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ABSTRACT It is a challenge problem to stably control the well-known Lorenz system with uncertain
parameters because of its nonlinearity and singularity. In this paper, by combining Zhang dynamics (ZD)
and gradient-algorithm, a novel Zhang-Gradient (ZG) controller is designed and developed for solving
the controlling problem of the uncertainty Lorenz system. In order to improve computing efficiency,
the stochastic parallel gradient descent algorithm is also introduced to perform an incremental adjustment
of the unknown parameters for the uncertain Lorenz system. The presented theoretical analysis in this paper
shows that our such presented method could conquer the possible singularity which is a difficult problem in
typical backstepping controller design. The computer simulation results exhibit that, the controlled system
can be stable globally and the tracking error converges to zero asymptotically, which are further demonstrate
the effectiveness and feasibility of our presented ZG controller.

INDEX TERMS Uncertain Lorenz system, Zhang dynamics, backstepping, Lyapunov stability, stochastic
parallel gradient descent.

I. INTRODUCTION
The interesting nonlinear phenomenon chaos is widely
encountered in practical engineering systems. For example,
in chaotic communication [1], by using the extreme sen-
sitivity to initial conditions, the noise-like chaotic signals
could be applied to transmit information in a secure and
robust way in communication technology research, in which,
the useful signal can be hidden into the chaotic signals, and
thus protected by this way [2].

However, in some cases, chaotic phenomenon should be
avoided and overcome for a stable state in the control
fields. Therefore, since the pioneering work by Pecora et al.
in 1990 [3], [4], many techniques for chaos control have
been developed and investigated [5]–[8]. In [9], with the
mild assumptions on the partial derivatives of the unknown
functions, the developed adaptive neural network control
scheme achieves semi-global uniform ultimate bounded-
ness of all the signals in the closed-loop system. In [10],
two different methods, feedback control and adaptive con-
trol, are used to suppress chaos to an unstable equilibrium
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or the unstable periodic orbits. The authors in [11] have
designed a controller based on predictive principle to stabilize
the system trajectories at the unstable equilibrium points
successfully.

As a classic and widely used controlling approach, back-
stepping method was firstly presented by A. Saberi et al.
in 1990 [12]. It is a kind of systematic and synthetic technique
to design a controller for an incertain system by applying a
recursive procedure that combines the choice of a Lyapunov
function with the design of feedback control [13].

In particular, the control of the well-known Lorenz system
has been investigated extensively [14]–[16]. Generally speak-
ing, the problem of controlling Lorenz system is challenged
from the following three points.

i) Since the Lorenz system is a nonlinear dynamical sys-
tem, the methods using linear state feedback cannot
guarantee the global stability for the system in some
situations [17].

ii) Compared to the active control (i. e., the system param-
eters are known), it is more difficult to control chaos in
the presence of uncertainty in system parameters [18].

iii) Although the Lorenz system can be transformed into a
nonlinear system in the ‘‘strict-feedback’’ form, many
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control methods (e.g., the typical backstepping indi-
cated in [13]) cannot conquer the singularity problem
for a Lorenz system.

This paper intends to control the Lorenz system with
consideration of all points mentioned above. Especially,
to solving the singularity problem in controlling Lorenz sys-
tem, Lenz and Obradovic in [19] had presented a global
approach with partial linearization. In [20], Zeng and Singh
had proposed a well organized adaptive controller based
on Lyapunov stability theorem. By exploiting the specific
property of the Lorenz system, an adaptive backstepping
controller was presented by Wang and Ge [21]. Based on
the analysis of the specific structure of the Lorenz sys-
tem, these methods can solve artfully the singularity prob-
lem. Therefore, it may be difficult to directly employ or
expand these methods in controlling other similar nonlinear
systems.

