sparse Bayesian framework. In particular, the inherent clustered structures of the sparse target
scene are characterized by structure-aware Bayesian priors. The variational Bayesian inference (VBI) is then
utilized to estimate an approximated posterior of the sparse coefficients. Finally the CCD images are obtained
by applying the coherence estimator to the resultant complex images. Based on the structural information
in the imaging process, the devised method offers the advantages of preserving the weak scatterers and
suppressing the artificial points with fewer measurements. Experimental results are presented to demonstrate
the effectiveness and superiority of the proposed algorithm.

INDEX TERMS Synthetic aperture radar (SAR), change detection, continuity structure, variational Bayesian
inference (VBI).

I. INTRODUCTION
The emerging synthetic aperture radar (SAR) technique has
been widely utilized in military and civilian applications in
the past decades. Multi-mode operation is supported by the
airborne radar systems such as searching, tracking and auto-
matic target recognition, resulting in data gaps in the coherent
SAR collections [1]–[3]. Such gapped data (often known as
interrupted SAR) manifest as leakage artifacts and seriously
affect the resulting conventionally formed SAR image.

Considerable efforts have been made to deal with miss-
ing data in SAR image formation processing. The matched-
filtering based imaging method is implemented by setting
the missing samples to zero and then performing fast Fourier
transform (FFT). Nevertheless, the drawback of this method
is the poor resolution, which is especially serious in the
gapped data case. Recently, sparse signal recovery from the
field of compressive sensing (CS) [4] has emerged as a
promising technique to address the interrupted SAR imag-
ing problem. For the sake of ‘‘filling-in’’ the gaps in the
SAR spectrum, this technique makes assumptions about the
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sparsity of the underlying image. Work in this category
includes two main strategies. The first one is the relaxation
strategy. It approximates the original NP-hard problem by
`p-norm minimization problem with 0 < p ≤ 1, e.g.,
basis pursuit (BP) [5], least absolute shrinkage and selection
operator (LASSO) [6], and focal underdetermined system
solver (FOCUSS) [7], [8]. The other approach is composed of
iterative greedy algorithms with p = 0. Suchmethods include
orthogonal matching pursuit (OMP) [9], and compressive
sampling matching pursuit (CoSaMP) [10].

SAR change detection performance becomes important
in the case of multi-pass data processing. In [11]–[13],
the change detection problem in different reference and mis-
sion interrupt patterns was studied. The authors considered
both the `1 regularized estimator based independently pro-
cessing method [12] and the group sparsity (GS) algorithm
based jointly processing method [13]. After SAR image
formation, typical change detection algorithms were imple-
mented. In the case of independent processing of each data,
the weak scatterers in the target scene may not be well-
preserved and the back ground noise may not be properly
shrunk only with a simple sparsity constraint. In contrast,
the joint reconstruction is shown to enhance the performance
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gains because of the introducing of common spatial reflectiv-
ity support constraints in the multi-pass data processing.

To further improve the performance of radar imaging,
the inherent structures of targets underlying sparsity patterns
are considered by placing block or cluster structural informa-
tion on the scatterers. Over the past years, quite a number
of approaches for block sparse signal recovery have been
developed. For instance, the block-OMP method [14] and
the group LASSO method [15] are able to obtain enhanced
reconstruction performance in the block sparse signals case.
In these methods, the groups or blocks of the sparse coef-
ficients are pre-specified, but the prior information about the
block partition of coefficients is often practically unavailable.
Another type of methods is based on the Bayesian framework
that can flexibly provide structured priors in a probabilistic
manner, including pattern-coupled sparse Bayesian learning
(PC-SBL) [16], [17], Cluss-MCMC/-VB [18]–[21] and so on.
Unfortunately, these Bayesian algorithms are only applicable
for a specific type of structures.

To tackle the above problems, in this paper, a general
structure-aware interrupt SAR imaging method is developed
under the Bayesian framework, with the goal of achieving
reliable change detection. Particularly, the inherent clus-
tered structures of scatterers are introduced through a Beta-
Bernoulli process, avoiding the demand of the precise model
of the structures. Because the resulted posterior distribution
of the structure-aware sparse Bayesian model cannot be
analytically obtained, this paper resorts to the variational
Bayesian inference (VBI) [22], [23] to estimate the approx-
imated posterior of the coefficient vectors. Finally the CCD
results are achieved based on the performance-improved SAR
imagery. By making use of the continuity information of the
target scene in the imaging procedure, the proposed method
offers the advantages of preserving the weak scatterers and
removing the artificial points with fewer measurements.

