
SPECIAL SECTION ON SOFTWARE DEFINED NETWORKS FOR ENERGY
INTERNET AND SMART GRID COMMUNICATIONS

Received August 7, 2019, accepted September 5, 2019, date of publication September 18, 2019, date of current version October 9, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2942208

Efficient Differentiated Storage Architecture for
Large-Scale Flow Tables in Software-Defined
Wide-Area Networks
BING XIONG 1,2, (Member, IEEE), RENGENG WU1, JINYUAN ZHAO3, (Student Member, IEEE),
AND JIN WANG 1, (Senior Member, IEEE)
1School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114, China
2Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA
3School of Computer Science and Engineering, Central South University, Changsha 410075, China

Corresponding author: Bing Xiong (xiongbing@csust.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61502056, in part by the Hunan
Provincial Natural Science Foundation of China under Grant 2015JJ3010, in part by the Scientific Research Fund of Hunan Provincial
Education Department under Grant 18B162 and Grant 15B009, and in part by the Scientific Research Innovation Fund of Hunan
Postgraduates under Grant CX2018B567.

ABSTRACT As a novel network paradigm, Software Defined Networking (SDN) decouples control logic
functions from data forwarding devices, and introduces a separate control plane to manipulate underlying
switches via southbound interfaces like OpenFlow. This paradigm offers numerous benefits for wide area
networks (WAN), like promoting application performance and reducing deployment costs, but poses serious
challenges on the storage resources and lookup performance of large-scale flow tables in OpenFlow switches.
This paper is thus motivated to propose an efficient differentiated storage architecture for large-scale flow
tables in OpenFlow-based software-defined WAN. Firstly, we investigate into the impact of wildcards in
match fields on the packet-in-batch feature within a flow based on network traffic locality. Then, packet flows
are dynamically distinguished into active ones and idle ones in terms of their short-term states. Subsequently,
we store the match fields of active flows and idle flows respectively in TCAM and SRAM, and the content
fields of both types of flows in DRAM, to effectively relieve the insufficiency of TCAM capacity. Finally,
we evaluate the performance of our proposed flow table storage architecture with real network traffic traces
by experiments. The experimental results indicate that our proposed storage architecture with the active/idle
flow differentiation obviously outperforms the traditional one applying the elephant/mice flow differentiation
in terms of TCAM hit rates and average flow table access time.

INDEX TERMS Software-defined WAN, openflow switches, large-scale flow tables, differentiated storage
architecture, active/idle flow differentiation.

I. INTRODUCTION
As an emerging network paradigm, Software-Defined Net-
working (SDN) separates network control functions from
data forwarding devices, and allows for a separate con-
troller entity to manage and control all underlying switches
through southbound interface typically OpenFlow [1]. This
novel paradigm paves the way for a more flexible, pro-
grammable, and innovative networking, and is commonly
considered as one of the promising directions towards
future wide area networks (WAN) [2], including data center

The associate editor coordinating the review of this manuscript and
approving it for publication was Al-Sakib Khan Pathan.

interconnections [3], energy Internet, smart grid and industry
Internet. The OpenFlow-based SDN concept provides numer-
ous benefits toWANs, like promoting data transfer efficiency,
improving application performance, and reducing deploy-
ment costs. As a pioneer enterprise, Google designed and
implemented a private software-defined WAN (SD-WAN)
called B4, connecting its data centers across the planet as
early as 2013 [4]. After that, B4 incrementally moved from
offering best-effort content-copy services to carrier-grade
availability for the following 5-year evolution [5].

With the evolution of OpenFlow protocol versions,
the number of match fields in a flow entry has increased
from 12 in version 1.0 [6] to 44 in version 1.5 [7], which leads

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 141193

https://orcid.org/0000-0002-3006-7295
https://orcid.org/0000-0001-5473-8738


B. Xiong et al.: Efficient Differentiated Storage Architecture for Large-Scale Flow Tables in Software-Defined WANs

to a significant increase in the size of a flow entry.Meanwhile,
there will be a large number of flow entries corresponding to
simultaneous flows for large-scale SDN deployments, espe-
cially in wide area networks. The above two factors will
produce a multiplication effect on the space occupation of the
flow tables, and lead to a sharp increase in the requirements of
flow table storage resources in OpenFlow switches. To date,
TCAM is the most prevalent medium to store flow tables, as it
supports wildcarding and outputs lookup results in one clock
cycle. However, its capacity is limited due to its expensive
cost, high power consumption and low integration, and is
difficult to meet the storage space requirements of large-
scale flow tables. Consequently, it is indispensable to build
a delicate storage architecture for large-scale flow tables in
OpenFlow switches.

Until now, the most popular solution to the above
problem is to accommodate flow tables by combining
TCAM with other media such as SRAM. An initial rep-
resentative work from the research group led by Nick
McKeown [19], [20], designed and implemented an Open-
Flow switch on the NetFPGA platform, which distinguished
flow entries in terms of their match fields into ones with
wildcards and ones with all exact data, and stored them
respectively in TCAM and SRAM. This design guarantees
fast flow table lookups, as TCAM supports direct con-
tent matching with wildcards and SRAM also can achieve
efficient lookups on exact flow tables typically by hash-
ing. However, the match fields of a flow entry gener-
ally tend to carry wildcards, primarily as there are mutex
relationships even between some required match fields
such as IPV4_SRC/IPV4_DST vs IPV6_SRC/IPV6_DST,
TCP_SRC/TCP_DST vs UDP_SRC/UDP_DST. Therefore,
the number of flow entries with wildcards is prone to exceed
TCAM capacity especially for large-scale SDN deployments.
To tackle this problem, several researchers divided flows into
elephant ones and mice ones, respectively accommodated in
TCAM and SRAM [23], [24]. They took advantage of long-
term distribution characteristics of packet traffic over flows,
but there is still room for improvement due to their negligence
of flow dynamics.

For the above problems, this paper is motivated to devise
an efficient storage architecture for large-scale flow tables
in OpenFlow-based wide area networks. In particular, the
architecture is built by exploiting the accessing properties of
TCAM/SRAM/DRAM, and the short-term characteristics of
packet flows. This paper is an extension of our previous work
presented in the 21st IEEE International Conferences onHigh
Performance Computing and Communications (HPCC2019).
Different from our previous work, this paper focuses on the
scenario of software-defined wide-area networks, estimate
TCAM hit rates of different major/minor flow differentiation
method based on the measurements of their parameters with
real traffic traces, and quantizes the impact of wildcards in
the match fields on the packet-in-batch property of a flow
by traffic measurements. Moreover, we also reset typical
parameter values to provide amore clear comparison between

flow table storage architectures with different major/minor
flow differentiation method. The main contributions of this
paper are summarized as follows.
• Building a differentiated storage architecture for large-
scale flow tables, by accommodating the match fields
of major flows and minor ones respectively in TCAM
and SRAM, and the content fields of both types of flows
in DRAM, which effectively solves the storage space
problem of large-scale flow tables.

• Having an investigation into the property of packet
arrivals in batches within a traditional flow based on
network traffic locality, and taking an insight into the
impact of wildcards in the match fields on the packet-
in-batch property of a flow specified by OpenFlow.

• Proposing a novel major/minor flow differentiation
method that distinguishes packet flows into active ones
and idle ones in terms of short-term flow states based
on packet-in-batch arrivals within a flow, which gains
higher TCAM hit rates in the above flow table storage
architecture.

• Formulating the TCAM hit rates for flow table storage
architecture applying our proposed active/idle flow dif-
ferentiation method and the existing elephant/mice flow
one, and comparing between both differentiation meth-
ods in terms of TCAM hit rates and average flow table
access time by experiments with real network traffic
traces.

