
Received August 17, 2019, accepted September 8, 2019, date of publication September 18, 2019,
date of current version September 30, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2942221

DHNE: Network Representation Learning Method
for Dynamic Heterogeneous Networks
YING YIN 1, LI-XIN JI1, JIAN-PENG ZHANG1, AND YU-LONG PEI2
1Information Engineering University, Zhengzhou 450003, China
2Eindhoven University of Technology, Eindhoven, The Netherlands

Corresponding author: Ying Yin (15883880517@163.com)

This work was supported in part by the National Nature Science Foundation of China for the Innovation Research Group under
Grant 61521003.

ABSTRACT Analyzing the rich information behind heterogeneous networks through network representation
learning methods is signifcant for many application tasks such as link prediction, node classifcation and
similarity research. As the networks evolve over times, the interactions among the nodes in networks make
heterogeneous networks exhibit dynamic characteristics. However, almost all the existing heterogeneous
network representation learning methods focus on static networks which ignore dynamic characteristics.
In this paper, we propose a novel approach DHNE to learn the representations of nodes in dynamic
heterogeneous networks. The key idea of our approach is to construct comprehensive historical-current
networks based on subgraphs of snapshots in time step to capture both the historical and current information
in the dynamic heterogeneous network. And then under the guidance of meta paths, DHNE performs random
walks on the constructed historical-current graphs to capture semantic information. After getting the node
sequences through random walks, we propose the dynamic heterogeneous skip-gram model to learn the
embeddings. Experiments on large-scale real-world networks demonstrate that the embeddings learned by
the proposed DHNEmodel achieve better performances than state-of-the-art methods in various downstream
tasks including node classifcation and visualization.

INDEX TERMS Dynamic heterogeneous networks, network representation learning, random walk,
skip-gram model.

I. INTRODUCTION
Social communication systems, academic information sys-
tems, and biomedical systems are very common in our real
life. How to analyze characteristics of these systems is of vital
importance to solve practical application problems. With the
rise of network science, these systems can be modeled into
the form of complex networks. Research on complex net-
works can help us analyze the characteristics of these systems
effectively. Then, how to model these systems into complex
networks needs to be taken into account first. A simple way
is to model the entities in the system as nodes and model the
relationships between entities as edges, and all the nodes and
edges are treated as a single type. In this way, systems can
bemodeled as homogeneous information networks. Although
there are many researches on homogeneous networks, they
can’t capture the rich information contained in some real
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systems completely. Real-world applications are often ori-
ented to systems with multiple types of entities and complex
link relationships. Treating all the nodes and edges in the
systems as the same type will lose lots of important informa-
tion such as semantic information in academic information
systems.

By structuring data objects and their interactions in the
systems into multiple types of nodes and edges, complex
systems can be expressed in the form of heterogeneous
information networks which can preserve rich information
in the original systems. Mining the rich information con-
tained in heterogeneous network is important for us to do
the network application tasks such as node classification [1],
similarity research [2], and link prediction [3]. In recent years,
machine learningmethods have been widely used to deal with
network application tasks. In order to represent networked
data in a reasonable form as the input of machine learning
methods to improve the performance of these algorithms,
network representation learning is gradually emerging.
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Network representation learning maps nodes in a network
to low-dimensional spaces in order to form low-dimensional
dense vectors that can be used as the input of machine learn-
ing models to do the downstream tasks. It serves as a bridge
connecting the networked data analysis, traditional machine
learning, and data mining algorithms.

Most of the existing network representation learning
methods focus on static heterogeneous networks which
only consider the static structural properties at a certain
moment [4], [5]. However, as the network evolves over times,
the interactions among the nodes in networks make net-
works exhibit dynamic characteristics. For example, in the
academic information network which is a typical heteroge-
neous network, as the author’s research direction changes,
the co-authorship will also change. But if we just analyze
academic networks in the static condition, we can never
get these dynamic information. Therefore, the representation
learning of complex heterogeneous networks with dynamic
properties can better mine the rich information contained in
networks.

To capture the dynamic information in the heteroge-
neous network, we proposed the dynamic heterogeneous net-
work representation learning method to learn heterogeneous
network embeddings from a dynamic perspective, namely
DHNE(Dynamic Heterogeneous Network Embedding). The
general idea of our approach is to construct historical-current
graphs to preserve both the historical information at the
previous time steps and the current information in the het-
erogeneous network. Based on the historical-current graphs,
we perform random walks under the guidance of meta paths
which contain different semantic information and then we
propose the dynamic heterogeneous skip-grammodel to learn
the representations of nodes in the dynamic heterogeneous
network.