The remaining sections of this paper are organized as
follows. In Section II, we briefly introduce the Bayesian
model for interrupted SAR imaging. The efficient infer-
ences of the latent variables and parameters via VBI are
given in Section III. Representative simulations are carried
out in Section IV, and at last, we make a conclusion in
Section V.

II. BAYESIAN MODEL FOR INTERRUPTED
SAR IMAGING
In this section, the interrupted SAR imaging model is first
presented. On this basis, we employ the Bayesian structured
sparsity prior to enforce the continuity of target scene, fol-
lowed by the prior on noise precision to facilitate the Bayesian
inference.

A. INTERRUPTED SAR OBSERVATION MODEL
A spotlight-mode SAR observation model is considered here.
Under the high-frequency hypothesis [24], the superposition
of the responses from U individual scattering centers is
used to approximate the composite scattering response of the

target scene. As a result, we can write down the phase
history as

r(ρ, φ) =
U∑
u=1

α(xu, yu) exp {−j2ρ(xu cosφ + yu sinφ)} (1)

where ρ = 2π/λ represents the spatial frequency, λ is
the wavelength, φ denotes the aspect angle, and α(xu, yu)
is the scattering coefficient of the scattering center at the
position of (xu, yu). Assume that the target scene of interest
is discretized into an M × N grid in the cross-range and
range domains. Then each scattering center located at grid
(m, n) is represented by (xm, yn) with amplitude α(xm, yn).
In particular, xm is in the range of (−Mδa

2 : δa :
Mδa
2 − δa) and

yn belongs to (−
Nδr
2 : δr :

Nδr
2 − δr ), with δa and δr standing

for the cross-range resolution and range resolution, respec-
tively. On this basis, the over-complete dictionary 2 sized
L×MN is constructed with the element defined as2m,n(l) =
exp {−j2ρl(xm cosφl + yn sinφl)}. Denote the coefficient
vector by α = [α1,1 . . . αm,1, α1,2 . . . α1,n . . . αm,n]T . Thus,
the mathematical model can be described as follows:

r = 2α + ζ (2)

where ζ denotes the additive noise.
Furthermore, for interrupted SAR data collections, fre-

quency notching of the transmitted pulse leads to the SAR
spectrum gaps in the range direction, while irregular azimuth
coordinates of pulse transmissions results in the SAR spec-
trum gaps in the azimuth dimension. The CCD problem is
considered by monitoring the same ground area and pro-
cessing the measurements obtained at different observation
time, i.e., a reference pass and a mission pass (symbolized
s and t , respectively). As we know, only Lη out of L data
samples are available in interrupted SAR observation, where
the superscript η ∈ {s, t}, and each data may be measured
in different interrupt patterns. Consequently, the resulting
interrupted SAR observation model is written as

rη = 2ηαη + ζ η (3)

where rη ∈ CLη is the associated ηth pass noisy measure-
ments, 2η ∈ CLη×MN represents the dictionary correspond-
ing to the ηth pass interrupt pattern, αη ∈ CMN and ζ η ∈ CLη

denote the spatial reflectivity and the noise in the ηth pass
collection, respectively. In general, ζ η could be supposed as
zero-mean complex Gaussian distribution. Using this hypoth-
esis, the conditional distribution for the observation rη is
given by

p(rη|2ηαη, βη) = CN (rη|2ηαη, 1/(βη)I) (4)

where βη is the ηth pass noise precision.

B. BAYESIAN STRUCTURED SPARSITY PRIOR
Taking the sparsity of the coefficient vector αη into consider-
ation, we use the formula αη = dη�gη to separate the signal
support gη from the coefficient vector αη, where � denotes
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the point wise multiplication. Similar to [21], we utilize the
hierarchical prior for dη to enhance the sparsity of dη, i.e.,

p
(
dη|σ η

)
= CN

(
dη|0, 1/6η

)
=

MN∏
v=1

p
(
dηv |σ

η
v
)

(5)

where 6η = diag(σ η) is the matrix of the precision param-
eters with σ η = [σ η1 , σ

η
2 , . . . , σ

η
MN ]

T . Then we place a
Gamma prior on σ ηv with parameters aη and bη, namely,

p
(
σ ηv
)
= Gamma

(
σ ηv |a

η, bη
)
. (6)

The overall prior on dη with respect to model parameters aη

and bη is computed analytically via integrating over σ η

p(dη|aη, bη) =
∫
p(dη|σ η)p(σ η|aη, bη)

∝

MN∏
v=1

(
bη + (dηv )

2
)−(aη+1)

. (7)

It is observed that (7) corresponds to the Student-t distribution
[25]. By choosing proper value of aη and bη, the Student-t
distribution can be strongly peaked about dη = 0. Hence the
overall prior on dη favours sparseness.

