
Received August 27, 2019, accepted September 13, 2019, date of publication September 18, 2019,
date of current version September 30, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2941958

Sensitivity Analysis of Strictly Periodic Tasks
in Multi-Core Real-Time Systems
JINCHAO CHEN 1, CHENGLIE DU1, PENGCHENG HAN 1, AND YONG ZHANG2
1School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China
2Department of Software System Development, North Automatic Control Technology Institute, Taiyuan 030000, China

Corresponding author: Jinchao Chen (cjc@nwpu.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under
Grant 2017YFB1001900, and in part by the Defense Industrial Technology Development Program of China
under Grant JCKY2016607B006 and Grant JCKY2017208B017.

ABSTRACT In the design phase of real-time systems, it cannot be expected that the timing attributes of all
tasks are completely specified and never changed. The increased computation times or shortened periods in a
schedulable system often cause deadlines to be missed. In such situations, sensitivity analysis is an effective
approach to provide quantitative indications for the design modification, by identifying the borderlines on
parameter variations while keeping the systems schedulable. In this paper, we propose a new approach to
analyze the sensitivity of the timing parameters of tasks with strict periods in multi-core real-time systems.
We first analyze a schedulability condition to determine whether a task is schedulable on a given processor
without changing the start times of the existing tasks. Then, following a game theory analogy, we design
recursive algorithms to compute the permissible changes in the task timing parameters, by allowing each
task to optimize its own start time and processor allocation. Finally, we conduct experiments with randomly
generated tasks to show that our approach is more efficient than the existing solutions to solve the sensitivity
problem. The proposed approach has a wide range of applications, only guiding the design of multi-core
systems, but also improving the robustness of a design subject to future changes.

INDEX TERMS Sensitivity analysis, scheduling, strictly periodic task, multi-core real-time system, schedu-
lability analysis, scheduling algorithm.

I. INTRODUCTION
Scheduling and schedulability analysis for real-time systems
have been a fundamental issue in providing guarantees for
temporal feasibility of task execution in anticipated situa-
tions. Schedulability theory checks the time constraints of
tasks, and significantly improves the efficiency of designs and
implementations of real-time systems. However, it cannot be
expected that all task parameters required by the schedula-
bility analysis are fully determined and available up front.
In many situations, real-time systems are composed of a
high degree of uncertainties on task activations and execu-
tion behaviors [1], making the application of schedulability
analysis much less productive.

Changes are usually applied to a specific task or an
entire system in practice. The computation times which
are more accurately estimated and measured with further
research, often exceed the initial estimation time budgets

The associate editor coordinating the review of this manuscript and
approving it for publication was Shih-Wei Lin.

and make a system unschedulable. Meanwhile, in order to
perfect or extend system functionalities, computation times
and periods of certain tasks may bemodified. In all aforemen-
tioned cases, designers need to keep track of the flexibility of
a system [2], and quickly determine howmuch available slack
there is before the system becomes unschedulable. This is the
domain of sensitivity analysis.

Sensitivity analysis is an effective approach to deal with
uncertainties that result from inaccurate specifications and
to provide an accurate prediction for future modifications.
It determines the bounds on parameter variations under
which schedulability constraints of systems are not violated.
Sensitivity analysis only offers the exact amount of change
affordable in task timing parameters before a schedulable
system becomes unschedulable, but also provides quanti-
tative indications of the actions (e.g., the decrease of task
computation times or the increase of handling speed of
processors) required to bring an unschedulable system back
into a schedulable state. Sensitivity analysis is a trustworthy
method to improve the flexibility and robustness of a design

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 135005

https://orcid.org/0000-0001-6234-1001
https://orcid.org/0000-0002-8099-3692


J. Chen et al.: Sensitivity Analysis of Strictly Periodic Tasks in Multi-Core Real-Time Systems

subject to future changes [3], by allowing the designers to
reallocate the use of total resources as needed instead of being
confined by initial boundaries.

Tasks with strict periods are usually adopted in practical
real-time applications such as avionics [4], [5] and process
control [6], [7] where continual sampling and processing
of data are required accurately. The range of application
domains where one error or miss may lead to a disastrous
consequence makes the change of these systems challeng-
ing and time consuming. Faced with this difficult situation,
the system designers inevitably tend to rely on decision-
making tools to determine whether changes are affordable
into the original system.