The remainder of this paper is organized as follows.
Section II introduces related work. In Section III, we design
a differentiated storage architecture of large-scale flow
tables based on the accessing features of their storage
media. Section IV analyzes the traditional elephant/mice flow
differentiation method, investigates into the packet-in-batch
property of a flow, and proposes the active/idle flow differ-
entiation method. In Section V, we describe the algorithmic
implementations of our proposed flow table storage architec-
ture. Section VI evaluates the performance of our proposed
flow table storage architecture in terms of TCAM hit rates
and average flow table access time by experiments with
real network traffic traces. Finally, we conclude the paper
in Section VII.

II. RELATED WORKS
Due to the limitation of flow table space at OpenFlow
switches, packet forwarding may suffer from scarce stor-
age resources and degraded lookup performance. Extensive
studies have been carried out to reduce the flow table size,
primarily through the following approaches: rule placement
optimization, flow table aggregation, flow table compression,
and flow table storage/lookup architecture design.

Rule placement is optimized to minimize the number of
installed flow rules, from the global view of OpenFlow net-
work by automatically rerouting important flows like the
elephant one [8], [9], or single OpenFlow switch by utilizing
the characteristics of hardware and software flow tables to
make decision of new flow installation [10]. Rule placement

141194 VOLUME 7, 2019



B. Xiong et al.: Efficient Differentiated Storage Architecture for Large-Scale Flow Tables in Software-Defined WANs

optimization increases flow table utilization, but still cannot
cope with a large number of simultaneous flows especially
in large-scale SDN deployments. Flow table aggregation
aims to reduce the amount of flow entries by substituting
a set of overlapping flow rules with a more generalized
one [11], [12], or by merging a set of minor flow entries
into a few ones through rule restruction [13]. However, this
method will be out of action for flow entries without iden-
tical prefixes, and need to consider security concerns while
placing wildcard rules at the switches [14]. Flow table com-
pression shrinks redundant match fields into shorter identi-
fier or labels with forwarding information, like Flow-ID [15],
VLAN-ID [16] and Tag-in-Tag [17], or splits each bloat flow
table into multiple sub-flow tables in terms of the coex-
istence and conflict relationships among fields [18]. Flow
table compression has effectively reduced flow entry size,
but has increased the complexity and overheads of flow table
lookups.

To date, much work has been done on large-scale flow
table storage architecture. Naous et al. [19], [20] described
the implementation of an OpenFlow Switch on the NetF-
PGA platform, where the flow table used a combination
of on-chip TCAM and off-chip SRAM to support a large
number of flow entries. In particular, TCAM and SRAM
are respectively responsible for accommodating wildcard
flows and exact flows for fast flow table lookups. Similarly,
Matsumoto et al. [21], [22] designed GPU-accelerated
flow switching architecture, which allocates an exact flow
table and a wildcard-enabled flow table respectively in
host and GPU memories, to tackle massive flow entries.
Unfortunately, the required storage space of flow entries with
wildcards is liable to go beyond the TCAM capacity, espe-
cially for supporting high versions of OpenFlow protocols
in large-scale SDN deployments. Lee et al. [23] proposed
a differentiated flow cache framework with dynamic-index
hashing for placements and a localized LRU-based replace-
ment strategy, based on the observation from data center
traffic that elephant flows are very large in size (data volume)
but few in numbers when compared to mice flows. Similarly,
Katta et al. [24] implemented a hybrid switch by utilizing
the benefits of hardware and software for flow table storage,
where heavy-hitter flows were installed at TCAM for fast
processing and the remaining flows were placed at main
memory, in terms of the characteristics that traffic tends to
follow a Zipf distribution. They increased the cache hit ratio
and achieved fast flow table lookups, but there still is room
for improvement due to their lack of consideration on flow
dynamics.

Furthermore, Ding et al. [25] proposed a hybrid flow table
storage architecture, utilizing NVM-based TCAM to cache
the most popular rules to improve cache-hit ratio, while
relying on a very small-size SRAM-based TCAM to handle
cache-miss traffic to decrease update latency.Wang et al. [26]
built a traffic-aware hybrid rule allocation scheme by
logically splitting TCAM into two parts: reactive and
proactive, which can be dynamically adjusted according to

network traffic behavior. Cheng and Wang [27] synthesizes
TCAM compatible entries by using binary decision trees
and employs SRAM for further comparisons, to significantly
reduce TCAM consumption and fulfill low power consump-
tion. Lee et al. [28] presented a novel low-latency bundle-
updatable TCAM scheme, which transforms the original
ternary rule data into a binary code word by binary tree-
based prefix encoding, and determines the range of over-
lap in SRAM addresses to facilitate updating. This greatly
decreases latency in cases where multiple rules are required
to update on an SRAM-based TCAM.However, these storage
architectures cannot meet the storage space requirements of
large-scale flow tables on account of the limited capacity of
TCAM and SRAM.

Some researchers have concentrated on flow table
lookup architecture in OpenFlow networks.
Matsumoto and Hayashi [21], [29] proposed a flow
table lookup framework LightFlow, by introducing two-
dimensional parallelization of the linear search on the
wildcard-aware flow table, and automatically updating the
hash-based exact flow table based on the result of the
wildcard-aware table lookup, to speed up the packet switch-
ing process. El Ferkouss et al. [30] implemented a pipeline
lookup architecture based on a 100Gig network processor
platform, which extended the recursive flow classification
by combining TCAM with the wildcard match and SRAM
with the exact match to enhance packet classification per-
formance. Li et al. [31], [32] proposed a hybrid lookup
scheme integrating multiple-cell hash table with TCAM for
flow table matching, to simultaneously reduce the cost and
power consumption of lookup structure without sacrificing
the lookup performance. Nevertheless, these lookup archi-
tectures did not achieve a satisfactory performance without
adequate consideration of network traffic characteristics.

III. LARGE-SCALE FLOW TABLE STORAGE
A. SOFTWARE-DEFINED WIDE AREA NETWORKS
The increasing number of Internet users, smart phone and
other data collection terminals have generated an increas-
ing amount of network traffic. The massive traffic needs to
be transferred to other network endpoints across wide area
networks. This puts forward higher demands on network
performance including throughput, scalability, manageabil-
ity, and flexibility. By introducing the concept of software-
defined networking, a WAN will obtain many technical
advantages, including intelligent path control, application
performance optimization, automatic configuration and man-
agement. Consequently, the emerging paradigm of software-
defined WAN will become a significant trend for enterprises
to acquire better transmission service, save deployment cost,
and release human resources [4], [5].

Fig.1 demonstrates a typical SD-WAN deployment sce-
nario. As shown in the scenario, OpenFlow switches connect
a variety of network entities, such as cloud data centers,
enterprise networks and even energy networks, to the Internet.
These connections are implemented through various kinds

VOLUME 7, 2019 141195



B. Xiong et al.: Efficient Differentiated Storage Architecture for Large-Scale Flow Tables in Software-Defined WANs

FIGURE 1. A typical SD-WAN deployment scenario.

of high-speed links including MPLS, Ethernet, xDSL, SDH,
4G/5G LTE. Logically centralized control plane takes charge
of all OpenFlow switches, and provides the function of topol-
ogy management, path computation, data security and policy
control over global networks. Eventually, network operators
can achieve a bunch of network management functions, typi-
cally user access control, traffic visualization, service orches-
tration, and big data analysis, through programming interface
provided by the control plane.