In spite of the sparsity, the scattering distribution of a prac-
tical target scene also shows strong continuity characteristic.
We consider a Bernoulli distribution with parameter γ η on
the signal support gη to enforce the continuity structured
prior, i.e.,

p(gηv ) = Bernoulli(γ ηv ). (8)

We denoteQη
v as the number of nonzero entries at a location v

and its neighborhood, and then αQη
v
is the set of components

lied in the neighbor of the coefficient αηv . From Bayesian
probability theory, the prior and posterior are referred to
as conjugate distributions when the prior and the posterior
distributions belong to a common family. Based on the fact
that Beta distribution is conjugate to Bernoulli likelihood,
we assume γ ηv to follow the Beta distribution, Beta(eη, f η),
with eη and f η denoting the hyper-parameters. Notice that
the values of eη and f η play a significant role in the developed
algorithm. The Beta(eη, f η) distribution tends to draw a small
value of γ ηv if eη < f η, and a large value if eη > f η, while
it exerts a non-informative prior if eη = f η. As a result,
by setting appropriate values of eη and f η, we can encourage
or discourage the continuity of the pixel under test. Detailed
discussion about the choice of hyper-parameters eη and f η

can be found in [25].

C. PRIOR ON NOISE PRECISION
For the sake of facilitating the inference of the noise pre-
cision, a Gamma distribution is assumed on βη, which is
expressed as

p(βη) = Gamma(βη|eη0, f
η
0 ) (9)

where eη0 and f
η
0 are the model parameters.

Algorithm 1 The Proposed Structure-Aware Bayesian SAR
Imaging Algorithm
Input: Input the observation data r and the dictionary 2.
1: Initialize the latent variables k = {d, g}, param-

eters M = (σ , γ , β), hyper-parameters H =

{a, b, e, f , e0, f0}; set δ, Jiter.
2: while ‖d(j) − d(j−1)‖2/‖d(j)‖2< δ or j < Jiter do
3: Update latent variables k = {d, g} using (17)

and (20);
4: Update unknown parameters M = {σ , γ , β}

using (21), (22) and 23);
5: end while

Output: The final image α = d� g.

III. STRUCTURE-AWARE BAYESIAN SAR
IMAGING ALGORITHM
A. BAYESIAN INFERENCE
Given the measurement vector r (we omit the superscript
η in this section for simplicity), the complete probabilistic
description of the SAR image formation over all hidden
variables is described as

p(α, σ , γ , β|r,H) ∝ p(r|2α, β) · p(d|σ ) · p(σ |a, b)

· p(g|γ ) · p(γ |e, f ) · p(β|e0, f0) (10)

where we denote H = {a, b, e, f , e0, f0} as the hyper-
parameters. Due to the analytical estimation has not been
found for (α, σ , γ , β), therefore, the variational Bayesian
inference (VBI) is adopted in this paper to carry out the
inference of posteriors.

By calculating the integration over the latent variables
k = {d, g} and the parameters setM = {σ , γ , β}, we obtain
the complete marginal probability of the observed data

p(r|H) =
∫
p(k, r,M|H)dkdM. (11)

In the variational method, this problem is addressed by using
the approximate distributions q(k) and q(M) to approximate
the intractable posterior p(k) and p(M). (11) is rewritten in
log likelihood as

ln p(r|H) = Z (q(k), q(M))

+DKL (q(k)q(M)||p(k,M|r,H)) (12)

in which

Z(q(k), q(M)) =
∫
q(k)q(M) ln

p(k,M, r|H)
q(k)q(M)

and DKL is the Kullback-Leibler (KL) divergence [22]
between the true posterior and the approximated one, which
takes the form

DKL (q(k)q(M)||p(k,M|r,H))

= argmin
q(k)q(M)

∫
q(k)q(M) ln

q(k)q(M)
p(k,M|r,H)

dkdM.