In this paper, we study the scheduling and sensitivity
problem of strictly periodic tasks on a multi-core platform,
and provide an informative result to show the effect that
the modification of each task parameter may have on the
schedulability of a system. We mainly aim at providing
the indications on how much change that the task parame-
ters could afford without violating schedulability constraints,
which not only helps in dealing with uncertainties that result
from inaccurate specifications, but also guides the design
andmodification of multi-core real-time systems.We address
three aspects during the system design process:

1. How to determine whether a strictly periodic task is
schedulable in a multi-core real-time system?

2. What is the exact amount of change affordable in the
computation time and the period of a single task to keep the
system schedulable?

3. What is the maximum value of the scaling factor [8]
(i.e., the possible change for the computation times of all
tasks) before a system becomes unschedulable?

Real-time scheduling and sensitivity problem is widely
studied in large-scale systems such as Internet of Things [9]
and Cyber-Physical Systems [10]. Significant efforts have
been made to provide efficient methods to solve the schedul-
ing and sensitivity problem. Based on fuzzy theory and a
genetic algorithm, Shojafar et al. [11] presented a hybrid
job scheduling approach to assign jobs with reducing total
execution time and execution cost in cloud computing.
Racu et al. [12] presented a sensitivity analysis framework
for both one-dimensional and multi-dimensional sensitiv-
ity of large real-time systems with complex timing depen-
dencies and requirements. However, in the aforementioned
works, the periods of tasks were not strict and some slack
time was allowed between successive instances of a periodic
task. Therefore, the schedulability conditions and sensitivity
approaches proposed in those works are not suitable for
strictly periodic tasks considered in this work.

The scheduling and sensitivity problem of strictly periodic
tasks is classified as a non-preemptive and strictly periodic
multiprocessor scheduling problem [5]. This problem is very
challenging because of the strict periodicity constraint, which
not only adds computation complexity [13] on the problem,
but also compounds the difficulty in obtaining the boundary
scheduling conditions [14]. Even though some efforts have

been made to schedule the strictly periodic tasks and schedu-
lability conditions have been proposed, only a few approaches
have been proposed to analyze the sensitivity of strictly peri-
odic tasks. Sheikh et al. [5] calculated the critical scaling
factor by a best-response algorithm, and used the factor to
determine whether all tasks were schedulable on a limited
number of processors. Pira and Artigues [15] did a similar
work and gave a new heuristic to solve the problem with
a propagation mechanism for non-overlapping constraints.
However, all of the aforementioned approaches only calcu-
lated the maximum scaling factors of tasks, sensitivity in the
domains of computation times and periods was not taken into
account.

In this paper, we first analyze a schedulability condition
to determine whether strictly periodic tasks are schedulable
in a multi-core real-time systems, then propose approaches
to seek affordable changes in the task timing parameters
before the system becomes unschedulable. We not only cal-
culate the maximum scaling factors for all tasks, but also
analyze the sensitivity of the computation time and the period
for a single task. The proposed approach has a wide range of
applications and can be adapted to tasks with both harmonic
and non-harmonic periods. It not only guides the development
of multi-core systems, but also improves the robustness of a
design subject to future changes.

A. MOTIVATION EXAMPLE
We illustrate the main problems studied in this paper with
a simple example. Consider a set that contains three tasks
τ1, τ2 and τ3 with strict periods. As indicated in Fig. 1(a),
the computation times of the three tasks are 2; while the
periods are 6, 12 and 12 respectively. From Fig. 1(a) we can
see that the three tasks have no overlapping time unit and are
schedulable on a uniprocessor platform. We are interested in
analyzing the sensitivity of task timing parameters from the
following three aspects.

FIGURE 1. A motivation example constituted of three tasks.

