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ABSTRACT A complex human-machine system (CHMS) consists of heterogeneous components with
extensive human-machine interactions. CHMSs are typical multistate systems with the ability to adapt
to disturbances such as machine failures. These characteristics must be considered comprehensively to
accurately evaluate the reliability and performance of a CHMS. However, the existing literature scarcely
considers both the reliability and performance simultaneously. In this paper, we propose an agent-based
approach to model and evaluate a CHMS. First, a general agent-based modeling framework for a CHMS is
generated by analyzing the structure and operations of a CHMS. Then, a dual-clock mechanism is introduced
to describe the behaviors of themachine failures and human errors. Two environmental disturbancemodeling
methods are proposed based on the state transitions of the agent and random events. The methods to model
the repair and reconfiguration behaviors are presented based on the contract network. A Monte Carlo-based
method is developed to evaluate the reliability and performance of the CHMS simultaneously. Finally, a deck
scheduling process for an aircraft carrier is used as a case study to verify the approach. The results show that
the reliability and performance of a CHMS can be effectively evaluated.

INDEX TERMS Complex human-machine system, agent-based model, reliability model, performance
evaluation.

I. INTRODUCTION
Complex human-machine systems (CHMSs) have been
extensively studied in different applications such as airport
dispatching systems [1], intelligent transportation networks
[2], and aircraft carriers [3]. The stable and efficient operation
of a CHMS is of great significance; therefore, the reliability
and system performance of CHMSs should be a focus of
study.

CHMSs consist of a large number of heterogeneous ele-
ments[4], [5], and there are many human-machine interac-
tions during its operation[6], [7]. There are multiple normal
working states and abnormal states for both humans and
machines in a CHMS. Furthermore, disturbances to the sys-
tem are occasionally produced by the external environment.
In addition, CHMSs have the ability to adapt to the system
faults and disturbances [8], [9]. Thus, an accurate assessment
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of the reliability and performance of a CHMS is very
difficult [10].

There are many performance evaluation methods for com-
plex systems [11], [12]. The most representative method is
agent-based modeling (ABM) [13]–[16]. ABM can describe
the interactions between humans and machines and vari-
ous nonlinear behaviors of the system through the interac-
tions between agents [17], [18]. Many agent-based modeling
methods can well describe the multistate of functions for
objects or systems, but the current literature has not explored
multistate faults [19], [20], so the evaluation results are not
accurate.

Models for evaluating the reliability of complex systems
can be divided into two categories, fault logicmodels and reli-
ability evaluation models based on performance [21]. There
is abundant research on reliability models based on fault
logic, such as the fault tree (FT) and reliability block dia-
gram (RBD). This paper compares various fault logic models
through the CHMS features, as shown in TABLE 1. Although
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TABLE 1. Differences among fault logic models.

most methods can evaluate the reliability of complex systems
that match their characteristics, the table shows that none
of the methods can reflect the human-machine interaction.
Additionally, most methods cannot evaluate the reliability
with multiple fault states and performance.

Some studies use reliability models based on system per-
formance, such as that of Chiacchio et al. [22], in which
the performance of an energy supply was used as the start-
ing point to evaluate the reliability of the system with the
Monte Carlo method. Others used an agent-based approach
to build performance-based reliability models [24]. How-
ever, the models in these studies lack the ability to handle
machine faults, human error, environmental disturbances,
maintenance, and reconstruction information.

In this paper, we propose an agent-based approach tomodel
and evaluate the performance and reliability of the CHMS
simultaneously. Note that reliability is one of the system
performance measures in our work since it is described as
the probability of failure-free performance over a specified
timeframe, under specified environmental and duty-cycle
conditions. Compared to the related work on the reliabil-
ity and performance of CHMSs, the main contributions of
this work are as follows. First, this paper proposes a gen-
eral comprehensive modeling framework that considers fea-
tures such as multiple states, dynamics, and human-computer
interaction. Second, the framework establishes a model-
ing method for machine faults, human error and environ-
mental disturbances considering a multistate feature. Third,
the system reconstruction and repair behavior modeling
methods of the preferred participants are proposed. Finally,
this paper presents a flexible definition of the system fault
criteria that can be used to synchronize the performance
and reliability evaluation with Monte Carlo-based evaluation
methods.