In the above SD-WAN scenario, OpenFlow switches sim-
ply forward packets in terms of their internal flow tables
installed by the controller plane. As for an arrived packet,
an OpenFlow switch parses it to compute its flow identifier
and match against flow tables to locate an entry. If an entry
is successfully matched, its actions will be applied to the
packet, generally forwarded to the next station. Otherwise,
the packet is supposed to belong to an emerging flow, and will
be delivered as a flow setup request to the control plane for
instructions. The controller cluster generates the respective
flow rule based on the global network view, and installs it
to the switch. After that, the switch will process all packets
within the flow in terms of the rule. In summary, flow tables
are essential components of OpenFlow switches, and their
storage and lookups have a significant impact on packet
forwarding performance in the SD-WAN paradigm.

B. DIFFERENTIATED STORAGE ARCHITECTURE
With the evolution of OpenFlow protocol versions, flow
tables are prone to expand beyond TCAM capacity especially
in SD-WAN deployments. Therefore, it is inevitable to com-
bine TCAM with other storage media such as SRAM and
DRAM, to accommodate large-scale flow tables in Open-
Flow switches. Each storage medium holds its own properties
typically in terms of accessing speeds, addressing mode,
storage capacity and price. TCAM supports wildcarding and
outputs each lookup result in one clock cycle thanks to its
capacity of parallel lookups on the entire data set. Thus it is
a most prevailing storage medium for flow tables specified
by OpenFlow. However, TCAM has limited capacity owing
to its exorbitant price, high energy consumption and low inte-
gration, and it is difficult to accommodate a large number of

FIGURE 2. Differentiated storage architecture for large-scale flow tables.

flow entries. Different from TCAM, SRAM can be randomly
accessed at fast speeds with a given address, and supports
fast lookups on exact flow tables typically through hash-
ing. Compared with SRAM, DRAM has moderate accessing
speeds, low cost, and high capacity, which is suitable for
accommodating a large amount of content data in abundant
flow entries.

According to network traffic locality, packet traffic is not
uniformly distributed over flows, but shows apparent biases
between flows in both the long term and the short term. Packet
flows can be distinguished into major ones with more packets
and minor ones with less packets. Subsequently, we can store
major and minor flows respectively in TCAM and SRAM
for fast lookups. Meanwhile, all fields in a flow entry can be
classified into two types: the match fields for identifying the
flow, and the content fields for recording flow information.
The match fields need to be matched for each arrived packet,
while the content fields are accessed only for successful flow
entry match. Thus we can separate the content fields from the
flow entry, and independently accommodate them in DRAM.
With these design principles, we build a differentiated storage
architecture for large-scale flow-tables in Fig.2.

As demonstrated in Fig.2, the match fields and the content
fields of each major flow are separately kept in the TCAM
and DRAM, and are associated with each other by index
number or offset address. A successful lookup of the TCAM
returns the offset address of the matched entry, which can
be easily translated into an index number of the TCAM.
Then, the index number can be utilized to directly locate the
corresponding entry of sequentially organized flow entries
in the DRAM. In contrast, the match fields and the content
fields of each minor flow are separately maintained in the
SRAM and DRAM, and are associated with each other by
an additional pointer field. In particular, the pointer field is
attached to the match fields of each entry in the SRAM.
The flow entries in the SRAM are typically classified by
their masks, and all flow entries with identical mask can be
organized and searched by hashing. Once a flow entry is
found, we can locate its corresponding content fields in the

141196 VOLUME 7, 2019



B. Xiong et al.: Efficient Differentiated Storage Architecture for Large-Scale Flow Tables in Software-Defined WANs

DRAM by its pointer field. Furthermore, all content fields
of minor flows are stored as a chain structure for flexible
operations, such as insertions and deletions.

In the above architecture, the major flows and the minor
flows will dynamically change with the continuous accessing
of flow tables by network packets arrived at the OpenFlow
switch. When a new flow emerges, we treat it as a minor
flow, and put its match fields and content fields respectively
into the SRAM and DRAM. If it turns into a major flow with
many packets arrived later, we will transfer its match fields
from the SRAM into the TCAM, and its content fields from
the chained list into the respective position of the sequential
list in the DRAM, if there is available space in the TCAM.
Otherwise, we first need to transfer the least recently accessed
entry from the TCAM into the SRAM, and its content fields
from the sequential list into the chained one in the DRAM.
Meanwhile, the timeout mechanism is applied on both major
and minor flow tables to clear out all expired flow entries in
time.

The above storage architecture separates the content fields
from flow entry and stores them in the DRAM with high
capacity, which effectively settles the storage space pressures
of TCAMeven combinedwith SRAM.Meanwhile, we utilize
TCAM and SRAM respectively to keep the match fields
of major flows and minor ones. This will bring two conse-
quences to flow table lookup performance: (a) direct hits in
the TCAM for a large number of packets within major flows;
(b) slow lookups in the SRAM for a small number of packets
within minor flows. On average, it is expected to achieve
satisfactory lookup performance of large-scale flow-tables in
OpenFlow switches.

IV. MAJOR/MINOR FLOW DIFFERENTIATION
This section investigates into the traditional elephant/mice
flow differentiation method, takes an insight into the packet-
in-batch property of a flow, and presents the active/idle flow
differentiation method to achieve higher TCAM hit rates.

A. TRADITIONAL ELEPHANT/MICE FLOW
DIFFERENTIATION
Extensive research efforts have identified the presence of
locality phenomenon in packet switching networks [33], [34].
Network traffic locality is primarily reflected on packet traffic
distribution over flows. In particular, a majority of packets
tend to concentrate on a small number of flows, while a
large number of flows just account for a minority of packets.
Hence packet flows could be naturally distinguished into
elephant ones transferring a large number of packets and
mice ones transferring a small number of packets. This is
a prevalent major/minor flow differentiation method applied
in traditional flow table storage architectures. The differen-
tiation method will get a low average search time, since a
majority of packets can quickly locate their flow entries in
the TCAM supporting wildcarding, while only a minority of
packets need to find their flow entries in the SRAM with
exact match. TCAM hit rate is a key metric to characterize

the performance of major/minor flow differentiation method
in the flow table storage architecture. Then we formulate
the TCAM hit rate of the above Elephant/Mice Flow (EMF)
differentiation method based on network traffic locality as
follows.

Suppose that an OpenFlow switch transfers N packet
flows, where each one transmits n packets on average.
According to network traffic locality, a small number of
elephant flows carry amajority of packets, and a large number
of mice flow only transfer a minority of packets. Then we
can assume two factors p and q respectively as the ratio
of the number of packets within elephant flows to the total
number of transferred packets, and that of the number of
elephant flows to the total number of flows. Hence we can
compute the number of elephant flows as qN, and the number
of packets with elephant flows as pNn. As for the existing
EMF differentiation method, each flow is initially held in the
SRAM, and is transferred into the TCAM if it is identified
as an elephant flow with e arrived packets. This implies that
TCAM will be successfully enquired only for packets after e
ones in each elephant flow. Then we compute the number of
packets with successful TCAM query by subtracting the total
number of packets within elephant flows pNn to that of their
front packets before being transferred into the TCAM qNe.
Hence, we can formulate the TCAM hit rate of the traditional
EMF differentiation in the flow table storage architecture
in (1).

HREMF =
pNn− qNe

Nn
= p−

qe
n

. (1)

As shown in (1), the TCAM hit rate chiefly depends on the
two factors of network traffic locality p and q, the number of
packets per flow n, and the number of packets for elephant
flow identification e. Considering the ratio of e to n as the
identification efficiency of elephant flows e’, we can further
simplify the TCAM hit rate in (1) as p-qe’. To estimate the
TCAM hit rate, we apply a backbone network traffic trace
TRACE20110418 [36] to measure the above parameters.
The trace contains 15,420,235 packets, with duration time
107s roughly, and more details in Section IV.A. The above
parameters significantly depend on the differentiation indi-
cator of elephant/mice flows, i.e., packet number threshold
(PNT). By setting the PNT respectively as 32, 64, and 128,
we read packets from the traffic trace, and count the number
of packets, flows, elephant flows and packets in elephant
flows per second. With these numbers, we compute the above
parameters p, q, e′, and estimated TCAM hit rates in terms
of (1) in Fig.3.