(A) Suppose τ3 is a real-time task used to collect data
samples at each period. The decrease of the period of τ3
would reduce the time interval between two successive col-
lections andmake the produced datamore accurate. As shown
in Fig. 1(b), when the period of τ3 is 6, the three tasks are

135006 VOLUME 7, 2019



J. Chen et al.: Sensitivity Analysis of Strictly Periodic Tasks in Multi-Core Real-Time Systems

still schedulable, which means that the period of τ3 could
be shortened to 6 at least. However, what is the minimum
value of the period that τ3 can have while keeping the task set
schedulable?We need to keep the computation times constant
and find the bound on the period of τ3.
(B) If we want to extend the functionality of τ3, the compu-

tation time of τ3 would be increased. What is the maximum
permissible increase in the computation time that τi can afford
without sacrificing schedulability? At this time, the period
of τ3 should be considered fixed and the computation time
of τ3 should be extended as much as possible before the
system becomes unschedulable. Figure 1(c) shows the non-
overlapping execution of the three tasks when the computa-
tion time of τ3 is increased to 4.

(C) Since slowing down processor clock speed by adjust-
ing the frequency is an effective method of reducing power
consumption [16], we try to reduce the handling speed of
processors furthest. Then a new problem arises: how much
reduction in the speed of the processor is affordable to keep
the task set still schedulable? As can be seen from Fig. 1(d),
the instances of the three tasks do not collide in time even
when the computation times of all tasks are multiplied by
1.5 proportionally, which means the speed of the processor
can be slowed down by one third at least.

B. CONTRIBUTIONS
In this paper, we study the sensitivity problem for tasks with
strict periods and propose a new approach to compute the
admissible changes in the timing parameters upon a multi-
core real-time platform. The contributions of this work are
summarized as follows.

First, we analyze a schedulability condition to determine
whether a task is schedulable on a given processor without
changing the start times of the existing tasks. This condition
works no matter how many tasks have already been assigned
to a specific processor, and does not require any form of
search. It is efficient and provides a schedulability constraint
for the computation time and period of a single task when all
existing tasks are fixed.

Second, using the schedulability condition proposed,
we build exact formulations to seek the permissible changes
in the task computation times, periods and scaling factors,
while keeping the task set schedulable in a multi-core system.
The obtained values are the borderlines on the task timing
parameters, and help guide the design and modification of
real-time systems.

Third, following a game theory analogy, we design recur-
sive algorithms to calculate affordable changes in the task
timing parameters, by allowing each task to optimize its
own offset and processor allocation. Unfortunately, the values
obtained from these algorithms may be not exact because the
algorithms stop when equilibrium states are reached and do
not search the solution space completely. However, the speeds
of these algorithms are fast, and the relative error ratios are in
the allowable range, which can be accepted when taking into
account the time cost.

C. ORGANIZATION
The rest of the paper is organized as follows. The related work
is introduced in Sect. II. The notations and task model used in
this paper is presented in Sect. III. A schedulability condition
for determining whether a task is schedulable is analyzed
in Sect. IV. Sect. V analyzes the maximum computation
time that a single task can have while keeping the task set
schedulable. Sect. VI gives a method to find the minimum
value of the period of a single task before the system becomes
unschedulable. Sect. VII calculates the maximum scaling fac-
tor of the computation times of all tasks. Sect. VIII provides
the simulation experiments and evaluates the performance
of our approaches with respect to the corresponding exact
formulations. Finally, Sect. IX presents the conclusions of
this paper and the directions for future work.

II. RELATED WORK
In the research area of sensitivity analysis, great efforts have
been made concerning preemptive scheduling systems, espe-
cially uniprocessor systems with fixed priority scheduling
algorithms. The first work to the sensitivity problem was
done by Lehoczky et al. [8]. The authors considered the fixed
priority preemptive scheduling with rate monotonic priority
assignment, and defined the critical scaling factor as the
largest possible change for the computation times of all tasks,
while still guaranteeing the schedulability of the task set.

Lots of improvements to Lehoczky’s analysis were made
based on fixed priority or other scheduling algorithms.
Vestal [17] introduced slack variables into the exact schedu-
lability conditions proposed in [8]. Punnekkat et al. [18] used
an efficient approach, which combined a binary search with
modified version of response time schedulability, to obtain
the sensitivity bounds. Racu et al. [12] presented a sensitiv-
ity analysis framework for both one-dimensional and multi-
dimensional sensitivity of large real-time systems with com-
plex timing dependencies and requirements. Zhang et al. [3]
addressed the changes in task timing parameters under a
uniprocessor platform for arbitrary deadline real-time sys-
tems with the Earliest Deadline First algorithm. However,
all those works study the parameter variations based on non-
strictly periodic tasks. The time duration between two suc-
cessive instances of a task may vary whereas it is a constant
in our case.