Recent studies have shown that Zhang dynamics (ZD) is
designed and developed for the time-varying problems solv-
ing [22]–[24]. By using the combination of ZD and gradient-
based dynamics (GD), the authors in [22] have presented a
tracking controller in the form of u̇ (i. e., the time-derivation
of control action u) for a class of nth-order nonlinear sys-
tems. Inspired by [22], in this paper, ZD is firstly applied
to construct three error functions related to the three Lorenz
differential equations by the Lyapunov stability theorem,
and then GD is exploited to obtain values of the controller
and the system parameters in the form of u̇, ṗ1, ṗ2, and
ṗ3, respectively. Through the combined method ZG (i. e.,
the combination ZD and GD), a novel and singularity-free
controller (i. e., Zhang-Gradient controller) is designed and
developed in this paper for the Lorenz system.

Additionally, in the process of computer simulation,
we find that the estimated values of the system parameters
are hard to obtain successfully due to the complication of
the ultimate deduced-equations (i.e., Eqs. (21)-(23) in Sub-
section III-B) obtained by Zhang-Gradient controller. Thus,
we intend to achieve the approximation of these parameters
(i.e., ṗ1, ṗ2, and ṗ3) in use of Stochastic Parallel Gradient
Descent (SPGD) method [25], which is based on the gra-
dient descent algorithm and the Simultaneous Perturbation
Stochastic Approximation (SPSA) for multivariate stochas-
tic optimization in engineering systems [26]. The conver-
gence and stability of SPGD was deduced preliminarily by
Vorontsov and Sivok [25] and Vorontsov and Carhart [27].
As a result, the computation complexity for system parame-
ters is lowered greatly with the update laws defined by SPGD,
and simulation results further substantiate this problem can be
solved effectively.

The rest of the paper is organized as follows. In Section II,
the problem formulation is presented. Section III deals with
the details of the ZG principle and exhibits the ZG controller
design procedure. Also, in this section the SPGD algorithm is
employed to improve the computation efficiency for the esti-
mation of system parameters. In Section IV, one illustrative
example is simulated and analyzed to show the exactness and

effectiveness of ZG approach. Some final remarks about this
paper are given in the last section.

Before ending the introductory section, the main contribu-
tions of the paper are listed as follows.

i) Based on the Zhang dynamics and gradient-algorithm,
a novel Zhang-Gradient controller is designed and
developed for the uncertain well-known Lorenz chaotic
system.

ii) To lower the computation complexity, a SPGD design
procedure is presented to get the estimated values of the
Lorenz system.

iii) Computer simulation results via an illustrative example
are presented and analyzed to show the effectiveness of
the presented ZG controller with the SPGD computa-
tion method.

II. PROBLEM FORMULATION
Lorenz system displays very complex dynamical behaviors
and has become a paradigm for chaotic dynamics, together
with its mathematical expression as follows.ẋ1 = p1x2 − p1x1

ẋ2 = −x1x3 + p2x1 − x2
ẋ3 = x1x2 − p3x3

(1)

where the states (x1, x2, x3) are needed to be controlled to the
stable states, and the system parameters p1, p2, p3 are positive
constants and are assumed to be uncertain. The system (1)
can generate chaotic behavior in two parameter-pairs, i.e., the
first space (p1 = 10, p2 = 28 and p3 = 8/3), and the second
space (p1 = 16, p2 = 45 and p3 = 4), which can be shown
in Figs. 1 and 2 [28]. The purpose of this work is to design
an adaptive Zhang-Gradient controller for system (1) such
that all the states (x1, x2, x3) in the controlled system remain
ultimately bounded and stabilized, which would be discussed
in the simulation part.