It follows that Z(q(k), q(M)) is a rigorous lower bound for
ln p(r|H). In addition, because the left-hand side of (12) is
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independent to q(k) and q(M), maximizing Z(q(k), q(M))
with respect to q(k) and q(M) equals to minimize DKL ,
thus q(k) and q(M) stand for an approximation to the poste-
rior distribution p(k,M|r,H). By performing some deriva-
tions [22], it is concluded that VBI involves a two-stage
procedure. In one stage, the rules for updating the hidden
variables k are given on the basis of the approximate posterior
q(k). Using the fact that q(k) =

∑MN
v=1 q(kv), we obtain the

posterior for each hidden variable as

ln q(j+1)(kv) ∝ 〈ln p(kv, r|M,H)〉q(j)(M). (13)

In the other stage, the update rules for the parameters M are
given by

ln q(j+1)(M) ∝ ln p(M|H)+ 〈ln p(k, r|M,H)〉q(j+1)(k)
(14)

where 〈·〉q(k) accounts for the expectationwith respect to q(k),
and j is the iterative index.

The posterior q(d) is evaluated by calculating the term of
ln q(d) that depends on d:

ln q(d) ∝ 〈ln p(r|2,d, g, β)〉q(β)q(g)

+

〈∑MN
v=1 ln p(dv|σv)

〉
q(σv)

. (15)

It turns out that the variational distribution for d is Gaussian
q(d) = CN (d|µ,3), in which the posterior mean value µ
and covariance 3 are respectively given by

µ = 〈β〉3〈G〉2Hr (16a)

3 =
{
〈β〉

[
2H2�

(
〈g〉〈g〉H + diag (〈g〉 � (1− 〈g〉)

)]
+〈6〉}−1 (16b)

where G = diag(g1, ..., gMN ). Consequently, the rule for
updating d is derived as follows

〈d〉 = µ. (17)

As for the updating rule for g, we first evaluate the proba-
bility for gv = 1, which takes the form

ln p(gv = 1) ∝ 〈ln γ 〉 − 〈β〉
(〈
d2v
〉
θHv θv − 2〈dv〉θHv r¬v

)
(18)

where 〈d2v 〉 = 〈dv〉
2
+ 3(v,v). Then we obtain that the

probability for gv = 0 is proportional to

ln p(gv = 0) ∝ 〈ln(1− γv)〉. (19)

Therefore, g can be updated by

〈gv〉 =
p(gv = 1)

p(gv = 0)+ p(gv = 1)
. (20)

We next update the precision parameter σv. q(σv) is
found to be a Gamma distribution, Gamma(σv|âv, b̂v), with
âv = a + 1 and b̂v = b + 〈d2v 〉 = b + µ2

v + 3(v,v). Hence,
the mean of σv is expressed as

〈σv〉 = âv/b̂v. (21)

Working in a similar manner for each element of γ , given
the updated value for g, the posterior of γv can be computed
as q(γv) ∝ Beta(γv|ê, f̂ ), where ê = e + αQv and f̂ = f +
|Qv| − αQv . As a result, we obtain

〈ln γv〉 = $
(
ê
)
−$

(
ê+ f̂

)
(22a)

〈ln (1− γv)〉 = $
(
f̂
)
−$

(
ê+ f̂

)
(22b)

where$ (·) denotes a digamma function [25].
Finally, we compute the variational distribution of the noise

precision β as q(β) = Gamma(β|ê0, f̂0), where ê0 = e0 + L,
and f̂0 = f0 +

〈
‖r−2(d� g)‖2

〉
q(d)q(g). Consequently,

the mean of β is

〈β〉 = ê0/f̂0. (23)

B. STOPPING CRITERION
Algorithm 1 summarizes the developed algorithm. Due to the
fact that the convergence of VBI is guaranteed, the latent
variables and parameters of the proposed algorithm can be
updated iteratively until convergence. Iterations are stopped
if a maximum number of iteration Jiter is reached, or the
convergence criterion ‖d(j)−d(j−1)‖2/‖d(j)‖2< δ is achieved,
where δ > 0 is a prefixed small value.