It is worthwhile to highlight our contributions as follows:
• To the best of our knowledge, this is the first work
that learns the embeddings of dynamic heterogeneous
networks to preserve both the current and historical
characteristics of nodes over a given time step.

• Since we combine multiple types of information includ-
ing current information, historical information and
semantic information to learn node embeddings, nodes
can be reasonably represented and can be applied to
mine dynamic characteristics of the network.

• We construct experiments over two real-world datasets,
and the experimental results demonstrated that the
embeddings learned from the proposed DHNE model
can achieve better performances than the state-of-the-art
methods in downstream tasks, such as node classifica-
tion and visualization.

The rest of the paper is organized as follows. Section II
provides an overview of relatedwork.We present the problem
statement in Section III. Section IV explains the technical
details of DHNE. In Section V we then discuss our experi-
mental study. Finally, in Section VI we draw conclusions and
outline directions for future work.

II. RELATED WORK
In the era of big data, the research and analysis of networked
data have been widely concerned in various fields. Complex
and huge networked data is often difficult to process. It is of
great significance to represent networked data as an efficient
and reasonable form to solve practical application problems.
Network representation learning is a distributed learning
method that maps nodes in a network to low-dimensional
spaces in order to form vectors with certain reasoning ability.
The vectors obtained by network representation learning can
be conveniently used as the input to machine learning models
to solve downstream tasks.

Traditional network representation learning focus on
homogeneous information networkswhich consist of singular
type of nodes and relationships. For instance, Perozzi et al.
applied ‘‘shallow’’ neural network to homogeneous network
representation learning and proposed the classic DeepWalk
algorithm [6] which is based on the Word2vec [7] model in
natural language processing. Grover et al. proposed node2vec
algorithm [8] to improve the random walk process of Deep-
Walk which preserves the homogeneity and isomorphism of
network by combining breadth-first search and depth-first
search. With the development of deep learning, Wang et al.
proposed the SDNE algorithm [9] to apply the deep neu-
ral network to homogeneous network representation learn-
ing. The semi-supervised deep learning model preserves
the local and global information of network through the
first-order similarity module and the second-order similar-
ity module, respectively. The GraphGAN model [10] pro-
posed by Wang et al. and the ANE model [11] proposed
by Dai et al. applied the GAN [12] model into network
representation learning, which greatly improved the robust-
ness of homogeneous network embedding. For homogeneous
information networks, some of the existing network repre-
sentation learning methods have taken the dynamic char-
acteristics into account which are mostly derived from the
static homogeneous network representation learning model.
Inspired by the static network representation learning method
based on matrix decomposition, Li et al. proposed DANE
algorithm [13] to leverage the variation of the adjacency
matrix as well as the attribute matrix of the network snap-
shots to update the current node embeddings based on the
node embeddings at the previous time. Cui et al. proposed
the DHPE algorithm [14] to update the node embeddings
dynamically based on generalized singular value decompo-
sition (GSVD) and matrix perturbation theory while pre-
serving the high-order proximity. In addition to methods
based on matrix decomposition, there are some approaches
extending the classic models to learn the dynamic network
representations. DNE algorithm [15] proposed by Du et al.
extends the skip-gram model to dynamic homogeneous net-
work representation learning which learns the embeddings
of new vertices by only updating the embeddings of par-
tial vertices to improve the efficiency of the algorithm.
Nguyen et al. proposed CTDNE [16] to apply the skip-
gram model to temporal network embedding. This approach
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presents dynamic networks in the form of networks with
multiple timestamps on each edge which indicate when
the interactions occurred. On this basis, CTDNE specifies
that each random walk must conform to the chronolog-
ical order in which the interactions took place in order
to capture the temporal information through the random
walks.