Therefore, an external control input u ∈ R is fed into the
third sub-equation in system (1) to form the controlled Lorenz
system (2) expressed as follows.ẋ1 = p1x2 − p1x1

ẋ2 = −x1x3 + p2x1 − x2
ẋ3 = x1x2 − p3x3 + u

(2)

In general, Backstepping is one of the most popular design
methods for adaptive nonlinear control because it can guar-
antee global stability, tracking, and transient performance
for a class of strict-feedback system [21]. However, owing
to the singularity problem, the Lorenz system could not be
controlled directly by using the typical backstepping design
procedure. This is because that the controlled Lorenz sys-
tem (2) can be transformed into the following general strict-
feedback form with n = 3 (n denotes the number of unknown
parameters):ẋi = bigi(x̄i)xi+1 + θTFi(x̄i)+ fi(x̄i)

ẋn = bngn(x̄n)u+ θTFn(x̄n)+ fn(x̄n)
y = x1,

(3)
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FIGURE 1. Chaotic behavior of system (1) with the first parameter space (p1 = 10, p2 = 28, p3 = 8/3).

FIGURE 2. Chaotic behavior of system (1) with the second parameter space (p1 = 16, p2 = 45, p3 = 4).

where i = 1, · · · , n − 1, the state variables x =

[x1, x2, · · · , xi]T ∈ Rn, u ∈ R is the control input, y ∈
R is the system output, b ∈ Rn and θ ∈ Rp are the
vectors of parameters, gi(·), Fi(·) and fi(·) are the smooth
functions. Thus, by the general strict-feedback form (3),
we have the following expressions to match the controlled
system (2).

g1(x1) = 1, g2(x1, x2) = x1, g3(x1, x2, x3) = 1

f1(x1) = 0, f2(x1, x2) = −x2,

f3(x1, x2, x3) = x1x2,

F1(x1) = [x1, 0, 0]T , F2(x1, x2) = [0, x2, 0]T ,

F3(x1, x2, x3) = [0, 0, x3]T ,

b = [b1, b2, b3]T = [p1,−1, 1]T ,

θ = [−p1, p2,−p3]T .

In the procedure of backstepping for (2), in order to achieve
the state of xi+1, the following operation (resulting from the
first sub-equation of (3)) would be performed,

xi+1 =
ẋi − θTFi(x̄i)− fi(x̄i)

bigi(x̄i)
.

Evidently, we must make sure that the value of the denom-
inator bigi(x̄i) is not zero before performing division oper-
ation. Consequently, the smooth nonlinear function gi(·)
must be away from zero for avoiding a possible singularity.
But for the controlled Lorenz system like the form of (3),
g2(x1, x2) = x1. It may take the value of zero. So, the typical
backstepping method cannot be directly applied to Lorenz
system. In the ensuing sections, a singularity-free Zhang-
Gradient controller is presented for the uncertain Lorenz
system (2) to guarantee global stability and regulate the
state x1(t) of system (2) to the set-point xe1 = 0 [21].
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III. ZHANG-GRADIENT CONTROLLER DESIGN
Before presenting the design procedures of Zhang-gradient
controller, in Subsection III-A, we would like to simply
introduce the basic idea of ZD method which transforms the
stabilization control problem into an error tracking control
problem via Lyapunov stability theory. Corresponding to the
controlled Lorenz system (2) presented in Subsection III-B,
the controller in form of u̇ is designed by Zhang-Gradient
controller and depicted in detail into an error tracking control
problem solving. Subsection III-C presents the update law for
ṗ1, ṗ2 and ṗ3 defined by SPGD method by the principle of
SPGD method.

A. ZD BASIC DESIGN IDEA
Different from gradient-based dynamics, a special kind
of recurrent dynamics has recently been proposed by
Zhang et al. used for solving online time-varying prob-
lems [29]. Such a recurrent dynamics is designed based on
an indefinite error-monitoring function instead of a usually
norm- or square-based energy function. As for the following
nonlinear equation

f (x(t), t) = 0. (4)

The solution objective is to find x(t) ∈ R in real time t to
make Eq. (4) hold true.