As seen from Fig.3(a), the number of packets in elephant
flows accounts for almost above 80% of total packets at stable
states, even if thePNT is set as up to 128. In contrast, the num-
ber of these elephant flows just takes up of below 15% of total
flows shown in Fig.3(b). This indicates that network traffic
exhibits a high spatial locality. As shown in Fig.3(c), the iden-
tification efficiency of elephant flows e’ is proportional to
the number of packets for elephant flow identification e,

VOLUME 7, 2019 141197



B. Xiong et al.: Efficient Differentiated Storage Architecture for Large-Scale Flow Tables in Software-Defined WANs

FIGURE 3. Estimated TCAM hit rates of the EMF differentiation method and its parameter measurements.

i.e., thePNT. This is attributed to the invariance of the number
of packets per flow n. Finally, we can see from Fig.3(d) that,
estimated TCAM hit rates achieve higher than 80% at stable
states based on the measurement results of the 3 parameters
in Fig.3(a)-(c), if the PNT is set as below 64.

The above EMF differentiation method gets high TCAM
hit rates for the flow table storage architecture in virtue of
long-term distribution characteristics of packet traffic over
flows. However, it cannot adapt to dynamical variation of
packet traffic for various network application scenarios. For
example, there probably is a very few or even no packet within
an elephant flow in the TCAM during certain periods, which
will result in inadequate utilization of the TCAM. What is
worse, the differentiation method will be sharply degraded
for packet traffic with heavy-tailed distribution commonly
seen in various network scenarios. Therefore, it is neces-
sary to devise a better flow differentiation method for more
stable and higher TCAM hit rates in the flow table storage
architecture.

B. PACKET-IN-BATCH PROPERTY
Network traffic measurements indicate that packets in a flow
arrive not uniformly but intensively in batches [34], [35].
This phenomenon is a natural artifact of the protocols and

applications used for network data transmission. Firstly,
the most widespread Internet service, i.e. World Wide Web,
is generally manifested as file downloading behaviors from a
network perspective. Secondly, various increasing streaming
applications, such as Internet television and live streaming,
generate persistent bulk data transfer activities. Thirdly, some
emerging cloud storage-based services also produce a mass
of file downloading/uploading activities. In summary, those
activities trigger bursts of packets within particular flows, and
give rise to the property of packets in batches.

The above packet-in-batch property is commonly regarded
as a dynamic property of network traffic locality in terms
of a packet flow. The SDN paradigm does not produce a
change to the distribution of packet traffic over flows. How-
ever, it brings a more obvious packet-in-batch property for a
flow, since it supports flexible flow definition by introducing
wildcards into the match fields according to the OpenFlow
specifications. In particular, wildcards will aggregate a set of
traditional exact flows into a wildcarding flow. The aggrega-
tion is inclined to merge scattered packets in multiple exact
flows into packet batches in the wildcarding flow, and small
batches in multiple exact flows into large batches in the
wildcarding flows. Fig.4 demonstrates a typical example of
packet-in-batch property during the flow aggregation process.

141198 VOLUME 7, 2019



B. Xiong et al.: Efficient Differentiated Storage Architecture for Large-Scale Flow Tables in Software-Defined WANs

FIGURE 4. Packet-in-batch property during flow aggregation process.

As shown in Fig.4, there are two exact flows A and B with
the match fields respectively valuing 100 and 101. During the
observation period, both the two exact flows contain a batch
of packets and a few scattered ones. We define a wildcarding
flow C with the match fields valuing 10∗, aggregated from
the two exact flows A and B. As seen from Fig.4, the wild-
carding flow C contains 3 packet batches and 3 scattered
packets. This is to say, packets in the wildcarding flow C
are much more intensive with more packet batches and less
scattered packets than those in the exact flows A and B.
In conclusion, the packet-in-batch property of a flow would
be strengthened by wildcards in the match fields of flow
entries.

To verify the impact of wildcards on the packet-in-batch
property of packet traffic in terms of flows, we devise some
quantitative indicators of the property and measure them in
virtue of real network traffic traces. As seen from Fig.4,
the packet-in-batch property can be essentially character-
ized by the number of packets in batches, the number of
batches, and the number of packets per batch. These quanti-
tative indicators have great dependence on the packet interval
threshold (PIT), which determines two adjacent packets
within a flow belong to a batch or not. By setting the PIT
respectively as 0.25s, 0.5s, 1s, and 2s, we similarly read
packets from the traffic trace TRACE20110418 [36], and
count the number of packets, batches, packets in batches.
With these numbers, we compute the parameters, i.e., the ratio
of the number of packets in batches to that of all packets, the
number of batches per second, and the number of packets per
batch respectively in Fig.5, Fig.6, and Fig.7.

As shown in Fig.5, there are more number of packets
in batches under the wildcard flow pattern than that under
the exact flow pattern, no matter what the PIT values. This
implies that a part of scattered packets under the exact flow
pattern will be combined into batches under the wildcard flow
pattern. Meanwhile, we can see from Fig.6 that, less number
of batches arises for each second under the wildcard flow
pattern than that under the exact flow pattern, regardless of
the values of the PIT. This means that multiple batches under
the exact flow pattern are merged into a single batch under
the wildcard flow pattern. Consequently, there will be much
more number of packets per batch under the wildcard flow
pattern in Fig.7. In summary, we can conclude that the packet-
in-batch property of network traffic is much more obvious
under the wildcard flow pattern than that under the exact flow
pattern.

C. ACTIVE/IDLE FLOW DIFFERENTIATION
According to the above packet-in-batch property, packets in a
flow will arrive at an OpenFlow switch in batches. From the
viewpoint of a switch, a flowwill exhibit two states: (a) active
with a batch of packets being transmitted; (b) idle with just a
few scattered packets or even none arrived in the near future.
This inspires us to distinguish packet flows into active ones
and idle ones in terms of their dynamic states. The state of a
flow can be identified on the arrival of a packet by the arrival
interval between it and the latest packet within the flow.
In particular, we set a threshold for the packet arrival interval
to distinguish the flow states. If the packet arrival interval
goes below the threshold, the flow is considered to have come
into the active state. Otherwise, the flow is supposed to stay
at the idle state. Furthermore, the threshold can be measured
and even dynamically adjusted to match the number of active
flows with the capacity of the TCAM. The Active/Idle Flow
differentiation method (AIF) is expected to achieve high hit
rates for TCAM holding active flows, owing to its sufficient
consideration of flow dynamics. We formulate its TCAM hit
rate based on packet-in-batch arrivals as follows.

Suppose that an OpenFlow switch transfers N packet
flows, where the ith one transmits ni packets. By setting the
threshold of packet arrival interval, all packets in a flow are
divided into packets in batches and scattered packets. Then
the packet flow is considered as a crossing sequence of packet
batches and sparse packets (maybe none). Suppose there is
ki packet batches in the ith flow, the packet sequence in the
flow can be mapped into a number sequence (bi1, si1, . . . , bij,
sij, . . . , biki, siki), where bij and sij respectively represents the
number of the jth packet batch and sparse packets between
the jth batch and the next one in the ith flow. As for the
arrivals of sparse packets, the flow will be identified at the
idle state, and be stored in the SRAM. When a packet batch
comes, it is assumed that the flow is determined to stay at the
active state and is transferred into the TCAM after a packets.
The flow will be kept in the TCAM for the rest of packets
in the batch. Consequently, we can calculate the TCAM hit
rate of the AIF differentiation method in (2), where r stands
for the ratio of the number of packets in batches to that of
all transferred packets, and b denotes the average number of
packets in a batch.