We can see from the above homogeneous network
representation learning methods and the review of pre-
decessors [17]–[19], homogeneous network representation
learning has gradually matured. However, structuring com-
plex systems in the form of homogeneous information net-
works that treat all the nodes and connected edges as the
same type ignores the rich semantic information in the net-
work. Representing the real-world systems in the form of
heterogeneous information networks is more realistic and
practical. In order to mine the rich information contained in
the heterogeneous information networks, the heterogeneous
network representation learning methods have come out in
recent years. Inspired by the node2vec algorithm, Dong et al.
proposed the metapath2vec algorithm [4] which acquires
the ‘‘context’’ of nodes by performing random walks in
the heterogeneous information network under the guidance
of meta path [2] which is an important characteristic of
heterogeneous information networks. Tang et al. proposed
PTE [5] to extend LINE [20] to heterogeneous text network
representation learning which leverages both labeled and
unlabeled data to learn the embeddings in a semi-supervised
manner. PTE can learn the characteristics of labeled data
while preserving the advantages of unsupervised embedding.
Chang et al. designed a deep embedding algorithm [21] to
map different types of nodes in the heterogeneous network
into the same low dimensional vector space. The proposed
deep architecture model preserves both the local and global
linkage structures of the heterogeneous network whichmakes
it more powerful to capture information in the heterogeneous
network. There are also some heterogeneous network repre-
sentation learning methods combined with specific applica-
tion tasks. The Heterecom [22] model proposed by Shi et al.
combines the embeddings with specific downstream task
recommendation. The approach extracts the same type of
node sequences from the heterogeneous information net-
work based on different meta paths to b24process, which
is equivalent to extracting multiple homogeneous informa-
tion networks from the heterogeneous information network.
Chen et al. proposed a task-guided heterogeneous network
embedding method [23] for author identification which is
posed as author ranking problem in heterogeneous networks.
This approach extends the existing unsupervised network
embedding model to incorporate meta paths under the guid-
ance of the author identification task. The embeddings are
learned by both task-specific and network-general objectives.

However, as the heterogeneous networks evolve over time,
all the aforementioned network representation learning meth-
ods are no longer applicable. In order to analyze the hetero-
geneous network in the dynamic condition, we first propose

DHNE to combine both the historical and current information
in the dynamic heterogeneous network to learn the unified
representations for nodes.

III. PROBLEM STATEMENT
In this section, we formulate the problem of dynamic het-
erogeneous information network embedding. First, we give
necessary definitions used throughout this paper as follows:
Definition 1 (Dynamic Heterogeneous Information Net-

work):Adynamic heterogeneous information networkwithin
time T can be defined as a collection G = {G1,G2, ...,GT }
containing a series of time snapshots. The snapshot at time t is
a heterogeneous information network that can be denoted as
Gt = (Vt ,Et , f , γ ), where Vt and Et denote the set of nodes
and edges at time t respectively, f : Vt → A is the node
type mapping function, where each node v ∈ Vt corresponds
to a specific type in A. γ : Et → R is the edge type
mapping function, where each link e ∈ Et corresponds to a
specific type in R. In the heterogeneous information network,
|A| + |R| > 2.
Definition 2 (Network Representation Learning): Given a

network G = (V ,E), where E represents a collection of
nodes, E represents a collection of edges. Network repre-
sentation learning maps nodes v ∈ V in the original space
to low-dimensional spaces in the form of low-dimensional
dense vectors rv ∈ Rk (where k � |V |) through a mapping
function, such that the structural and semantic relations in the
original network can be preserved in Rk .
Definition 3 (Dynamic Heterogeneous Information Net-

work Representation Learning): Given a dynamic heteroge-
neous network G = {G1,G2, ...,GT }, we map nodes in the
snapshots to the low-dimensional space so that nodes can
be represented as vectors and the same node at different
times can be represented as different vectors, so that the
temporal and structural information can be preserved in the
low-dimensional vector space.
Definition 4 (Meta Path): In the heterogeneous informa-

tion networks, node vi and vj may be connected via multiple

paths. In Figure 3, authorsA2 andA4 are connected byA2
R1
−→

P2
R2
−→ A4 and A2

R1
−→ P2

R2
−→ C2

R3
−→ P3

R4
−→ A4 in an

academic information network. We define different types of
paths between nodes as meta paths. Formally, a meta path can
be denoted as a series of different types of nodes connected

by the different types of edges: O1
R1
−→ O2

R2
−→ ...

Rl
−→

Ol+1, where Oc is the node in type c and Rc is the relations
between two nodes in type c. Each path has unique semantic

information: the path A
R1
−→ P

R2
−→ A means two authors are

coauthors. The path A
R1
−→ P

R2
−→ C

R3
−→ P

R4
−→ A means

two authors published papers on the same conference.
Different from previous network embedding work which

only considered the static characteristics of heterogeneous
network. The goal of our work is to learn the embedding
rv ∈ Rk of nodes in the dynamic heterogeneous information
network G = {G1,G2, ...,GT } based on meta paths. The
main challenge of our work is how to preserve the historical
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FIGURE 1. The framework of DHNE. The framework of DHNE can be divided into three parts: (a) constructing the
historical-current graph to preserve the historical information as well as current information. (b) performing the random
walks under the guidance of meta path to get meta-path-based node sequences which contain both the structural and
semantic information. (c) inputing the node sequences into the dynamic heterogeneous skip-gram model to learn the node
embeddings.

information as well as the current information to learn rea-
sonable representations of nodes from the perspective of
temporal and spatial condition.