The remainder of this paper is organized as follows.
In Section II, a general description of a complex human-
machine system is presented. In Section III, we pro-
pose a general modeling framework based on an agent.
In Section IV, a reliability and performance evaluation algo-
rithm based on a Monte Carlo approach is proposed. A case

FIGURE 1. Systematic state changes and interactions.

study of an aircraft carrier, the results and discussion, are
presented in Section V. Finally, Section VI concludes the
study.

II. PROBLEM DESCRIPTION
A. CHMS PROCESSES
The state change process of a basic CHMS configuration and
the interactions of each component are shown in FIG 1. The
figure shows that the state of each system component dynam-
ically changes and the components continuously interact with
each other during the CHMS operating process.

The CHMS machines handle the system tasks. The states
primarily include the standby state, working states (1-0), fault
state(1-p) and maintenance state(1-q). After the machine is
repaired, the machine state can be assessed as the unrecov-
erable state, the partial recovery state, and the full recovery
state according to the maintenance condition.

The environment is the comprehensive expression of the
spatial state of the CHMS. Many factors affect the environ-
ment. They can be divided into three main states according
to the impact of the environment on the system: the normal
environmental state, the degraded system performance state,
and the extreme environmental state. In general, the system
will not operate in the extreme environmental state.

VOLUME 7, 2019 135301



Q. Feng et al.: Agent-Based Reliability and Performance Modeling Approach for Multistate CHMSs

The completion of tasks by the CHMS is based on the
interactions of the CHMS components with each other, and
the performance of the system is reflected by the interac-
tions. The interaction categories include environment-entity,
human-machine, human-human, and machine-machine inter-
actions. During faults, disturbances and system recovery,
the interaction relationship is more complex, which increases
the difficulty ofmodeling and evaluating the performance and
reliability of the CHMS. Therefore, through an analysis of
the composition and operational characteristics of a CHMS,
this paper uses an agent-based method to establish a com-
prehensive evaluation model of a CHMS performance and
reliability, which can effectively evaluate the reliability and
performance.

B. BASIC ASSUMPTIONS
Several assumptions are made for the modeling process:

(i) In modeling the CHMS, only the typical states of each
component are described.

(ii) A person of the same type is assumed to be responsible
for only one job.

(iii) The state logic of the same type of machine or person
is assumed to be the same.

C. REQUIRED DEFINITIONS
(i) The purpose in this study is to give a general agent-

based modeling framework for a CHMS. The descrip-
tion of the typical states of each component is highly
representative so that the essential characteristic can be
grasped.

(ii) In fact, a single human task facilitates the definition of
the interaction protocols more accurately. Meanwhile,
it is in line with a real implementation.

(iii) In an agent-based model, this is the way to simplify the
work.

III. AGENT-BASED MODELING FRAMEWORK OF CHMS
A. DESCRIPTION OF THE FRAMEWORK
In our work, an agent-based model is proposed for a CHMS
consisting of interconnected agents. The model consists of
four types of agents: the task management agent (TMA),
the machine agent (MA), the human agent (HA) and the
environmental agent (EA). According to the state of each
component in the real system, the logic change of an agent
is expressed using the state diagrammethod. The agent-based
modeling framework adopted in this paper is shown in FIG 2.
To realize the interactions among various types of agents,
the implementation of the system task is distributed, but the
conflicts between different agents are ignored.

Most existing agent-based modeling frameworks can
describe complex systems and the functional multistate fea-
tures. The framework proposed in this paper highlights
the agent-oriented fault and disturbance design, agent-
based recovery modeling and agent-based model evaluation
algorithms.

FIGURE 2. Universal framework for agent-based modeling.

For the MA, HA, and EA, the agent states are divided into
the normal and abnormal states, and the agent moves between
these states according to the conditions. The state change of
an agent can be represented in a quantified form.

The ABM for a CHMS includes 1 TMA,m MAs, n HAs,
and 1 EA.