HRAIF =

N∑
i=1

ki∑
j=1

(
bij − a

)
N∑
i=1

ki∑
j=1

(
bij + sij

) = r
(
1−

a
b

)
. (2)

As shown in (2), the TCAM hit rate primarily relies on
the ratio of the number of packets in batches r , the average
number of packets in a batch b and the number of packets
for active flow identification a. According to the above active
flow identification method, a should be set as 2, since it
identifies the flow state with currently arrived packet and
the latest one within a flow. With the measurements of the

VOLUME 7, 2019 141199



B. Xiong et al.: Efficient Differentiated Storage Architecture for Large-Scale Flow Tables in Software-Defined WANs

FIGURE 5. The ratio of the number of packets in batches.

parameters r and b respectively in Fig.5 and Fig.7, we com-
pute the estimated TCAM hit rates in terms of (2) in Fig.8.

As seen from Fig.8, the estimated TCAM hit rates keep
above 90% almost all the time if the PIT set as above 1s.
By comparing Fig.8 with Fig.3(d), it can be found that the
TCAM hit rates of the AIF differentiation method are higher
than the EMF one in general. This can primarily attribute to
the fact that, the AIF differentiation method takes advantage
of short-term states of packet flows, while the EMF one
makes use of long-term statistical characteristics of packet
traffic. In particular, it is a common situation for elephant
flows with just a few or even no packet sometimes, and tends
to result in a waste of precious TCAM resources. In contrast,
the AIF differentiation method places flows with a batch of
transmitting packets in the TCAM, and squeeze flowswithout
intensive packets out of the TCAM. Therefore, it has a better
adaption to the dynamics of packet flows, and will achieve
more sufficient utilization of the TCAM.

V. ALGORITHMIC IMPLEMENTATION
This section provides the pseudo-code implementations of
packet forwarding and flow table modifications based on our
proposed flow table storage architecture applying the above
active/idle flow differentiation method.

A. PACKET FORWARDING
Our proposed flow table storage architecture is primarily
manifested on packet forwarding based on flow table lookups
in an OpenFlow switch. As for each arrived packet, we search
flow tables to locate its flow entry, and forward it in terms
of the action set in the entry. For the sake of our proposed
flow table storage architecture, it needs to first search TCAM
and SRAM accommodating all match fields of packet flows.
If the search succeeds, we get the corresponding content
fields in the DRAM by the index of the matched entry in the
TCAMor the pointer field in the matched entry in the SRAM.
Subsequently, we process the packet in accordance with the
action set in the content fields, and update the content fields
with the packet including flow state. When the flow state
becomes active, the match fields if kept in the SRAM should
be swapped into the TCAM. Otherwise, the switch should
send a flow setup request containing the packet partly or
wholly to its SDN controller, if the search on flow tables fails.
Table 1 shows the pseudo-code implementation of packet
forwarding based on our flow table storage architecture.

Upon receiving a packet p, the switch parses it and extracts
its key fields from its protocol header of each layer, such as
source MAC address, destination MAC address, source IP
address, destination IP address, source port, destination port,

141200 VOLUME 7, 2019



B. Xiong et al.: Efficient Differentiated Storage Architecture for Large-Scale Flow Tables in Software-Defined WANs

FIGURE 6. The number of batches per second.

protocol and etc (line 1). Then the match fields mf are gotten
from these key fields and other information of the packet p,
and are utilized to search the TCAM for a match (line 2-3).
If the search succeeds, we will get the index of a matched
entry, and obtain the content fields cf from the sequential list
in the DRAM by the index (line 4-5). Otherwise, we need
to further look up the SRAM for a match (line 6-7). If the
lookup succeeds, we can acquire the respective content fields
cf from the DRAM by the pointer in the matched entry in the
SRAM (line 8-10). As for the case that there is no match in
both the TCAMand the SRAM, the switch will send a packet-
in message containing the information of the packet p to its
SDN controller for instructions (line 11-13).
With the content fields cf, the switch applies the actions in

cf to the packet p typically forwarding it to the next station,
and update them with the packet p such as counters and the
arrival time of the latest packet (line 17-18). If the match
fields mf is successfully matched in the SRAM, we should
determine whether the flow turn into the active state, by com-
paring the interval between the arrival time of the packet p and
that of the latest packet in cfwith the packet interval threshold
PIT set in the switch (line 19). If the flow becomes active, its
match fields and content fields are respectively transferred
from the SRAM into the TCAM and from the link list to the
sequential list in the DRAM (line 28-31). Before the transfer,

it is necessary to find a vacant entry in the TCAM (line 26).
If the TCAM is full, it still needs to find the flow in the TCAM
without any arrived packet for a long time (line 20-21). Then
we shift its match fields and content fields respectively from
the TCAM into the SRAM and from the sequential list to the
link list in the DRAM (line 22-24).

B. FLOW TABLE MODIFICATIONS
In addition to the above lookups and updates during packet
forwarding, there are other operations on flow tables, such
as insertions and deletions. Tables 2 illustrates the pseudo-
code implementation of flow table insertion in an OpenFlow
switch on the arrival of a flow modification message from
its SDN controller. Upon receiving a FLOW_MOD message
with the ADD command, the switch will extract the match
fields from it and create the content fields with it (line 1-3).
If the TCAM is not full, we find an empty entry with the posi-
tion index, and insert the match fields and the content fields
respectively at the position of the SRAM and the sequential
list in the DRAM (line 4-7). Otherwise, we insert the content
fields into the linked list in the DRAM, and the match fields
into the SRAM (line 9-10).

Tables 3 exhibits the pseudo-code implementation of
flow table deletion in an OpenFlow switch on the arrival
of a flow modification message from its SDN controller.

VOLUME 7, 2019 141201



B. Xiong et al.: Efficient Differentiated Storage Architecture for Large-Scale Flow Tables in Software-Defined WANs

FIGURE 7. The number of packets per batch.

As for a FLOW_MODmessage with the DELETE command,
the switch extracts the match fields from it (line 1-2) and
matches them against flow tables in the TCAM and the
SRAM (line 3, 8). If the match succeeds to get a position
index in the TCAM, we reset the entry in the TCAM and that
of the sequential list in the DRAM at the position (line 4-6).
Otherwise, if the match succeeds to return an entry pointer
pse in the SRAM, we delete the entry in the linked list in the
DRAM by its pointer pse->pcf, and the entry in the SRAM
by its pointer pse (line 9-11). We should return false if the
match fails in both the TCAM and the SRAM.

Tables 4 shows the pseudo-code implementation of flow
table timeout scanning in an OpenFlow switch. As for each
active flow, we get its content fields containing its two time-
out fields idle_timeout and hard_timeout from the sequential
list in the DRAM (line 1-2). If either of them expire, we will
reset its entry of match fields in the TCAM, and its entry of
content fields in the sequential list in the DRAM (line 3-5).
Similarly for each idle flow, we get its two timeout fields from
the linked list in the DRAM, and determine whether either of
them expire (line 8-9). As for each expired idle flow, we will
delete its entry of match fields in the SRAM, and its entry of
content fields in the linked list in the DRAM (line 10-11).

VI. EXPERIMENTS
This section introduces our experimental methodology, and
evaluates the performance of our proposed flow table storage
architecture in terms of TCAM hit rates and average flow
table access time.