IV. THE PROPOSED FRAMEWORK: DHNE
Since the heterogeneous network evolves over time,
the embeddings of nodes are not only affected by the network
structure at the current time, but also the historical informa-
tion at the previous time steps. Hence, we propose DHNE to
perform random walks on the constructed historical-current
graphs in order to capture both the historical information and
current information in the dynamic heterogeneous network.
The framework of the proposed model DHNE is shown as
Figure 1. In our work: first, we combine the historical infor-
mation with the current information to construct integrated
graphs named historical-current graphs. And then, we per-
form random walks under the guidance of meta path to get
node sequences which contain semantic information. Finally,
we proposed dynamic heterogeneous skip-gram model to
learn the embeddings in an efficient way.

A. CONSTRUCTING THE HISTORICAL-CURRENT GRAPHS
Inspired by Word2vec model in the NLP (Natural Language
Processing) and DeepWalk in homogeneous network rep-
resentation learning, we regard neighborhood of nodes in
the network as context of words in the text. Different from
the previous work that only take current neighborhood into
account, we take all of the neighborhood in the time step into
account to learn the node embedding in the dynamic condi-
tion. To get all the neighbors in the time step, we construct
a historical-current graph which consists of all the nodes at
current time and their neighbors at the previous time steps in
the time window. Based on the prior knowledge, we make the
following assumptions:
• Networks always evolve smoothly over time. Therefore,
when constructing a historical-current graph, nodes and
its past neighbors at different times should be kept in
the adjacent position in order to preserve the temporal
smoothness of the network;

• Intuitively, the closer the historical neighbor node is to
the current time, the greater the influence of the his-
torical node on the current node. In order to preserve
this characteristic, we construct nodes and their past
neighbors in this way: the closer the historical moment
is to the current time, the greater the weight of the edge
between nodes and their past neighbors. The weight can
be expressed as:

W (Ntj |NTi ) =
exp[−(Ti − tj)]∑

Ti−τ<tm<Ti exp[−(Ti − tm)]
(1)

where W (Ntj |NTi ) denotes the edge weight of node Ntj
and NTi , Ti denotes the current time, tj denotes a certain
historical time in the time step τ .

• The change of a node in a dynamic network is often
affected by the change of its neighbors. Therefore,
the influence of the historical network on the current
node is mainly reflected in the local structure of the net-
work containing the node. To capture the local informa-
tion in history, we combine nth-order past neighbors of
current nodes to construct the historical-current graphs.
And the value of n is determined by the length of meta
path we selected in the random walk process.

Based on the above assumptions, in the time step τ , we link
node vt and its past neighbors through weighted edges which
can be calculated according to Equation 1. For the node at
time t , a historical-current graph as shown in Figure 2 can
be constructed. In order to preserve semantic information
contained in the historical-current graphs, we only keep the
current node vt without retaining the historical self-nodes
vt−1, vt−2, ..., vt−τ . For the sake of understanding, we use
dashed lines to represent the historical self-nodes and the
associated edges which do not actually exist in the historical-
current graph.

B. RANDOM WALKS ON THE HISTORICAL-CURRENT
GRAPHS
The approaches DeepWalk and node2vec have proved that
random walks on the network can preserve the structural
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FIGURE 2. An example of the historical-current graph. The node vt
represents node in the current graph Gt and vt−1, vt−2, vt−3 represent
the historical self-nodes of vt at the previous time steps. In order to
preserve semantic information contained in the meta paths, we construct
weighted edges directly between current node and its historical
neighbors in the graph Gt−1, Gt−2, Gt−3.

FIGURE 3. An example of random walker under the guidance of different
meta paths.

characteristics of network well. Therefore, in our work,
we perform random walks on the historical-current graphs
under the guidance of meta path to capture the structural and
semantic information of dynamic heterogeneous network.
If two nodes are close to each other or share many common
neighbors, the probability of their co-occurrence in the ran-
dom walks will be greater.

Historical-current graphs contain different types of nodes
and weighted edges which lead to traditional random walk
generally no longer applicable. In our work, we perform
biased random walks on the historical-current graphs under

the guidance of meta paths. Given a meta path M : O1
R1
−→

O2
R2
−→ ...Oc

Rc
−→ Oc+1...