C. COMPUTATIONAL COMPLEXITY
In the current form, the main computation load of the pro-
posed algorithm lies in the calculation of the matrix inverse
in (16b). Its computational complexity is in the order of
O
(
(MN )3 × Jiter

)
. This can be problematic in the practical

application, becauseMN might be quite large in cases of large
target scene. To address this shortcoming, we use the matrix
inverse lemma, thus (16b) can be calculated as [20]

3 = 〈W〉−1 − 〈W〉−1〈2〉H (1/〈β〉I

+〈2〉〈W〉−1〈2〉H )−1〈2〉〈W〉−1 (24)

in which 〈W〉 = 〈β〉diag(〈g〉 � (1 − 〈g〉) � (2H2)) + 〈6〉
and 〈2〉 = 2〈G〉. Since 〈W〉 is a diagonal matrix, the inverse
can be easily calculated via inverting its diagonal elements.
Consequently, computational complexity of the proposed
algorithm is reduced toO((L3+MN×L2+(MN )2×L)×Jiter).
Using the fact that L < MN , we can further written the
computational complexity of the proposed algorithm in the
order of O((MN )2 × L × Jiter).

FIGURE 1. The synthetic scene. (a),(b) Time-1 and Time-2 amplitude
images; (c) true change map.
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FIGURE 2. Time-1 amplitude images of synthetic scene (SNR = 15 dB) using 1/4 of the measurements by (a) PFA; (b) CoSaMP; (c) GS;
(d) proposed method. Time-1 amplitude images of synthetic scene (SNR = 15 dB) using 1/8 of the measurements by (e) PFA;
(f) CoSaMP; (g) GS; (h) proposed method.

IV. NUMERICAL EXPERIMENTS
In this section, numerical simulations are conducted to evalu-
ate the performance of the proposed algorithm in comparison
with other reported ones. Algorithms tested include polar
format algorithm (PFA) [26], CoSaMP [10], GS [13] and the
proposed method. Similar as [27], the measure of change for
pixel v is estimated using the sample coherence estimator:

πv =
2|
∑

i∈Qv
αsi (α

t
i )
∗
|

(
∑

i∈Qv
|αsi |

2)+ (
∑

i∈Qv
|αti |

2)
(25)

where αsi and αti are pixels in neighborhood Qv of the vth
pixel. πv will approach to unity if no-change occurs, and it
will belong to (0, 1) in a change case.

Firstly, the synthetic data experiment is carried out, where
the synthetic scene consists of two different changes. One
is the obvious amplitude change and the other is phase-
only change, with both representing continuity structures.
The original reference and mission scenes are respectively
depicted in Fig. 1(a) and (b). The locations of the induced
change are shown in Fig. 1(c), where the rectangle indicates
the locations of amplitude changes, and the straight path
represents the locations of phase changes. Table 1 lists the
radar setup. The frequency bandwidth B is 1 GHz so that

TABLE 1. Radar setup for simulated data.

the ideal range resolution is c/2B = 0.15m, where c is the
speed of light. The angular range 1θ is set to be 5◦ and
the azimuth resolution is calculated as λ/21θ = 0.2m. The
target scene of interest is of size 7.6× 10m2. The amplitudes
of the scattering centers distribute as a complex Gaussian
whose mean is 2.0 and variance is 0.5. The observation data
is corrupted by the complex Gaussian noise with signal-to-
noise ratio (SNR) of 15 dB. Interrupt data is realized by
randomly sampling in the range and azimuth domains under
different interrupted ratios from the reference and mission
pass collections.

Fig. 2 shows the different Time-1 imaging results using
1/4 and 1/8 of the full measurements, respectively. As dis-
played in Fig. 2(a), the PFA image is seriously blurred.
In Fig. 2(b), many scatterers aremissing in the image obtained
by CoSaMP while some artificial points are observed out-
side the target region. Because the sparsity-driven-based reg-
ularization is capable of denoising, the GS result shown
in Fig. 2(c) performs better than CoSaMP. However, GS does
not obtain a very satisfactory image in the case of gapped
data. This is reasonable, since the noise rejection process
of GS to achieve a relatively sparse and clear target scene
might cause the elimination of some scatterers with low
amplitudes. In contrast, the devised approach performs well
by taking advantage of the continuity structures of the target,
as depicted in Fig. 2(d), where the scatterers with relatively
low amplitudes are effectively retained and the background
noise is removed. When only 1/8 measurements are avail-
able, the PFA image shows worse performance as shown
in Fig. 2(e). Fig. 2(f) and (g) give the CoSaMP and GS
results, respectively, in which the reconstructed points are
fewer than the developed one shown in Fig. 2(h), with more
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FIGURE 3. Change detection results of synthetic scene (SNR = 15 dB) using 1/4 of the measurements by (a) PFA; (b) CoSaMP; (c) GS;
(d) proposed method. Change detection results of synthetic scene (SNR = 15 dB) using 1/8 of the measurements by (e) PFA;
(f) CoSaMP; (g) GS; (h) proposed method.