A. EXPERIMENTAL METHODOLOGY
For convenient evaluation and comparison, we implement
different flow table storage architecture by simulations with
C/C++ programming. The simulation program will be
repeatedly executed to perform packet forwarding off-line
on real network traffic traces. In particular, it reads packets
from each traffic trace one by one, parses them to get their
key fields from the protocol header at each layer, and obtain
their match fields for matching against flow tables. After
that, it needs to search the flow tables separately keeping
major flows and minor ones for a matched entry. If the search
succeeds, we update the content fields of the matched entry
with the packet such as flow states. When a minor flow is
distinguished to become a major one for a packet, its entry
should be transferred from theminor flow table into the major
one. However, if the search fails, we will directly create a new
flow entry with the packet and insert it into the minor flow

141202 VOLUME 7, 2019



B. Xiong et al.: Efficient Differentiated Storage Architecture for Large-Scale Flow Tables in Software-Defined WANs

TABLE 1. Packet forwarding algorithm.

TABLE 2. Flow table insertion algorithm.

table. Meanwhile, the program will write down necessary
statistical information, such as the number of active/elephant
flows and that of packets hitting the TCAM.

For simplicity, we select the classical 5 fields identifying
a connection/session as the match fields of flow tables in our
experiments. In particular, the 5 fields include protocol type,
source IP, destination IP, source port, and destination port.
The masks of these fields are set as follows: 0xff for protocol
type, 0xff00 for both source port and destination port, and
default subnet mask for both source IP and destination IP
(0xffffffff for classes D and E addresses). By this way, we can

TABLE 3. Flow table deletion algorithm.

TABLE 4. Flow table timeout scanning algorithm.

FIGURE 8. Estimated TCAM hit rates of the AIF differentiation method.

get 16 types of masks. Besides, we set 10s as the timeout of
each flow entry.

In our experiments, we select two network traffic traces,
TRACE20110418 and TRACE20130903 [36], collected
from a 10Gps main channel at the border of Jiangsu Province
in the CERNET. Each trace contains 15,420,235 packets,
gathered with a ratio of 1:4. The 2 traces respectively last

VOLUME 7, 2019 141203



B. Xiong et al.: Efficient Differentiated Storage Architecture for Large-Scale Flow Tables in Software-Defined WANs

FIGURE 9. The number of simultaneous flows.

FIGURE 10. The number of elephant flows.

for 107s, 100s roughly.With the above configurations, we can
provide the varying number of simultaneous flows for the two
traces in Fig.9. As seen from Fig.9, both traces contain a large
number of simultaneous flows up to between 60k and 70k
most of the time.

B. THE STABILITY OF MAJOR FLOW QUANTITY
The large-scale flow table storage architecture has a strong
expectation on major flows to keep a steady quantity, as their
storage media TCAM has a fixed capacity once deployed.

FIGURE 11. The number of active flows.

FIGURE 12. The relationship of TCAM hit rates with the PIT.

Thus the quantitative stability of major flows is a key metric
to different major/minor flow differentiation method in large-
scale flow table storage architecture.

As for the traditional EMF differentiation method, we get
the real-time number of elephant flows for the two traf-
fic traces by setting different values of the PNT in Fig.10.
As shown in Fig.10, the number of elephant flows has been
gradually increasing all the time regardless of the traffic
traces and the values of the PNT. This is to say, it is hard

141204 VOLUME 7, 2019



B. Xiong et al.: Efficient Differentiated Storage Architecture for Large-Scale Flow Tables in Software-Defined WANs

FIGURE 13. The comparison of TCAM hit rates.

to find a suitable value of the PNT to achieve a stable number
of elephant flows. As a consequence, the traditional EMF
differentiation method is unqualified as the major/minor one
in the flow table storage architecture.

As for our proposed AIF differentiation method, we obtain
the real-time number of active flows by setting different
values of the PIT in Fig.11. We can see from Fig.11 that,
the number of active flows always keeps stable, no matter
which traffic trace and which value of the PIT. Meanwhile,
the number of active flows steadily grows with the increas-
ing value of the PIT. This implies that we can match the
number of active flows with the TCAM capacity, by fine-
grained adjusting the value of the PIT. In particular, the PIT
is suitable to be configured as 1s and 2s respectively for
TRACE20110418 and TRACE20130903, if the TCAM has
a capacity of accommodating 8k flows.

C. TCAM HIT RATE
TCAMhit rate is a key performancemetric of large-scale flow
table storage architecture applying different major/minor
flow differentiation method. As for our proposed AIF one,
the PIT has a significant impact on the TCAM hit rate.
Suppose the TCAM has a fixed capacity of 8k flow entries,
we implement the flow table storage architecture according to
the experimentalmethodology in SectionVI.A. By increasing

FIGURE 14. The average flow table access time with TCAM450MHz,
SRAM450MHz and DRAM200MHz.

the value of the PIT, we count the number of packets hitting
the TCAM for each traffic trace, and achieve the relationship
of the TCAM hit rates with the PIT in Fig.12. As seen from
Fig.12, both traces share highly similar variation rules of the
TCAM hit rates. In particular, the TCAM hit rate sharply
increases to above 0.9 before the PIT reaches 0.1s, and tends
to be stable after the PIT goes beyond 1s. This is to say, the
PIT is suitable to be set as 1s for achieving high TCAM hit
rates.

To compare between the TCAM hit rates of the flow table
storage architecture applying different major/minor flow dif-
ferentiationmethod, we set 1s for thePIT in our proposedAIF
differentiation method, and choose the top 8k flows with the
most number of packets as elephant flows for the EMF differ-
entiation method. Fig.13 demonstrates the TCAM hit rates of
both major/minor flow differentiation methods. As seen from
Fig.13, our proposed AIF differentiation method achieves
higher and more stable TCAM hit rates than the traditional
EMF one. In particular, the TCAM hit rates of the AIF
differentiation method keep above 0.9 for both traces almost
all the time. On the contrary, the TCAM hit rates of the EMF
differentiation method fluctuate between 0.8 and 0.9, and
even have declining trend with time goes by.

VOLUME 7, 2019 141205



B. Xiong et al.: Efficient Differentiated Storage Architecture for Large-Scale Flow Tables in Software-Defined WANs

FIGURE 15. The average flow table access time with TCAM333MHz,
SRAM333MHz and DRAM166MHz.

D. AVERAGE FLOW TABLE ACCESS TIME
Our proposed AIF differentiation method achieves high
TCAM hit rates by accommodating active flows currently
transferring packets intensively in the TCAM. However,
it will bring more flow entry replacements in the TCAM, as a
flow generally switches between the active state and the idle
one repeatedly. Thus, we eventually compare average flow
table access time of flow table storage architecture applying
different major/minor flow differentiation method. In partic-
ular, the time is primarily composed of TCAM lookup and
replacement time, SRAM lookup time, and DRAM access
time, during the packet forwarding process. Each type of
time will be calculated by dividing the access times of the
corresponding memory by its access frequency.

As for experimental configurations, we set access fre-
quencies of the storage medium TCAM/SRAM/DRAM
respectively as 450/450/200MHz, 333/333/166MHz and
200/200/133MHz. Moreover, the flow table of each mask in
the SRAM is set with its hash length as 210. Then we read
packets from selected traffic traces, perform packet forward-
ing algorithm, and count access times of each packet respec-
tively in TCAM, SRAMandDRAM. Eventually, we compute
flow table access time per packet for our proposed flow

FIGURE 16. The average flow table access time with TCAM200MHz,
SRAM200MHz and DRAM133MHz.

table storage architecture with different major/minor flow
differentiation methods in Fig.14-Fig.16.