Assume that x∗(t) is denoted by the theoretical solution
of (4) at any time instant t ∈ [0,−∞). At first, we could
construct the following indefinite error function e(t) so as to
set up a Zhang dynamics to solve the nonlinear Eq. (4),

e(t) := f (x(t), t). (5)

Then, the time derivative of e(t), i.e., ė(t), should be cho-
sen and forced mathematically such that the error function
e(t) could converge to zero with the following general form
(termed as ZD design formula [29]):

de(t)
dt
:= −γ ϕ(e(t)), (6)

or equivalently, we have

df
dt
:= −γ ϕ(f (x(t), t), (7)

where γ is a positive design parameter used to scale the
convergence rate (i.e., learning rate) and ϕ(·) is a nonlinear
activation function. Generally speaking, any monotonically
increasing odd activation function ϕ(·) could be used for the
construction of the dynamics model. In this paper, we choose
the linear activation function ϕ(e) = e.
Remark 1 [29]: If the linear activation function ϕ(·) is used,

the exponential convergencewith rate γ could be achieved for
ZD model (7). In addition, if the power-sigmoid activation
function is used, superior convergence can be achieved over
the whole error range (−∞,+∞), as compared to the linear
case.

B. ZHANG-GRADIENT CONTROLLER DESIGN PROCEDURE
In this subsection, the design procedure via ZG method is
presented detailedly to avoid the singularity problem caused
by g2(x1, x2) = x1 for the uncertain Lorenz system with the
following four steps, in which, ZD method is used to get the
expression of tracking errors (z1, z2, z3) in the first tree steps,
and in the final step, the gradient dynamics (GD) is applied to
achieve control input u and the estimated values of the three
unknown parameters for the Lorenz system (2).
Step 1: Similar to the backstepping design scheme, we can

define z1 = x1 from the first sub-equation in (2), and then its
time-derivative is given by

ż1 = ẋ1 = p1x2 − p1x1. (8)

According to Zhang et al’s design idea, the tracking error z1
must be converged to zero (i.e., xe1 = 0 presented at the end
of Section II), and thus we can construct the update law of the
first Zhang error function z1(t) written as follows.

ż1 := −γ z1. (9)

To stabilize the z1-subsystem (8), the Lyapunov function
candidate can be defined as

V1 =
1
2
z21,

and its derivative is

V̇1 = z1ż1 = x1(−γ z1) = −γ z21. (10)

Step 2: Define z2 = ż1 + γ z1, which can be rewritten as

z2 = ẋ1 + γ x1
= p1x2 − p1x1 + γ x1. (11)

Its derivative is given by

ż2 = p1ẋ2 − p1ẋ1 + γ ẋ1
= p1p2x1 − p1x1x3 − p1x2 − p21x2
+ p21x1 + γ p1x2 − γ p1x1 (12)

In order to make the tracking error z2 converge to zero,
the update law of the second Zhang error function is constr-
cuted as ż2 = −γ z2. Similarly, to stabilize the z2-subsystem
defined by (12), the Lyapunov function candidate can be
chosen as

V2 = V1 +
1
2
z22,

and its derivative is

V̇2 = V̇1 + z2ż2 = −γ z21 − γ z
2
2. (13)

Step 3: Define z3 = ż2 + γ z2, which can be rewritten as

z3 = ż2 + γ z2
= (p1p2 + p21 − 2γ p1 + r2)x1
+ (2γ p1 − p1 − p21)x2 − p1x1x3. (14)
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To simplify the derivation steps, let k = p1p2+p21−2γ p1+r
2,

q = 2γ p1 − p1 − p21. Therefore, Eq. (14) can be rewritten as

z3 = kx1 + qx2 − p1x1x3. (15)

Its derivative is given by

ż3 = (k − p1x3)ẋ1 + qẋ2
− p1x1(x1x2 − p3x3 + u)

= −p1x1u+ p1p3x1x3 − p1x21x2
+ (k − p1x3)ẋ1 + qẋ2. (16)

Accordingly, let the update law of the third Zhang error func-
tion be ż3 = −γ z3. Then, the following Lyapunov function
candidate is chosen to stabilize the z3-subsystem (16).