TABLE 2. RMSE against interrupted ratio.

weak scatterers missed. Fig. 3 shows the corresponding CCD
results of Fig. 2. The coherence estimator (25) is applied to
the paired image reconstructions. In comparison, the devised
algorithm can further promote the continuity property of the
target, thus a better CCD result is achieved.

The quality of reconstruction for different methods is mea-
sured besides the visual results. The relative mean squared
error (RMSE) is adopted as the recovery performance metric,

defined by RMSE = 1
F

F∑
f=1

20 ∗ log10
(
||r− r̂f ||2/||r||2

)
,

where F denotes the total number of independent Monte
Carlo trials and r̂f is the f th reconstructed data. The RMSEs
of the imaging results using various algorithms corresponding
to the used number of data is provided in Table 2. It is
seen that the RMSEs of all algorithms consistently decrease
as the number of measurements increases. The proposed
algorithm achieves the smallest RMSEs among all the bench-
mark ones. Another performance metric is the average coher-
ence between the recovered paired images. Table 3 displays
the average coherence values of the compared approaches.
In accord with Fig. 3, the proposed scheme achieves higher
CCD performance than other methods.

To further verify the proposedmethod, the data provided by
the X-band GOTCHA SAR dataset is used. From the dataset,
we choose the same spatial region of images FP0120 and

TABLE 3. Average coherence against interrupted ratio.

FIGURE 4. The GOTCHA imagery. (a), (b) Time-1 and Time-2 amplitude
images; (c) complete-data CCD benchmark image.

FP0124 as Time-1 reference scene and Time-2 mission
pass scene. Fig. 4(a) and (b) show the amplitude images of the
scene at these two different observation time. Fig. 4(c) calcu-
lates the value of πv for the complete-data image, and acts as a
benchmark. Interrupted data is obtained by deleting the sam-
ples of the full measurement according to a 1/2 random gap
pattern. Then the Gaussian noise is added into the gapped data
by setting the SNR as 20 dB. The imaging and CCD results
obtained by different methods are presented in Fig. 5. It is
observed that the results achieved by the proposed approach
are superior among these methods. By making full use of
the structure-aware priors and deriving the VBI algorithm,
the devised approach has the ability of learning the algorithm
parameters directly from measurement, hence achieving the
performance gain of change detection.
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FIGURE 5. Time-1 amplitude images of GOTCHA imagery (SNR = 20 dB) using 1/2 of the measurements by (a) PFA; (b) CoSaMP;
(c) GS; (d) proposed method. Change detection results using 1/2 of the measurements by (e) PFA; (f) CoSaMP; (g) GS; (h) proposed
method.

V. CONCLUSION
This work proposed an efficient interrupted SAR image
formation scheme in Bayesian formalism with applica-
tion to persistent surveillance SAR imaging. A hierarchical
Bayesian model is first developed to characterize the con-
tinuity structures of the target scene. Then the VBI algo-
rithm is adopted to reconstruct multi-pass data collections
with missing samples, followed by the change detection esti-
mator applied on the resulting SAR images. Experiments
indicate that the proposed approach achieves a significant
performance enhancement, by which the scatterers on the
target are well preserved and the artificial points are effi-
ciently removed. It also exhibits superiority over other exist-
ing approaches on the imaging results by the RMSE criterion,
and on the change detection results in terms of the average
coherence.

REFERENCES
[1] J. Salzman, D. Akamine, R. Lefevre, and J. C. Kirk, ‘‘Interrupted synthetic

aperture radar (SAR),’’ IEEE Aerosp. Electron. Syst. Mag., vol. 17, no. 5,
pp. 33–39, May 2002.