If the ith MA has thel typical state, the state can be rep-
resented by εij(j = 1, 2, . . . , l) ranging from [0,1], where
εi1 = 1 represents the standby state and εil = 0 represents the
fault state. The remaining l-2 different working states ranging
from (0,1) represent functional degradation.WhenMAi is in a
certain normal state which the corresponding work cannot be
completed, the state of MAi will transition to the abnormal
state, εil , if εij = 0. In particular, if MAi is in the standby
state, it can be triggered by TMA and move to the working
state according to the results of task assignment. As the states
change, the MAi interacts with the TMA, the HA, the EA and
itself based on information, enery, etc.

Similar to an MA, εij(j = 1, 2, . . . , l) can also be used
to represent the state of HAi, where εi1 = 1 represents the
idle state, εil = 0 indicates that HAi cannot perform the
system function and −1 ≤ εik < 0(1 < k < l) represents
an error state. The remaining l-3 states ranging from (0,1)
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represent the degraded function state in a working status.
During the operation, an HA cannot continue to work after
being disturbed and the current state will change from εij = 0
to εil .When an error occurs inHAi, it enters the error state and
the value of εik is determined according to the error condition.
When in the idle state, HAi can transition to every working
state according to the task requirement. If HAi is in a working
state and εij = 1, it can transition to other working states.
The state of the EA affects the state of the HA and the

MA. Similarly, εej(1 ≤ j ≤ l) is used to represent the l
state of the EA and 0 ≤ εej ≤ 1. εel represents the extreme
environmental state and εel = 0. The remaining l-1 states
represent the typical states of the EA. εel = 1 indicates
that the environmental state is good and does not affect the
operations of the MA and HA; when 0 < εel < 1, the state
affects the system performance.

In this paper, we define an environmental coefficient ke,
which indicates the impact of the EA on the HA and MA,
and 0 ≤ ke ≤ 1. The value of ke is determined according
to the environmental state, εel . ke = 1 indicates that the
environment does not affect the operating status of the HA
and MA, and ke = 0 indicates that the MA and HA cannot be
normal. For an HA or MA numbered i, their state, εij, can be
expressed as Eq. (1) after an environmental correction.

Eεij = ke × ε (1)

B. MODELING FAULTS AND DISTURBANCES
1) MODELING MACHINE FAULTS
MAi consists of q functional units, and the jth unit is denoted
as Uij(1 ≤ j ≤ q). We consider that the functional units
have two-state faults and that MAs have multistate faults and
the different fault modes correspond to different processing
methods. The life of Uij is TTFij and the life of MAi is TTFi.
The occurrence of a fault is a discrete event[37]. According

to the simulation logic, when the simulation clock advances to
t = TTFi, MAi should enter the fault state. However, the fault
event cannot be directly input into the normal simulation
clock of MAi. Therefore, this paper proposes a dual-clock
mechanism for the fault clock to realize the fault.

The basis of the fault clock mechanism is the dynamic con-
sumption mechanism. The fault clock stock corresponding to
MAi is recorded as Si(t), 0 ≤ Si(t) ≤ 1 and the dynamic
consumption rate is vi. If vi = 1/TTFi, the system dynamics
stock is:

Si (t) = 1− vi · t = 1− t/TTFi (2)

Thus, when Si(t) = 0, MAi fails. According to Hypoth-
esis 6, when MAi enters the standby state, the consumption
rate can be adjusted to 0.