Ri
−→ Ol+1, the transition

probability at step i in the randomwalks is defined as follows:

P(vi+1|vci ,M )

=


W (vi+1|vci )∑

vj∈Hc+1(vci )
W (vj|vci )

, (vi+1, vci ) ∈ E, f (vi+1) = c+ 1

0, (vi+1, vci ) /∈ E or f (vi+1) 6=c+ 1
(2)

where vci ∈ Oc, vi+1 denotes the node at next step, and
Hc+1(vci ) denotes the neighborhood of node vci in type c + 1
which may contains neighbor nodes in the current time and
historical time. We can see from the Equation 2 that only the
node is a neighbor node that satisfies the type guided by meta
path can become the next node that the random walk passes
through. For example, in Figure 3, based on the meta path

M1: A
R1
−→ P

R2
−→ C

R3
−→ P

R4
−→ A, the next step of

random walker on node P2 transitioned from node A2 must
be C2; based on the meta path M2: A

R1
−→ P

R2
−→ A, the next

step of random walker on node P2 transitioned from node A2
would be A2, A3, and A4. Through the meta-path-based ran-
dom walk, we can get node sequences containing structural
correlation, semantic information and historical information
on the constructed graph.

C. DYNAMIC HETEROGENEOUS SKIP-GRAM
The Skip-gram model is a language model used to maximize
the co-occurrence probability between words that appear
within a window in order to predict the ‘‘context’’ of the
given word. In our work, we extend the skip-gram model to
dynamic heterogeneous network representation learning. The
objective of the dynamic heterogeneous Skip-gram model is
to maximize the probability of observing the neighbors for
a node on the historical-current graph. Given a historical-
current graph which consists of nodes in |A| types, the objec-
tive function can be defined as follows:

max
θ

∑
v∈V

∑
c∈A

logP(Hc(v)|v; θ ) (3)

where Hc(v) denotes the neighborhood of node v in type c on
the historical-current graph, θ denotes the parameter set of
the model. The P(Hc(v)|v; θ ) can be denoted as follows:

P(Hc(v)|v; θ ) =
∏

mc∈Hc(v)

p(mc|v; θ ) (4)

where p(mc|v; θ ) denotes the probability of node mc existing
as the neighbor of node v. The probability is commonly
defined as a softmax function. In order to normalize the
specified node type and their past neighbors, we define the
softmax function as follows:

p(mc|v; θ ) =
exp(Xmc · Xv)∑

uc∈Vc exp(Xuc · Xv)+
∑

nc∈hc exp(Xnc · Xv)
(5)

where Vc is the set of current neighbors in type c of node v,
hc is the set of historical neighbors in type c of node v. Xmc ,
Xv, Xuc and Xnc are the embeddings of nodes mc, v, uc and nc,
respectively. By adjusting the softmax function in the output
layer of skip-gram model to adopt to the characteristics of
dynamic heterogeneous networks, we can specify one set of
distributions for each type of neighbors both in the history
and current.

In order to alleviate the computations of our algorithm,
we adopt the negative sampling method [24] to optimize
our method. The probability that a node is selected as a
negative sample is related to the frequency at which it appears
in the node sequences. According to the work [24] of the
predecessors, we select negative samples according to the
degree distribution of nodes. The sampling probability can
be denoted as follows:

p(vi) =
f (vi)3/4∑K
j=1 f (vj)3/4

(6)
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Algorithm 1 DHNE
Input: The dynamic heterogeneous information network

G = {G1,G2, ...,GT }, time step τ , walks per node w,
walk length l, embedding dimension d , negative sample
number N , and neighborhood size k .

Output: The latent node embeddings X ∈ RV×d .
1: Initialize X
2: for t = τ − 1 to T do
3: G∗ = CreateHistorical-currentGraph(gt ,τ ,nodei)
4: for i = 1 to ω do
5: for node∗ in G∗ do
6: Walks = BiasedRandomwalk(G∗,node∗,l)
7: X = DynHeterogeneousSkipgram(X ,k ,walks,N )
8: end for
9: end for
10: end for

Algorithm 2 CreateHistorical-currentGraph(gt ,τ ,nodei )

Input: graphs gt = {Gt ,Gt −1, ...,Gt−τ+1} within the time
step, time step τ , meta path type.