We can see from Fig.14-Fig.16 that, our proposed AIF
differentiation method has less flow table access time per
packet than the traditional EMF one all the time, regardless
of the traffic traces and the TCAM/SRAM/DRAM access
frequencies. Meanwhile, both flow differentiation methods
almost share identical variation rules of average flow table
access time for different access frequencies of the storage
medium TCAM/SRAM/DRAM. This infers that the rela-
tive performance of each differentiation method is indepen-
dent of TCAM/SRAM/DRAMaccess frequencies.Moreover,
TCAM replacement rates have a minor penalty to the flow
table lookup performance, as they are almost negligible com-
pared with the benefits from the increasing of TCAM hit
rates.

VII. CONCLUSION
Flow tables are essential components in OpenFlow-based
SDN data plane. However, they are sharply expanded, by the
increasing number of fields introduced into flow entry by
OpenFlow specifications, and a large number of flow entries
for large-scale SDN deployments typically in wide-area net-
works. This paper is thus motivated to propose an efficient

141206 VOLUME 7, 2019



B. Xiong et al.: Efficient Differentiated Storage Architecture for Large-Scale Flow Tables in Software-Defined WANs

differentiated flow table storage architecture, which accom-
modates the match fields of active flows and idle ones respec-
tively in TCAM and SRAM, and the content fields of both
types of flows in DRAM. In particular, active flows and idle
ones are distinguished by a threshold of packet arrival inter-
vals based on the property of packet-in-batch arrivals within
a flow specified by OpenFlow. Simulation experiments with
backbone network traffic traces reveal that, our proposed
storage architecture can match the number of active flows
with the TCAM capacity by adjusting the threshold of packet
arrival intervals, and achieve higher TCAM hit rates and
lower average flow table access time than the conventional
one applying the elephant/mice flow differentiation method.

REFERENCES
[1] N. Mckeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, ‘‘OpenFlow: Enabling innovation
in campus networks,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, 2008.

[2] A. Hakiri, A. Gokhale, P. Berthou, D. C. Schmidt, and T. Gayraud,
‘‘Software-defined networking: Challenges and research opportunities for
future Internet,’’ Comput. Netw., vol. 75, pp. 453–471, Dec. 2014.

[3] Z. Liao, R. Zhang, S. He, D. Zeng, J.Wang, andH.-J. Kim, ‘‘Deep learning-
based data storage for low latency in data center networks,’’ IEEE Access,
vol. 7, pp. 26411–26417, 2019.

[4] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat,
‘‘B4: Experience with a globally-deployed software defined WAN,’’ in
Proc. Conf. Special Interest Group Data Commun. (SIGCOMM), Hong
Kong, 2013, pp. 3–14.

[5] C.-Y. Hong, S. Mandal, M. Al-Fares, M. Zhu, R. Alimi, B. K. Naidu,
C. Bhagat, S. Jain, J. Kaimal, S. Liang, K. Mendelev, S. Padgett, F. Rabe,
S. Ray, M. Tewari, M. Tierney, M. Zahn, J. Zolla, J. Ong, and A. Vahdat,
‘‘B4 and after: Managing hierarchy, partitioning, and asymmetry for avail-
ability and scale in Google’s software-defined WAN,’’ in Proc. Conf. Spe-
cial Interest Group Data Commun., Budapest, Hungary, 2018, pp. 74–87.

[6] Open Networking Foundation. OpenFlow Switch Specification Ver-
sion 1.0.0 [S/OL]. Accessed: Dec. 31, 2009. [Online]. Available:
https:// www.opennetworking.org/wp-content/uploads/2013/04/openflow-
spec-v1.0.0.pdf

[7] Open Networking Foundation OpenFlow Switch Specification
Version 1.5.0 [S/OL]. Accessed: Dec. 19, 2014. [Online]. Available:
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-
switch-v1.5.0.pdf

[8] Z. Guo, Y. Xu, R. Liu, A. Gushchin, K.-Y. Chen, A. Walid, and H. J. Chao,
‘‘Balancing flow table occupancy and link utilization in software-defined
networks,’’ Future Gener. Comput. Syst., vol. 89, pp. 213–223, Dec. 2018.

[9] Z. Guo, R. Liu, Y. Xu, A. Gushchin, A. Walid, and H. J. Chao, ‘‘STAR:
Preventing flow-table overflow in software-defined networks,’’ Comput.
Netw., vol. 125, pp. 15–25, Oct. 2017.

[10] A.Mimidis-Kentis, A. Pilimon, J. Soler,M. Berger, and S. Ruepp, ‘‘A novel
algorithm for flow-rule placement in SDN switches,’’ in Proc. 4th IEEE
Conf. Netw. Softwarization Workshops (NetSoft), Montreal, QC, Canada,
Jun. 2018, pp. 1–9.

[11] A. Mimidis, C. Caba, and J. Soler, ‘‘Dynamic aggregation of traffic flows
in SDN: Applied to backhaul networks,’’ in Proc. IEEE NetSoft Conf.
Workshops (NetSoft), Seoul, South Korea, Jun. 2016, pp. 136–140.

[12] S. Luo, H. Yu, and L. M. Li, ‘‘Fast incremental flow table aggregation
in SDN,’’ in Proc. 23rd Int. Conf. Comput. Commun. Netw. (ICCCN),
Shanghai, China, Aug. 2014, pp. 1–8.

[13] B. Leng, L. Huang, X. Wang, H. Xu, and Y. Zhang, ‘‘A mechanism for
reducing flow tables in software defined network,’’ inProc. IEEE Int. Conf.
Commun. (ICC), London, U.K., Jun. 2015, pp. 1–15.

[14] S. Bera, S. Misra, and A. Jamalipour, ‘‘FlowStat: Adaptive Flow-Rule
Placement for Per-Flow Statistics in SDN,’’ IEEE J. Sel. Areas Commun.,
vol. 37, no. 3, pp. 530–539, Mar. 2019.

[15] K. Kannan and S. Banerjee, ‘‘Compact TCAM: Flow entry compaction in
TCAM for power aware SDN,’’ in Proc. Int. Conf. Distrib. Comput. Netw.
(ICDCN), Mumbai, India, 2013, pp. 439–444.

[16] Z. Guo, Y. Xu, M. Cello, J. Zhang, Z. Wang, M. Liu, and H. J. Chao,
‘‘JumpFlow: Reducing flow table usage in software-defined networks,’’
Comput. Netw., vol. 92, pp. 300–315, Dec. 2015.

[17] S. Banerjee and K. Kannan, ‘‘Tag-In-Tag: Efficient flow table management
in SDN switches,’’ in Proc. 10th Int. Conf. Netw. Service Manage. (CNSM)
Workshop, Rio de Janeiro, Brazil, Nov. 2014, pp. 109–117.

[18] J. Ge, Z. Chen, Y. Wu, and E. Yuepeng, ‘‘H-SOFT: A heuristic
storage space optimisation algorithm for flow table of OpenFlow,’’
Concurrency Comput. Pract. Exper., vol. 27, no. 13, pp. 3497–3509,
2015.

[19] J. Naous, D. Erickson, G. A. Covington, G. Appenzeller, and N.McKeown,
‘‘Implementing an OpenFlow switch on the NetFPGA platform,’’ in Proc.
4th ACM/IEEE Symp. Archit. Netw. Commun. Syst. (ANCS), San Jose, CA,
USA, 2008, pp. 1–9.

[20] J. Naous, G. Gibb, S. Bolouki, and N. McKeown, ‘‘NetFPGA: Reusable
router architecture for experimental research,’’ in Proc. Workshop Pro-
gram. Routers Extensible Services Tomorrow, Seattle, WA, USA, 2008,
pp. 1–7.