Determining the lifetime of MAi is a critical step of the
fault clock advancement mechanism. The life of MAi can
be determined based on the life of each unitTTFij and the
fault logic of MAi. The determination steps are shown in
Steps 1 to 3.
Step 1: Determine the life of the functional units

In general, the functional unit life of a machine is a random
variable that follows a certain distribution. In this paper, the
continuous random variable sampling method [38] is used
to determine the TTFij of each functional unit. The basic
sampling process is expressed as follows.
TTFij is a continuous random variable that follows the

distribution function Z = F(x), where 0 ≤ Z ≤ 1. Then,
the kth sample value is:

TTFij (k) = F−1 (Z ) (3)

If the functional unit life follows the exponential distribu-
tion, the sampling formula for TTFij is:

TTFij = F−1 (η) = − ln (η) /λij (4)

where η is a random number from [0,1] and λij is the failure
rate of the functional unit.
Step 2: Determine the fault logic of MAi
According to the structure of the MA, the RBD (reli-

ability block diagram) can be established with the func-
tional units. Based on the RBD, the structural function,
φ(Xi1,Xi2, . . . ,Xiq), of MAi can be obtained. The objective
of the structure function is to determine the system state based
on the state of the functional unit[39]. The state value of Uij
is Xij, and the value of Xij is:

Xij =

{
1 normal
0 failure

(5)

Xij = 1 indicates that the state of Uij is normal, and Xij = 0
indicates that Uij is faulty. The value of the structure function
is either 1 or 0. If φ(Xi1,Xi2, . . . ,Xiq) = 1, MAi is normal; if
φ(Xi1, Xi2, . . . ,Xiq) = 0, MAi is faulty.

FIGURE 3. Reliability block diagram of an MA.

If there is an MA, the RBD structure is as shown in FIG 3.
The structural function can be expressed as follows.

φ (Xi1,Xi2, · · · ,Xi9) = [1− (1− Xi1)]

× [1− (1− Xi2) (1− Xi3)]

× [1− (1− Xi4) (1− Xi5)]

Step 3: Determine the TTFi of MAi
According to the RBD of MAi, MAi does not fail after the

unit fails, so the lifetime, TTFi, of MAi must be determined
based on the life of the units. According to the simulation
time advancement, when t = TTFij, the unit is faulty and
its state value is Xij = 0. If Xik = 0(1 ≤ k ≤ q), φ(Xi1,
Xi2, . . . ,Xiq) = 0 and TTFi = TTFik . If the RBD of MAi is
a series model, TTFi = min{TTFij}; if the RBD of MAi is a
parallel model, TTFi = max{TTFij}.
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The faults of different units make the fault mode of the
agent different, so the behavior and state of the agent in dif-
ferent fault modes must be designed in the modeling process.

An MA will enter the fault detection state when a unit’s
fault occurs. First, the system detects whether the failed unit is
in the standby state. If the unit is on standby, it will trigger the
failure until the unit transitions to the work state. If the unit is
already working, different consequences and corresponding
state transitions need to be designed according to different
fault modes. For example, if the aircraft agent fails on the
ground, it will enter the maintenance state directly. When
the plane agent fails in the air, the aircraft mission will be
negatively impacted.

2) MODELING HUMAN ERROR
Human behavior is complex and people make mistakes. The
TTM (time to mistake) is defined as the time that a person
makes a mistake at work, which obeys the distribution Z =
F(x). The dual-clock mechanism is also used in this paper to
model human error.

The human error time sampling is at the individual level,
which is different from that of the machine. The working state
of the HA is cyclic, and when HAh enters the working state,
the TTMh. must be sampled again.
The method of sampling TTMh is the same as the machine

fault clock sampling method. The TTMh of HAh can be
expressed as follows.

TTMh = F−1 (Z ) (6)

In general, the time of human error follows a lognormal
distribution[40]. The sample value of TTMh is:

TTMh = F−1 (η) = exp(σ
√
−2 ln η sin 2πη + µ) (7)

where η is a random number from [0,1], µ is the mean error
time and σ is the root mean square of the error time.
According to the dual-clock mechanism, the clock inven-

tory Sh(t) of HAh at any time can be expressed as follows:

Sh (t) = 1− vh · t = 1− t/TTMh (8)

where vh = 1/TTMh is the consumption rate. When Sh(t) =
0, HAh has made a mistake.

3) MODELING OF ENVIRONMENTAL DISTURBANCE
There are two types of environmental disturbances in a
CHMS. The first type is caused by changes in the normal
environmental conditions under the given environmental pro-
file. This type of environmental disturbance can degrade the
performance of the CHMS or have no effect. When the state
of EA transitions, ke, changes, the states of HA and MA are
affected during the interaction with the EA.