Output: The Historical-current graph G∗

1: for nodei in Gt do
2: for j = 1 to τ do
3: Create weighted edges between nodei and its past

neighbors according to Eq.1.
4: Append past subgraph of nodei to Historical Graph
5: Merge Historical Graph andGt to update Historical-

current Graph
6: end for
7: end for

Therefore, the final objective function of our algorithm can
be denoted as:

O(X ) = log σ (Xmc · Xv)+
N∑
i=1

Euic∼pc(uc),nic∼pc(nc)

× [− log σ (Xuic · Xv + Xnic · Xv)] (7)

where σ = 1/(1+ exp(−x)) is the sigmoid function, N is the
number of sampled negative nodes.

Commonly, we adopt Stochastic Gradient Descent
method [25] to optimize the objective function in Equation 7.
Algorithm 1 shows the core of our method.

V. EXPERIMENTS
In this section, we validate the effectiveness of our model
on two real-world datasets. First, we introduce the datasets
and baseline methods we used in our experiments in details,
and then we conduct downstream tasks: node classification,
visualization and trajectory analysis. Finally, we analyze the
parameter sensitivity of time step. The implementation of our
model DHNE and datasets are publicly available.1

1https://github.com/Yvonneupup/DHNE.git

Algorithm 3 DynHeterogeneousSkipgram(X ,k ,N ,d)
1: for vi ∈ walks do
2: c = f (vi)
3: for vc ∈ walks[i− k, i+ k] do
4: X = X − η ∂O(X )

∂X (According to Eq. 7)
5: end for
6: end for

TABLE 1. Labels of DBLP dataset.

TABLE 2. Labels of AMiner dataset.

A. DATASETS
1) DBLP
The DBLP dataset [26] is an author-centered academic infor-
mation integration dataset composed of computer science
publications, which plays an important role in the research
of heterogeneous information networks. In this paper, we use
a subset of the DBLP dataset which contains bibliographic
information in six research areas: Artificial Intelligence &
Machine Learning, Algorithm & Theory, Database, Data
Mining, Computer Vision, Information Retrieval. The annual
data is stored in the form of a snapshot which contains three
types of nodes: papers, authors, conferences. We construct
these annual snapshots from year 2000 to 2018. There are
67580 papers, 64978 authors, and 24 conferences. Table 1
shows the name of the conference and its domain.

2) AMiner
AMiner [27] is an academic search engine that helps us mine
deep knowledge from academic networks. We collected a
subset of AMiner dataset which contains papers published
from year 1990 to 2005 in five research areas: Data mining,
Theory, Database, Visualization, and Medical Informatics,
Table 2 shows the detailed information. In the experimental
dataset, there are 18464 papers, 23418 authors, and 19 con-
ferences. And we use it to construct a dynamic heterogeneous
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TABLE 3. Multi-class author node classification results in DBLP dataset.

TABLE 4. Multi-class paper node classification results in AMiner dataset.

information network which contains three types of nodes:
papers, authors, conferences in 16 snapshots.

B. BASELINE METHODS
We compare our approach DHNE against four state-of-the-
art methods as follows. (Since this is the first work to learn
node in the dynamic heterogeneous network, we compare our
method with static heterogeneous network embedding meth-
ods, homogeneous network embedding method, and dynamic
homogeneous network embedding method.)
• DeepWalk [6]: DeepWalk is a homogeneous net-
work representation learning method which learns node
embeddings in static graphs. In our experiment, we run
DeepWalk on every snapshot and use the unified embed-
dings to do the comparative experiments.

• HTNE [28]: HTNE performs the dynamic homogeneous
network representation learning based on the Hawkes
process which can capture both the historical and current
information from the perspective of temporal sequences.

• Metapath2vec [4]: Metapath2vec conducts random
walks in heterogeneous information network under the
guidance of meta paths, and then adopts the Skip-gram
model to learn the node representations.

• Metapath2vec++ [4]: Metapath2vec++ improves the
normalization of the softmax function in metapath2vec
to separates different types of nodes in the output layer.

We set the default parameters of our method DHNE as
follows:

(1) The vector dimension: 128;
(2) The negative sample number: 5;
(3) The gradient drop learning rate: 0.01;
(4) The random walk length: 100;

(5) The number of walks per node: 50;
(6) the neighborhood size: 7;
(7) time step: 4.
All the baseline methods keep the same parameter to

DHNE as much as possible. The parameters in the baseline
algorithm that do not belong to the above parameters are set
following the suggestion in their original papers.

C. DOWNSTREAM TASKS
In this section, we carry out network application tasks such as
node classification and visualization to verify the feasibility
and effectiveness of our method DHNE.