V3 = V2 +
1
2
z23 (17)

and its derivative is

V̇3 = V̇2 + z3ż3 = −γ z21 − γ z
2
2 − γ z

2
3 (18)

Till now, we have already completed the deducing steps
for (z1, z2, z3) based on Zhang-dynamical (ZD) method and
Lyapunov stability theory. Note that, when z1 = z2 = z3 = 0,
V̇3 = 0. Therefore, V̇3 is negative definite with V̇3 ≤ 0.
It follows from LaSalle-Yoshizawa Theorem [30], [31] that
the equilibrium (0, 0, 0) is global asymptotically stable in the
(z1, z2, z3) coordinates. In the next step, the classical gradient-
decent algorithm is exploited to obtain the controller u(t) and
the estimated parameters (p̂1(t), p̂2(t), p̂3(t)).
Step 4: Firstly, a square-based nonnegative energy function

is constructed as ε := h2/2 with h defined as follows.

h := ż3 + γ z3
= ż3 + γ kx1 + γ qx2 − γ p1x1x3
= −p1x1u+ p1p3x1x3 − p1x21x2
+ (k − p1x3)ẋ1 + qẋ2 + γ kx1
+ γ qx2 − γ p1x1x3. (19)

Then, according to the classical gradient-descent
algorithm [32], we have

u̇ = −µ
∂ε

∂u
= −µ

∂ε

∂h
∂h
∂u
= µhp1x1 (20)

ṗ1 = −µ
∂ε

∂p1
= −µ

∂ε

∂h
∂h
∂p1

= −µh(−x1u+ p3x1x3 − x21x2 − kx2
+ kx1 + 2p1x2x3 − 2p1x1x3 − γ x1x3) (21)

ṗ2 = −µ
∂ε

∂p2
= −µ

∂ε

∂h
∂h
∂p2
= −µhqx1 (22)

ṗ3 = −µ
∂ε

∂p3
= −µ

∂ε

∂h
∂h
∂p3
= −µhp1x1x3. (23)

However, it is difficult to obtain the values of p1, p2 and p3 for
the complexity of Eqs. (20)-(23). To make the computation
tractable, stochastic parallel gradient descent (SPGD) solu-
tion is thus used for getting close to the pure gradient solution.

C. SPGD DESIGN PROCEDURE
In [25], [27], M. A. Vorontsov et al. preliminarily deduced
the convergence and the stability of Adaptive Optics (AO)
system based on SPGD (stochastic parallel gradient descent).
It is assumed that the system performance metric is J = J (γ ),
the control parameter is γ = {γ1, γ2, γ3, . . . , γn}, and the
change of the system performance is δJ , where n is the
number of control parameters. The SPGD performs an incre-
mental adjustment of control parameter {γj} using a real-
time estimation for the gradient {J̇j = ∂J/∂γj} with the
replacement of J̇ = δJ δγj in real applications [33], where δ is
defined as a perturbation.

In this paper, to compute Eqs. (20)-(23) by using the above-
mentioned SPGD method, the energy function ε and the
estimated parameters {pj} are corresponding to theminimized
performance metric and the increment of control parameter,
respectively. Therefore, the metric change δε with ε(·) is

δε = ε(p1 + δp1 , . . . , pn + δpn )− ε(p1, . . . , pn), (24)

and

pk+1 := {pk+1j } = {p
k
j − θδεδpj}, (25)

where k is the iteration number and θ is a small and positive
constant used to control the convergence speed. Note that,
as for the perturbation {δpj}, we have the following remark.
Remark 2: The perturbation {δpj} as random variable is

chosen typically as statistically independent variables with
zero mean and equal variances: < δpjδpi >= σ 2δij and
< δpj >= 0, where δij is the Kronecker symbol.
Furthermore, Eq. (24) can be expanded as a Taylor series

form as follows.