The second type of disturbance is caused by random
extreme environmental changes. This type of disturbance
usually significantly influences the performance of the
CHMS, so random events are necessary to simulate extreme
environments. The number of disturbances can be expressed

by the nonhomogeneous Poisson process [42]. If there are k
extreme environmental events, the probability can be calcu-
lated as follows:

P {N (t) = k} = [λ (t)]k · e−λ(t)/k! (9)

where λ(t) is the average number of occurrences of the
event over the time period (0,t]. Under special circumstances,
an homogeneous Poisson distribution can also be used to
describe extreme environmental events, and λ(t) is a constant.
The state of the MA and HA can be corrected by ke as

described in section III.A. In addition, the environment has
a greater impact on human error than on machine failure.
After correcting ke, the human error clock can be expressed
as follows:

Sh (t) = 1− (vh/ke) · t = 1− t/ke · TTMh (10)

C. MODELING RECOVERY
Reasonable recovery behavior can effectively reduce the
impacts of faults and disturbances. The system controls
the impact of a disturbance on the system through mainte-
nance and reconfiguration to restore the system to a nor-
mal or steady state.

The essence of the maintenance recovery process and the
reconstruction recovery processed is that multiple agents
interact with each other. This paper uses the contract network
mechanism to model the maintenance and reconstruction of
a CHMS.

1) MODELING MAINTENANCE
Cf represents the target agent that needs to be repaired, pri-
marily referring to an MA. Ca represents the service provider
of the repair process. Co represents the manager of the main-
tenance process agent, which is responsible for controlling
the management and maintenance recovery process. The
maintenance process mechanism is shown in FIG 4.

The maintenance coordination mechanism in the fig-
ure applies to all maintenance behaviors in the CHMS. The
basic steps are shown in Steps 1 to 3.
Step 1: Cf issues the specific tender
Cf needs to be repaired after entering the fault state, and it

sends out the information requesting repair. Co receives the
information and begins to manage the coordinated mainte-
nance activities, andCf simultaneously issues the tender,PRi,
to lCas.

PRi = (1T |RT ,RM ) (11)

where1T is the deadline for the service agent- Ca to respond
to the tender, RT represents the time constraint, and RM
represents the replacement parts requirement.

RT = TM + TDL (12)

TM is the time to complete the maintenance task, and TDL
is the guarantee resource delay time.

There may be multiple maintenance activities during the
CHMS operation, so one Ca will receive information for
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FIGURE 4. Basic maintenance process.

multiple bids. After receiving the bidding information, Ca
will first evaluate its status. If the status of Ca cannot bear
any bidding requirements, it will abandon the bidding. If the
status is available, it will choose the bidding that best matches
its conditions. In addition, in the end Cf will receive m bids
and m ≤ l.

PR′i =
(
RiTi,R

′
Mi

)
, i = 1, 2, . . . ,m (13)

Cf only accepts the reverse quote returned by 1T . The
remaining l-m service providers no longer participate in the
tender
Step 2: Cf selects the appropriate server to authorize.
Cf determines if R′M i meets the requirements and selected

the smallest R′T i of Ca to authorize, and does not authorize
any of the remaining m-1 Cas.
Step 3: Perform the maintenance process.
When the selected bidderCap is authorized,Cap undertakes

the maintenance task and enters the working state. After
TDL , Cap enters the maintenance state, and then after TM ,
the maintenance task is completed, and the Cf transfers to
the full recovery or partial recovery state. Then, Cf evaluates
the completion of the maintenance, and the interaction is
terminated, Cap again enters the idle state.

2) MODELING REFACTORING
Cf represents an agent that cannot continue to undertake a
system task and triggers system reconstruction. Co represents
the management agent in the reconstruction process, and Ca
represents the refactoring server. The reconstruction mecha-
nism of the CHMS is shown in FIG 5.

The refactoring mechanism shown in the figure is applica-
ble to all the refactoring processes in the CHMS. The basic
steps are shown in Steps 1 to 3.
Step 1: Cf issues a specific tender

FIGURE 5. Basic reconstruction process.