1) CLASSIFICATION
We conduct node classification task on DBLP and AMiner
datasets, and we get labels of nodes used in the classification
experiment in this way: the labels of conference are shown
in Table 1 and Table 2, the labels of papers are determined
by the conference to which the paper belongs, and the labels
of authors are determined by the papers published by the
authors. So, for DBLP dataset, we can divide each type of
nodes into six categories. For AMiner dataset, nodes can be
divided into five categories. In our experiment, the embed-
dings learned from different methods were classified by a
linear SVMclassifier.We repeat classification experiment ten
times and take the average of Micro-F1 and Macro-F1 scores
as the final classification results.

We set the training set size varying from 10% to 80%.
Table 3 demonstrates the the average classification results
of authors from 2000 to 2010 on DBLP dataset. Table 4
demonstrates the classification results of papers from 1990 to
2000 on AMiner dataset. We can see that, compared with
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TABLE 5. Trajectory classification of authors on DBLP and AMiner dataset.

baseline algorithms, the DHNE algorithm proposed in this
paper performs better than all the baseline methods on met-
rics Macro-F1 and Micro-F1. On the DBLP dataset, when
given 80% of nodes as the training set, the DHNE algorithm
achieves 1.70%∼ 22.82% improvements onMacro-F1 score.
When the training set takes up 70%, the DHNE algorithm
gets the highest Micro-F1 score value, which achieve 1.11%
∼ 22.64% improvements comparing with the baseline meth-
ods. On the AMiner dataset, when the training set takes up
70%, the DHNE achieves 1.17% ∼ 21.69% improvements
on Macro-F1 score and 1.89% ∼ 22.30% improvements on
Micro-F1 score comparing with the baseline algorithms.

From the experimental results, we can see, by constructing
the historical-current network graphs, we can fuse the his-
torical information into the representations of nodes which
can help us to improve the classification accuracy. Therefore,
compared with baseline methods which only take the current
information into account, our method performs better.

2) ANALYZE THE TRAJECTORY OF AUTHORS
Heterogeneous network representation learning methods on
static graphs tend to focus on mining information in static
condition. When analyzing the dynamic characteristics of
networks, the performance of these algorithms will be greatly
reduced. Our method learns the node embeddings in dynamic
condition which can help us analyze dynamic characteristics
of nodes such as node trajectory.

In the academic information networks, we can know
whether the author is ‘‘Specific Researcher’’ or ‘‘Interdis-
ciplinary Researcher’’ through the trajectory of the author
over a period of time. For authors in the temporal aca-
demic networks, authors may research in different fields
and we can call them ‘‘Interdisciplinary Researcher’’, while
authors research in a certain field can be called ‘‘Specific
Researcher’’. From the labels of authors in different years,
we can get the category to which the author’s trajectory
belongs. For a period of time, if the author’s label remains
the same, then the author’s trajectory belongs to ‘‘Specific
Researcher’’. While if the author’s label changes, the author’s
trajectory belongs to ‘‘Interdisciplinary Researcher’’. We can
get author embeddings in every year, thus we can perform the
trajectory classification for authors in the time step in order
to mine the dynamic information about the network. Table 5
demonstrates the trajectory classification results on DBLP

FIGURE 4. Visualization of authors from four research areas in Aminer
dataset.

dataset from year 2010 to 2018 and on AMiner dataset from
year 1995 to 2005.

We can see, the proposed method DHNE have got
better performance than baseline methods. On DBLP
dataset, DHNE achieves 2.63% ∼ 13.99% improvements
in accuracy, 2.85% ∼ 13.94% improvements in Micro-F1
score, 3.08% ∼ 14.01% improvements in Macro-F1 score.
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FIGURE 5. Impacts of time step on DBLP and AMiner dataset.

On AMiner dataset, DHNE achieves 3.96% ∼ 14.39%
improvements in accuracy, 3.89% ∼ 13.74% improvements
in Micro-F1 score, 3.55% ∼ 13.50% improvements in
Macro-F1 score. Therefore, on both of the dataset DBLP
and AMiner, DHNE achieves great improvements in node
trajectory classification which indicates that the historical
information combined in the current network improves the
quality of node embeddings for analyzing the dynamic char-
acteristics of nodes.

3) VISUALIZATION
Visualization is an effective and intuitive downstream task to
evaluate the quality of node embeddings learned from differ-
ent approaches. We leverage the t-SNE algorithm to visualize
the representation vectors of 2663 authors from four fields
(Data Mining, Theory, Database, Visualization) in 2005 on
the AMiner dataset into the 2-dimensional space. We use dif-
ferent colored dots to represent authors in different research
areas. Specifically, orange dots represent authors in ‘‘Data
Mining’’, green dots represent authors in ‘‘Theory’’, purple
dots represent authors in ‘‘Database’’, blue dots represent
authors in ‘‘Visualization’’. Figure 4 shows the visualization
results of node embeddings obtained by different algorithms.