δε =

n∑
j=1

(∂ε/∂pj)δpj + 0.5
n∑
j,l

(∂2ε/∂pj∂pl)δpjδpl + . . . ,

Therefore, we can obtain

δεδpl = (∂ε/∂pl)δ2pl + ψl, (26)

with the truncation error ψl defined as follows.

ψl =

n∑
j 6=1

(∂ε/∂pj)δpjδpl+ 0.5
n∑
j,i

(∂2ε/∂pj∂pl)δpjδpiδpl + . . . .

Therefore, Eq. (26) consists of the true gradient ε̇j and the
noise (i.e., the truncation error) ψl .

According to the above-mentioned SPGDmethod, the gra-
dient {ε̇j = ∂ε/∂pj} can be replaced by {ε̇j = δεδpj}. Then,
we could reform the Eqs. (21)-(23) into Eqs. (27)-(29) to
achieve the approximate values of the estimated parameters
(ṗ1, ṗ2, and ṗ3) in form of ˙̂p1, ˙̂p2, and ˙̂p3.

˙̂p1 = −µ
∂ε

∂ p̂1
= −µδεδp̂1 (27)

˙̂p2 = −µ
∂ε

∂ p̂2
= −µδεδp̂2 (28)

˙̂p3 = −µ
∂ε

∂ p̂3
= −µδεδp̂3 . (29)
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FIGURE 3. Comparison results for the controlled Lorenz system (2) with the initial estimated parameter pair (p̂1(t) = 6,
p̂2(t) = 5, p̂3(t) = 4) and the initial perturbations (δp̂1

= 0.25, δp̂2
= −0.50, δp̂3

= 0.25).

IV. SIMULATIVE VERIFICATION
For the purpose of verifying the effectiveness of our presented
design procedure, computer simulations have been carried
out under the two parameters spaces in this section, i.e.,
(p1 = 10, p2 > 0, p3 = 8/3) and (p1 = 16, p2 > 0,
p3 = 4), in which, the Lorenz system (1) can be at the chaotic
state. Our objective is to achieve a correct control variant u(t)
to make the tracking errors z1, z2 and z3 converge to zero
asymptotically, and make the system states (x1, x2, x3) be able
to converge to the stable states.

In the following computer simulation experiments,
to obtain and analyze the comparison control results before
and after fed into the control variant u(t), in the first 5 min-
utes, the system (2) is initialized at the chaotic state with
p1 = 10, p2 = 28, p3 = 8/3. The initial states are
randomly set as x1(0) = 10, x2(0) = 10, x3(0) = 10.
At the moment, there is no any control input, i.e., u(t) = 0.
Evidently, the chaotic states (x1, x2, x3) is not stable, as shown
in Figs. 3-5. Then, 5 seconds later, the control input u(t) 6= 0
would be fed into the system with different initial estimated
parameter pairs (p̂1(t), p̂2(t), p̂3(t) ) discussed as follows.
Generally speaking, in the practical engineering applica-

tions, the parameter pair (p1, p2, p3) is unknown in the Lorenz
control system (2). To obtain the control input u(t) and ana-
lyze the control results, the parameter pair is estimated and
initialized to be (p̂1(t) = 6, p̂2(t) = 5, p̂3(t) = 4), which is
assigned randomly as small positive constants, and the initial
perturbations δp̂1 = 0.25, δp̂2 = −0.50, δp̂3 = 0.25 are set by
Remark 2, which are chosen as the same assignments in the
following simulations.

In this case, the control results can be seen in Fig. 3.
Evidently, in the first 5 seconds, the Lorenz system (2)
is at chaotic state in Fig. 3(a) when the control input
u(t) = 0 in Fig. 3(b). Naturally, the estimated parameters
(p̂1, p̂2, p̂3) would not be changed, and it happens that the
system (2) would be at a considerable oscillation, as shown
in Figs. 3(c) and (d), respectively.