When Cf is unable to undertake a system task due to
interference, it needs other agents to cooperate in the system
reconfiguration, and issues the tender, PRi, to lCas.

PRi = (1T |RT ,RS) (14)

where 1T is the response time, RT is the time to enter
refactoring and complete the refactoring process. RS is the
state capability constraint of the server.

Similar to the maintenance recovery process, one Ca will
receive the information for multiple bids. After receiving the
bidding information, Ca will first evaluate its status. If the
status of Ca cannot bear any bidding requirements, it will
abandon the bidding. If the status is available, it will choose
the bidding that best matches its conditions. In addition, Cf
will finally receive m bids and m ≤ l.

PR′i =
(
R′Ti,R

′
Si
)
, i = 1, 2, . . . ,m (15)

Cf only accepts the reverse quote returned by 1T . The
remaining l-m service providers no longer participate in the
tender.
Step 2: Cf selects the appropriate server for authorization.
Cf determines ifR′Mimeets the requirements and selects the

smallest R′Ti of Ca for authorization, and does not authorize
the remaining m-1 Cas.
Step 3: Perform the refactoring process
The authorized Cap transitions to the working state. After

time RT , the reconstruction process is completed and Cap
transitions to the idle state and Cf exits system.
The proposed repair and reconstruction models in this

section are most basic models for a CHMS. When the system
functioning is disturbed, the maintenance and reconstruction
processes of the system will be more complex for a certain
CHMS.

IV. SYSTEM SIMULATION EVALUATION ALGORITHM
Many parameters that affect the reliability and performance
of a CHMS cannot be expressed analytically. The Monte
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Carlo algorithm based on ABM is used in this paper to
evaluate the reliability and performance of the CHMS.

In this paper, the reliability of the CHMS is evaluated from
the system performance perspective. For different types of
CHMSs, the metrics are different. Therefore, the detailed
performance features will not be discussed in the proposed
framework.

ABM is used as the Monte Carlo sampling object and the
sampling number is n. Suppose the number of input parame-
ters of the ABM model is m and the performance number of
the model is k . Then, the output matrix corresponding to the
ith sample is recorded as:

[yi1, yi2, . . . , yik ](1 ≤ i ≤ n).

Pj represents the performance of the j-th term of the
CHMS. After Monte Carlo sampling, the simulated result
matrix of the j-th performance is [y1j, y2j, . . . , ynj]. This paper
uses the average method to calculate the performance of the
CHMS. Therefore, the j-th performance calculation result is:

Pj =
∑n

i=1
yij/n (16)

The reliability evaluation relies on the system performance
results, and it is necessary to determine whether the ABM
model operation succeeds according to the performance of
every sampling simulation.

[y1, y2, . . . , yk ] is the standard matrix for the success of
a sampling simulation. If the simulation result of the i-th
sampling reaches the standard, yi1 ≥ y1, yi2 ≥ y2, . . . , yik ≥
yk , the sampling simulation is considered successful. The per-
formance of the CHMS dynamically changes, which makes
the CHMS exhibit multistate features. The criteria for a single
simulation vary for different assessment requirements, so the
value and dimension of the standard matrix can be corrected
based on the state requirements of the system.

According to the success criterion matrix, the number of
successful simulations is l, so the reliability level, R, of the
CHMS can expressed as follows:

R = l/n (17)

V. CASE STUDY
A. INPUT DATA
The basic layout of the aircraft carrier and some data are
adopted from existing literature [43], [44]. The basic layout
of the aircraft maintenance system is shown in FIG 6. In this
paper, the Anylogic software is used to build the ABMmodel
for the aircraft carrier system to realize a visual simulation.

After the ABM model is built according to the previous
modeling framework, a series of parameters must be gener-
ated to determine the data statistics. Some parameter and data
settings are shown in TABLE 2. In the table, FR represents the
failure rate, MTTR is the mean time to repair, Pc represents
the completion probability, FI represents the fault isolation
rate, FD represents the fault detection rate. The lifetime of all
the devices are assumed to follow an exponential distribution.