As can be seen from the Figure 4, the DeepWalk algorithm
can not map the authors from four fields to independent
communities, they are totally confused; The HTNE algorithm
can map authors in ‘‘Data Mining’’ domain into an inde-
pendent community, but it maps authors in the ‘‘Database’’
and ‘‘Theory’’ domain to relatively scattered locations, fail-
ing to preserve the properties of nodes in this two research
areas; The metapath2vec++ algorithm can map authors in

‘‘Visualization’’ and ‘‘Data Mining’’ domains to relatively
independent communities, but it fails to separate authors in
‘‘Theory’’ and ‘‘Database’’ domains completely; Compared
with the baseline algorithms, the proposed DHNE algorithm
can map authors into different communities and there are
clear margins among different areas. The visualization results
indicate that the historical information combined with cur-
rent information in our method can help us do community
detection [29]. This is because the formation of a community
is often related to historical information, which can assist
us in discovering communities. The embeddings generated
by our method DHNE integrate historical information and
current information, which can preserve the community infor-
mation better. Therefore, the embeddings learned by our
method DHNE perform better than other baseline methods
in visualization.

D. PARAMETER SENSITIVITY
In this section, we analyze the parameter time step T , which
determines the historical information contained in the con-
structed historical-current graph. The larger the parameter T ,
the more historical information the historical-current graph
contains.We analyze the classification results of authors from
2000 to 2002 in the AMiner dataset and authors from 2010 to
2012 in the DBLP dataset based on DHNE with T varying
from 2 to 8 to validate the parameter sensitivity of ourmethod.

As the Figure 5 shown, on the AMiner dataset, when the
time step is set to 4, we can obtain the maximum value of
Accuracy, Macro-F1 and Micro-F1 score. When 1 < T < 4,
the larger the parameter T , the higher the scores. And when
T > 4, the Accuracy, Macro-F1 and Micro-F1 scores are
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relatively stable when the parameter T increases. We can
analyze the experimental results theoretically: when the time
step is short, the constructed historical-current graph can-
not adequately capture the historical information affecting
the node representations, which results in low classification
accuracy; when the time step is too large, it will only lead to
an increase in computation rather than improving the perfor-
mance of the node representations in classification accuracy.
Because the farther the historical information is from the
current time, the less influence it will have on the current
node representations. Therefore, the most appropriate time
step should be a moderately sized value, rather than simply
choosing a large time step T to integrate more historical
information.

Besides, we can see from the Figure 5 that on different
datasets, time step have different influence on classification
results. For DBLP dataset, when the parameter T is set to 5,
the Accuracy, Macro-F1 and Micro-F1 scores are largest.
Intuitively, there are two reasons for this difference: first,
the authors from the two datasets are selected from different
years.We select authors in AMiner dataset from 2000 to 2002
while selecting authors in DBLP dataset from 2010 to 2012,
the connection between authors in the early years may change
faster than authors in recent years; Secondly, the authors
from the two datasets are selected from different research
areas. The connection between authors in the research areas
included in theAminer datasetmay change faster than authors
in research areas from DBLP dataset. Since we leverage the
effective historical information to assist the node embed-
ding, the faster the connection between authors changes,
the smaller the time step should be selected. Therefore,
the most appropriate time step T on AMiner dataset is
smaller than the most appropriate time step T on DBLP
dataset.

VI. CONCLUSION
In this paper, we proposed DHNE, a novel dynamic hetero-
geneous network representation learning method to mine the
rich information in history as well as information at current
time. By constructing the historical-current graphs in the time
step, we can combine the historical and current informa-
tion in the original network. Through random walks on the
constructed historical-current graphs under the guidance of
meta path, we can capture the semantic information in the
network. Since we integrated multiple types of information
into network representation learning, the embeddings learned
by our model performed well in the downstream tasks such
as node classification and visualization.

At present, the research on network dynamic characteris-
tics is still in its infancy, and there are very few researches
on dynamic heterogeneous information networks. The inte-
gration of dynamic information makes the network more
complex, and dynamic networks often have a very large
scale. Thus, there are some challenges in future work: how
to process large-scale networks efficiently, how to integrate
the attributes of nodes into network representation learning,

and how to process streaming data in real time are the next
research focus.
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