However, after 5 seconds, if the system (2) is controlled
by introducing a control input u(t) 6= 0, which is decided
by Eq. (20) with the initial estimated parameters (p̂1(t) = 6,
p̂2(t) = 5, p̂3(t) = 4), the oscillation would vanish when u(t)
is stable asymptotically and remains bounded along with the
iterations of the estimated parameters (p̂1, p̂2, p̂3), which can
be seen in Figs. 3 (b) and (c), respectively. In the meantime,
the system (2) arrives at a stable state, and the tracking error is
also convergent to zero asymptotically after about 12 seconds,
which are corresponding to Figs. 3 (a) and (d), respectively.
It shows that the SPGDmethod is effective to get the values of
the estimated parameters (p̂1, p̂2, p̂3) by Eqs. (27)-(29). This
leads to a fact that the Lorenz system (2) is controlled stably
when fed into the control input u(t) decided by (p̂1, p̂2, p̂3).

In addition, studies show that the Lorenz system often
generates chaotic signals at certain area of parameter space.
Therefore, the system parameters can be initialized near the
first chaotic parameter space with the parameters valued
usually at (p1 = 10, p2 = 28, p3 = 8/3) and the second
parameter space valued at (p1 = 16, p2 = 45, p3 = 4).
Assume that the initial estimated parameter pair (p̂1 = 8.5,
p̂2 = 26, p̂3 = 3.5) are fetched randomly in the vicinities of
p1 = 10, p2 = 28, p3 = 8/3 (i.e., in the first parameters
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FIGURE 4. Comparison results for the controlled Lorenz system (2) with the initial estimated parameter pair (p̂1(t) = 8.5, p̂2(t) = 26,
p̂3(t) = 3.5) and the initial perturbations (δp̂1

= 0.25, δp̂2
= −0.50, δp̂3

= 0.25).

FIGURE 5. Comparison results for the controlled Lorenz system (2) with the initial estimated parameter pair (p̂1(t) = 16, p̂2(t) = 45,
p̂3(t) = 4) and the initial perturbations (δp̂1

= 0.25, δp̂2
= −0.50, δp̂3

= 0.25).

space), respectively. The simulation results can be shown
in Fig. 4. It is evident that the tracking error quickly converges

to zero in less than 1.5 seconds, which is shown in Fig. 4 (d).
The system (2) is also controlled stably by the stable control
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input u(t), and the estimated parameter pair (p̂1, p̂2, p̂3) is
finally equal to the known chaotic parameter pair (p1, p2, p3).
In another case, assume that the initial estimated parameter
pair is valued at the second parameters space, i.e., (p̂1 = 16,
p̂2 = 45, p̂3 = 4), which is against the fixed system param-
eters (p1 = 10, p2 = 28, p3 = 8/3). The control results are
presented in Figs. 5 (a)-(d). Not surprisingly, the system (2)
is also controlled stably. However, the values of u(t) and the
estimated parameter pair (p̂1 = 16, p̂2 = 45, p̂3 = 4) are
already changed, in contrast with the first parameters space.

In summary, if the estimated parameter pair is valued in
the vicinity of the chaotic parameters space, it is equivalent
to say that the system parameters are known for (2). The
control effect is relatively well. However, in the real appli-
cations, the parameters are unknown and must be estimated
for the most controlled systems. Therefore, combined with
the simulation results, our presented ZG design method can
be effectively used to stably control a chaos control system
based on the SPGD method.

V. CONCLUSION
Because of the nonlinearity and singularity, many classic
controllers cannot be applied directly to the uncertain well-
known Lorenz system. In this paper, a novel Zhang-Gradient
controller is exploited for the controlling Lorenz system.
Firstly, inspired by Zhang dynamics, a tracking error expres-
sion is constructed during the recursive process analyssis
based on the Lyapunove stability. Then, considering the com-
putation complexity for the system parameters, the SPGD
design procedure is presented to obtain the estimated values
of system parameters. The numerical results further substan-
tiate that our presented ZG controller can make the controlled
Lorenz system stable globally.
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