FIGURE 6. Basic layout of the aircraft carrier.

TABLE 2. Quality parameters of some system objects.

TABLE 3. Parameter settings of aircraft subsystem.

TABLE 4. Mean time and variance of human error.

The equipment structure of the equipment of the system is
complex. For example, the aircraft contains 24 subsystems,
and the impact of each subsystem on the failure of the aircraft
is different. The parameters of some key subsystems of the
aircraft are shown in the TABLE 3. These parameters were
obtained by a reasonable modification of the practical data.

According to the characteristics of the system, the human-
machine interactions are divided into infield and field types.
The mean time and time variance of human error under
different interactions are shown in TABLE 4.
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FIGURE 7. State design of the guarantee process.

In this paper, the number of Monte Carlo simulation sam-
ples is 5,000. Considering that a fleet consists of 26 aircraft on
an aircraft carrier. The fleet is divided into three formations,
and both formations A and B have 10 aircraft. In addition,
the remaining 6 aircrafts are spare aircraft, which are denoted
by formation C. The spare aircraft will be used when there
is a problem with one of the formation A or B aircraft. The
aircraft carrier will perform a 7-days day mission, and ke = 1
during the day. The fleet will dispatch 8 waves per day, and
every formation will perform a mission in turn.

In this case, the criteria for the failure of the mission are:
(i) During the dispatch of the aircraft formation,

the assembly time of the aircraft formation exceeded
20% of the specified time.

(ii) During the return flight of the aircraft formation,
the landing time of the aircraft formation exceeded 10%
of the specified time.

When the number of assembled aircraft is insufficient,
it can be handled by criterion (1).

B. MODELING OF SIMULATION RESULTS
In the modeling process, whether the aircrafts or various
support facilities and humans have multiple states and a large
number of dynamic behaviors (i.e., states change with time),
so it is necessary to establish their complex life cycle state dia-
grams. Also we have to design their own state transition rules
and interaction messages between agents. The state transition
of an agent is complex, for example, in the Anylogic software,
the partial design of the aircraft support process is shown in
the FIG 7.

TheMonte Carlo simulation can start when the modeling is
completed. According to the simulation result, the number of
successful simulations is l = 4253. According to the success
degree of the task, the task reliability of the CHMS is:

R = 4253/5000 = 0.8506 (18)

After the Monte Carlo simulation, the average number of
successful dispatching tasks per 7 days and per day were

FIGURE 8. System reliability changes due to sampling.

FIGURE 9. Average daily simulation failures.

406 and 57, respectively. The average support time per dis-
patching wave was 27.6 minutes, and the utilization level of
the support facilities was 42.9%.

The reliability curve of the system during the simulation
is shown in FIG 8. The system reliability values are all
5000 times simulation results. Although there are a large
number of uncertain parameter inputs in the simulation
model, the curve in FIG 8 is maintained at a stable value after
a certain number of simulations. Clearly, the reliability level
tends to be stable when the number of samples reaches 2,500,
and 0.85 is used as the boundary line.

The systemwill not meet the simulation success criteria for
various reasons. AfterMonte Carlo sampling, an approximate
failure probability for the scheduling system is shown in
FIG 9. In the simulation, the number of cumulative failures
was 1747 times, and the number of daily mission failures
from the first day to the seventh day was 83, 219, 233, 245,
252, 178, and 165. For example, the approximate probability
of failure on the first day is 83/5000 = 0.0163.
As the system operates, the performance changes over

time. The ability to dispatch the aircraft is the most important
performance parameter of the aircraft carrier. We take the
average task dispatch time of aircraft per day to describe
the performance. An aircraft carrier can only carry a limited
amount resources when fighting at sea. When the aircraft and
the various facilities fail, they may not be recovered in time
due to insufficient resources. Therefore, with the advance-
ment of combat time, the ability to dispatch the aircraft will
decrease from the first day to the seventh day in the repeatedly
simulation cycle. The average value of 5000 simulations is
thus consistent with the actual situation, which is shown
in FIG 10.