[21] N.Matsumoto andM. Hayashi, ‘‘LightFlow: Speeding up GPU-based flow
switching and facilitating maintenance of flow table,’’ in Proc. IEEE 13th
Int. Conf. High Perform. Switching Routing, Belgrade, Serbia, Jun. 2012,
pp. 76–81.

[22] N. Matsumoto, M. Hayashi, and I. Morita, ‘‘GPU-accelerated hash and
wildcard hybrid flow switching for tackling massive flow entries,’’ in Proc.
14th IEEE Int. Conf. High Perform. Switching Routing (HPSR), Taipei,
Taiwan, Jul. 2013, pp. 213–214.

[23] B.-S. Lee, R. Kanagavelu, and K. M. M. Aung, ‘‘An efficient flow
cache algorithm with improved fairness in software-defined data cen-
ter networks,’’ in Proc. 2nd IEEE Int. Conf. Cloud Netw. (CloudNet),
San Francisco, CA, USA, Nov. 2013, pp. 18–24.

[24] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, ‘‘CacheFlow:
Dependency-aware rule-caching for software-defined networks,’’ in Proc.
Symp. SDN Res. (SOSR), 2016, p. 6.

[25] X. Ding, Z. Zhang, Z. Jia, L. Ju, M. Zhao, and H. Huang, ‘‘Unified
nvTCAM and sTCAM architecture for improving packet matching per-
formance,’’ in Proc. 18th SIGPLAN/SIGBED Conf. Lang. Compil. Tools
Embedded Syst., Barcelona, Spain, 2017, pp. 91–100.

[26] D. Wang, Q. Li, Y. Jiang, M. Xu, and G. Hu, ‘‘Balancer: A traffic-aware
hybrid rule allocation scheme in software defined networks,’’ in Proc. 26th
Int. Conf. Comput. Commun. Netw. (ICCCN), Vancouver, BC, Canada,
Jul./Aug. 2017, pp. 1–9.

[27] Y.-C. Cheng and P.-C. Wang, ‘‘Scalable multi-match packet classifica-
tion using TCAM and SRAM,’’ IEEE Trans. Comput., vol. 65, no. 7,
pp. 2257–2269, Jul. 2016.

[28] D.-Y. Lee, C.-C. Wang, and A.-Y. Wu, ‘‘Bundle-updatable SRAM-based
TCAM design for openFlow-compliant packet processor,’’ IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 27, no. 6, pp. 1450–1454,
Jun. 2019. doi: 10.1109/TVLSI.2019.2891507.

[29] N. Matsumoto, M. Hayashi, and I. Morita, ‘‘LightFlow: Leveraging com-
bination of hash and wildcard tables for high performance flow switching
in large number of flow entries,’’ in Proc. 10th USENIX Symp. Networked
Syst. Design Implement. (NSDI), Yokohama, Japan, 2013, p. 1.

[30] O. El Ferkouss, I. Snaiki, O. Mounaouar, H. Dahmouni, R. B. Ali,
Y. Lemieux, and C. Omar, ‘‘A 100Gig network processor platform for
openflow,’’ in Proc. 7th Int. Conf. Netw. Service Manage., Paris, France,
Oct. 2011, pp. 1–4.

[31] C. Q. Li, Y. Q. Dong, and G. X. Wu, ‘‘OpenFlow table lookup scheme
integrating multiple-cell hash table with TCAM,’’ J. Commun., vol. 37,
no. 10, pp. 128–140, 2016.

[32] L. Chun-Qiang, D. Yong-Qiang, W. Guo-xin, and X. Yi-qing, ‘‘A cost-
effective lookup scheme combining hash table with TCAM for Open-
Flow,’’ in Proc. Int. Conf. Netw. Infrastruct. Digit. Content (IC-NIDC),
Guiyang, China, Aug. 2018, pp. 289–294.

[33] N. Duffield, C. Lund, and M. Thorup, ‘‘Estimating flow distributions
from sampled flow statistics,’’ IEEE/ACM Trans. Netw., vol. 13, no. 5,
pp. 933–946, Oct. 2005.

[34] R. Jain and S. Routhier, ‘‘Packet Trains–Measurements and a new model
for computer network traffic,’’ IEEE J. Sel. Areas Commun., vol. 4, no. 6,
pp. 986–995, Sep. 1986.

[35] A. Klemm, C. Lindemann, and M. Lohmann, ‘‘Modeling IP traffic using
the batch Markovian arrival process,’’ Perform. Eval., vol. 54, no. 2,
pp. 149–173, 2003.

[36] Network Trafc Traces. Accessed: Aug. 7, 2019. [Online]. Available:
http://iptas.edu.cn/src/system.php

VOLUME 7, 2019 141207

http://dx.doi.org/10.1109/TVLSI.2019.2891507


B. Xiong et al.: Efficient Differentiated Storage Architecture for Large-Scale Flow Tables in Software-Defined WANs

BING XIONG received the Ph.D. degree in com-
puter science by master doctorate program from
the Huazhong University of Science and Tech-
nology (HUST), China, in 2009. Supported by
China Scholarship Council, he was a Visiting
Scholar with the University of Temple, USA, from
2018 to 2019. He is currently an Associate Profes-
sor with the School of Computer and Communica-
tion Engineering, Changsha University of Science
and Technology, China. His main research inter-

ests include software-defined networking, network security, and network
measurements. He is a member of China Computer Federation.

RENGENG WU received the B.S. degree in
software engineering from the Changsha Univer-
sity of Science and Technology, China, in 2017,
where he is currently pursuing the M.S. degree
with the School of Computer and Communi-
cation Engineering. His main research interests
include software-defined networking and network
measurements.

JINYUAN ZHAO received the M.S. degree in
computer science fromCentral China Normal Uni-
versity, China, in 2007. She is currently pursuing
the Ph.D. degree with the School of Computer Sci-
ence and Engineering, Central South University,
China. She is also a Lecturer with the School of
Computer and Communication, Hunan Institute of
Engineering, China. Her main research interests
include software-defined networking and cloud
computing.

JIN WANG received the B.S. and M.S. degrees
from the Nanjing University of Posts and
Telecommunications, China, in 2002 and 2005,
respectively, and the Ph.D. degree from Kyung
Hee University, South Korea, in 2010. He is cur-
rently a Professor with the School of Computer
and Communication Engineering, Changsha Uni-
versity of Science and Technology, China. He has
published more than 300 international journals
and conference papers. His main research interests

include wireless sensor networks, Internet of Things, and artificial intelli-
gence. He is a member of ACM.

141208 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORKS
	LARGE-SCALE FLOW TABLE STORAGE
	SOFTWARE-DEFINED WIDE AREA NETWORKS
	DIFFERENTIATED STORAGE ARCHITECTURE

	MAJOR/MINOR FLOW DIFFERENTIATION
	TRADITIONAL ELEPHANT/MICE FLOW DIFFERENTIATION
	PACKET-IN-BATCH PROPERTY
	ACTIVE/IDLE FLOW DIFFERENTIATION

	ALGORITHMIC IMPLEMENTATION
	PACKET FORWARDING
	FLOW TABLE MODIFICATIONS

	EXPERIMENTS
	EXPERIMENTAL METHODOLOGY
	THE STABILITY OF MAJOR FLOW QUANTITY
	TCAM HIT RATE
	AVERAGE FLOW TABLE ACCESS TIME

	CONCLUSION
	REFERENCES
	Biographies
	BING XIONG
	RENGENG WU
	JINYUAN ZHAO
	JIN WANG