[2] J. A. Bruder and R. Schneible, ‘‘Interrupted SAR waveforms for high
interrupt ratios,’’ in Proc. IET Int. Conf. Radar Syst., Oct. 2007, pp. 1–5.

[3] E. G. Larsson and J. Li, ‘‘Spectral analysis of periodically gapped data,’’
IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 3, pp. 1089–1097,
Jul. 2003.

[4] D. L. Donoho, ‘‘Compressed sensing,’’ IEEE Trans. Inf. Theory, vol. 54,
no. 4, pp. 1289–1306, Apr. 2006.

[5] S. S. Chen, D. L. Donoho, and M. A. Saunders, ‘‘Atomic decomposition
by basis pursuit,’’ SIAM Rev., vol. 43, no. 1, pp. 129–159, 2001.

[6] R. Tibshirani, ‘‘Regression shrinkage and selection via the lasso,’’ J. Roy.
Statist. Soc., B (Methodol.), vol. 58, no. 1, pp. 267–288, 1996.

[7] I. F. Gorodnitsky andB.D. Rao, ‘‘Sparse signal reconstruction from limited
data using FOCUSS: A re-weighted minimum norm algorithm,’’ IEEE
Trans. Signal Process., vol. 45, no. 3, pp. 600–616, Mar. 1997.

[8] Y. Yang, X. Cong, G. Gui, K. Long, Z. Huang, and Q. Wan, ‘‘Polarimetric
object-level SAR imaging method with canonical scattering characteri-
sation by exploiting joint sparsity,’’ IET Radar Sonar Navigat., vol. 11,
no. 10, pp. 1558–1566, Oct. 2017.

[9] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, ‘‘Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet
decomposition,’’ in Proc. 27th Asilomar Conf. Signals, Syst. Comput.,
Nov. 1993, pp. 40–44.

[10] D. Needell and J. A. Tropp, ‘‘CoSaMP: Iterative signal recovery from
incomplete and inaccurate samples,’’ Appl. Comput. Harmon. Anal.,
vol. 26, no. 3, pp. 301–321, 2009.

[11] I. Stojanovic, L. Novak, and W. C. Karl, ‘‘Joint reconstruction of inter-
rupted SAR imagery for persistent surveillance change detection,’’ Proc.
SPIE, vol. 8746, no. 1, pp. 1–9, May 2013.

[12] I. Stojanovic, W. C. Karl, and L. Novak, ‘‘Reconstruction of interrupted
SAR imagery for persistent surveillance change detection,’’ Proc. SPIE,
vol. 8394, no. 8, pp. 1–16, May 2012.

[13] I. Stojanovic, L. Novak, and W. C. Karl, ‘‘Interrupted SAR persistent
surveillance via group sparse reconstruction of multipass data,’’ IEEE
Trans. Aerosp. Electron. Syst., vol. 50, no. 2, pp. 987–1003, Apr. 2014.

[14] Y. C. Eldar, P. Kuppinger, and H. Bolcskei, ‘‘Block-sparse signals: Uncer-
tainty relations and efficient recovery,’’ IEEE Trans. Signal Process.,
vol. 58, no. 6, pp. 3042–3054, Jun. 2010.

[15] M. Yuan and Y. Lin, ‘‘Model selection and estimation in regression with
grouped variables,’’ J. Roy. Statist. Soc., B (Statist. Methodol.), vol. 68,
no. 1, pp. 49–67, 2006.

[16] J. Fang, Y. Shen, H. Li, and P. Wang, ‘‘Pattern-coupled sparse Bayesian
learning for recovery of block-sparse signals,’’ IEEE Trans. Signal Pro-
cess., vol. 63, no. 2, pp. 360–372, Jan. 2013.

[17] J. Fang, L. Zhang, and H. Li, ‘‘Two-dimensional pattern-coupled sparse
Bayesian learning via generalized approximate message passing,’’ IEEE
Trans. Image Process., vol. 25, no. 6, pp. 2920–2930, Jun. 2016.

[18] L. Wang, L. Zhao, G. Bi, C. Wan, and L. Yang, ‘‘Enhanced ISAR imaging
by exploiting the continuity of the target scene,’’ IEEE Trans. Geosci.
Remote Sens., vol. 52, no. 9, pp. 5736–5750, Sep. 2014.

[19] L. Yu, H. Sun, J. P. Barbot, and G. Zheng, ‘‘Bayesian compressive
sensing for cluster structured sparse signals,’’ Signal Process., vol. 92,
pp. 259–269, Jan. 2012.