The average flying time of the aircraft in each wave is
also an important performance parameter, its value can be
obtained through 5000 times simulation experiments in every
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FIGURE 10. Average daily output of the aircraft.

FIGURE 11. Average flying time for each formation.

single day. For the formation A and B aircraft, the average
flying time of eachwave is shown as FIG 11(a) and FIG 11(b).

C. DISCUSSION
The composition of a CHMS is very complex. If one param-
eter of the CHMS is changed, there will be an obvious effect
on the reliability and performance. The effects of different
factors on the system are discussed separately in this section.
During the analysis, we only change the target parameters.

We analyzed the system reliability trend after environ-
mental disturbances. To determine the impact of normal
environmental disturbances, we set the ke = 0.85. As the
number of environmental disturbances increases, the reliabil-
ity decreases, as shown in FIG 12.

In this paper, nonhomogeneous Poisson distributions are
used to describe the extreme environmental disturbance
events, and in special cases, homogeneous Poisson distribu-
tions can also be used. When we increase the intensity of
the parameters with the homogeneous Poisson distributions,
the reliability of the system will also decrease as shown in
FIG 13.

This system contains a large amount of important
equipment. The failure rate level of this equipment will
directly affect the system performance and system reliability.
Therefore, analyzing the important equipment is of great

FIGURE 12. Impact of environmental changes on the system reliability
level.

FIGURE 13. The system reliability variance due to the intensity of extreme
environmental events.

FIGURE 14. Impact of the elevator failure rate on the system reliability.

significance to control the system performance and reliability.
We take the elevator as an example, the relationship between
the system reliability and the elevator failure rate is shown in
FIG 14.

With an increase in the total number of aircraft, the reli-
ability and performance of the system will change. In this
section, we will gradually increase the number of spare air-
crafts, but the number of formation A and B aircraft is still
10. The ability to dispatch the aircraft is also affected by
the number of aircraft available and the reliability of the
support facility. When the impact of the reliability of the
support facility exceeds, the number of available aircraft,
the positive incentive effect of the number of spare aircraft
becomesweak. The average number of aircraft dispatched per
7 days varies with the number of spare aircraft as shown in
FIG 15(a).When the number of spare aircraft increases to a
certain extent, the number of dispatches increases very little.
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FIGURE 15. Impact of the number of aircraft on the system performance.

Similarly, the reliability of the system varies with the number
of spare aircraft as shown in FIG 15(b). When it is increased
to a certain extent, the reliability increases very little.

VI. CONCLUSION
In this paper, an agent-based modeling framework and
method are proposed to evaluate the reliability and perfor-
mance of a CHMS with multistate systems and dynamic
behaviors. The effectiveness of the proposed approach is
verified in a case study of deck scheduling on an aircraft
carrier as an example. The main innovations and advantages
are as follows.

(i) The proposed method can describe the multistate func-
tions, multistate disturbances and the adaptive behav-
iors of the CHMS.

(ii) A dual-clock for mechanism faults and human errors is
used to accurately describe the occurrences of machine
failures and human errors.

(iii) The state transition of the environment agent and ran-
dom events are used to describe the environmental
disturbances and extreme environmental conditions for
the CHMS.

(iv) The contract-based approach can automatically select
the most suitable participants for the maintenance and
reconfiguration processes of the CHMS to achieve
proper control of the system disturbances.

(v) The system failure criteria in the model can be defined
by combining the performance values of multiple
degraded parameters, which canmore effectively deter-
mine the correct state of the multistate fault and simul-
taneously evaluate the reliability and performance of
the CHMS.

The agent-based approach in this paper can be directly
applied to analyze the reliability and performance of vari-
ous CHMSs. However, some parameters in the agent-based
model are stochastic. In addition, although the multistate
analysis is dominant at the system level in our work, a two-
state analysis still applies to the minimum modeling compo-
nents such as for machine failures and human errors. In the
future, the research could be extended by optimizing the
parameters in the CHMSs based on the agent and using a
more fine-grained behavior modeling method for machine
failures, human errors, maintenance and reconfiguration in
the CHMS.
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