[20] L. Yu, C. Wei, J. Jia, and H. Sun, ‘‘Compressive sensing for cluster struc-
tured sparse signals: Variational Bayes approach,’’ IET Signal Process.,
vol. 10, no. 7, pp. 770–779, Sep. 2016.

VOLUME 7, 2019 136397



Y. Gan et al.: Structure-Aware Interrupted SAR Imaging Method for Change Detection

[21] Y. Yang, X. Cong, K. Long, Y. Luo, W. Xie, and Q. Wan, ‘‘MRF model-
based joint interrupted SAR imaging and coherent change detection via
variational Bayesian inference,’’ Signal Process., vol. 151, pp. 144–154,
Oct. 2018.

[22] D. G. Tzikas, A. C. Likas, and N. P. Galatsanos, ‘‘The variational approxi-
mation for Bayesian inference,’’ IEEE Signal Process. Mag., vol. 25, no. 6,
pp. 131–146, Jan. 2008.

[23] K. E. Themelis, A. A. Rontogiannis, and K. D. Koutroumbas, ‘‘A vari-
ational Bayes framework for sparse adaptive estimation,’’ IEEE Trans.
Signal Process., vol. 62, no. 18, pp. 4723–4736, Sep. 2014.

[24] J. A. Jackson and R. L. Moses, ‘‘Synthetic aperture radar 3D feature
extraction for arbitrary flight paths,’’ IEEE Trans. Aerosp. Electron. Syst.,
vol. 48, no. 3, pp. 2065–2084, Jul. 2012.

[25] L. Yu, H. Sun, G. Zheng, and J. P. Barbot, ‘‘Model based Bayesian
compressive sensing via local beta process,’’ Signal Process., vol. 108,
pp. 259–271, Mar. 2015.

[26] S. Quegan, ‘‘Spotlight synthetic aperture radar: Signal processing algo-
rithms,’’ J. Atmos. Solar-Terr. Phys., vol. 59, no. 5, pp. 597–598, 1995.

[27] M. Cha, R. D. Phillips, P. J. Wolfe, and C. D. Richmond, ‘‘Two-stage
change detection for synthetic aperture radar,’’ IEEE Trans. Geosci.
Remote Sens., vol. 53, no. 12, pp. 6547–6560, Dec. 2015.

YI GAN received the B.S. degree from the School
of Computer Science and Engineering, University
of Electronic Science and Technology of China
(UESTC), Chengdu, China, in 2002, and the M.S.
degree in electronic and communication engineer-
ing fromUESTC, in 2012. He is currentlywith The
10th Research Institute of CETC, Chengdu. His
research interests include radar signal processing,
information fusion, and passive detection.

XUNCHAO CONG was born in Sichuan, China.
He received the Ph.D. degree from the School
of Electronic Engineering, University of Elec-
tronic Science and Technology of China (UESTC),
Chengdu, China, in 2017. He is currently with The
10th Research Institute of CETC, Chengdu. His
research interests include radar signal processing,
radio localization, and information fusion.

YUE YANG (S’15) was born in Sichuan, China.
She received the B.Eng. degree from the School
of Electronic Engineering, University of Elec-
tronic Science and Technology of China, Chengdu,
China, in 2015, where she is currently pursuing
the Ph.D. degree with the School of Information
and Communication Engineering. Since 2019, she
has been a Visiting Student with the Department
of Electrical and Computer Engineering, National
University of Singapore, Singapore. Her research

interests include synthetic aperture radar imaging, sparse signal reconstruc-
tion, and statistical signal processing.

136398 VOLUME 7, 2019


	INTRODUCTION
	BAYESIAN MODEL FOR INTERRUPTED SAR IMAGING
	INTERRUPTED SAR OBSERVATION MODEL
	BAYESIAN STRUCTURED SPARSITY PRIOR
	PRIOR ON NOISE PRECISION

	STRUCTURE-AWARE BAYESIAN SAR IMAGING ALGORITHM
	BAYESIAN INFERENCE
	STOPPING CRITERION
	COMPUTATIONAL COMPLEXITY

	NUMERICAL EXPERIMENTS
	CONCLUSION
	REFERENCES
	Biographies
	YI GAN
	XUNCHAO CONG
	YUE YANG