Strictly periodic tasks are usually adopted in the time-
triggered systems [19], [20], where tasks are activated by
the progression of time only. Some research has been done
to analyze the changes affordable and to calculate the max-
imum scaling factor of the computation times of all tasks.
Sheikh et al. [5] first derived a method to calculate the
largest evolution coefficient (i.e., the maximum rate of the
increase of each task computation time) for one task. Then
they extended this method to all tasks and proposed a best-
response algorithm to find the critical scaling factor for
the task set. Finally, they used the critical scaling factor to
determine whether all tasks were schedulable upon a limited

VOLUME 7, 2019 135007



J. Chen et al.: Sensitivity Analysis of Strictly Periodic Tasks in Multi-Core Real-Time Systems

number of processors. Afterword, Pira and Artigues [15]
improved the best-response algorithm presented by
Sheikh et al. [5] with local optimization and a propagation
mechanism.

To the best of our knowledge, this is the first work studying
the sensitivity analysis of the computation time and the period
for a single task with strict period under non-preemptive
scheduling in a multi-core real-time system. Fortunately,
significant efforts have been made to schedule the strictly
periodic tasks and some efficient schedulability conditions
have been proposed.

Korst et al. [21] presented a sufficient and neces-
sary schedulability condition for two strictly periodic
tasks, which had been proved to be a sufficient con-
dition by Kermia and Sorel [6] in multi-task situations.
Eisenbrand et al. [4] used bin trees to analyze the schedu-
lability of multiple tasks under the constraint that the peri-
ods of all tasks were harmonic, i.e., for each two tasks,
the period of one task is a multiple of that of the other
one. Marouf and Sorel [22] did a similar work and gave a
schedulability condition for a new task when its period was
a multiple of one of the existing tasks. Zhang et al. [23]
presented an efficient approach to select the start times and
provided a sufficient schedulability condition for strictly
periodic tasks on a uniprocessor. Even though the schedula-
bility conditions proposed in the aforementioned works have
special constraints that sharply restrict the range of applica-
tions, they help the researchers in analyzing the parameter
variations of the strictly periodic tasks.

In Chen el al. [24], the authors represented a strictly peri-
odic task by its eigentask (i.e., setting its worst case execu-
tion time to 1), calculated the valid scheduling slots for a
new task and presented sufficient schedulability conditions
to determine whether the new task is schedulable on a limited
number of processors. In this research, based on the schedu-
lability conditions proposed in [24], we provide approaches
to analyze the indications on how much change that the
task parameters could afford without violating schedulability
constraints. We not only calculate the exact amount of change
affordable in the computation time and the period of a single
task, but also seek the maximum value of the scaling factor
of all tasks. Experiments with randomly generated tasks show
that our approach is more efficient than the existing solutions
to solve the sensitivity problem of strictly periodic tasks.

III. NOTATIONS AND SYSTEM MODEL
In this paper, we consider a real-time system constituted of
m identical processors on which a set of n tasks with strict
periods are scheduled. Each task is independent and consists
of an infinite stream of instances that should be executed non-
preemptively. A task τi (1 ≤ i ≤ n) is characterized by a tuple
τi = 〈ci, pi〉 where ci is its computation time and pi is its
period with 0 < ci ≤ pi. We use si and ai to denote the offset
(i.e., the start time of the first instance) and the assignment
(i.e., the processor to which the task is assigned) of τi, then
0 ≤ si ≤ pi − ci and 1 ≤ ai ≤ m. We assume that the

period and computation time of each task are multiples of the
basic dealing cycles of the processor clocks, i.e., ∀i ∈ [1, n],
pi, ci ∈ N∗.

For any task τi, one instance is generated at every time unit
si + kpi (k ∈ N) and should be executed immediately after
its generation. Let Bki (si) denote the time units used by the
kth instance of τi, then using the strict periodicity constraint,
there is: ∀τi ∈ T , ∀k ∈ N, Bki (si) = [si + kpi, si + kpi + ci).
We use Ei to represent the time units occupied by all instances
of τi, i.e., Ei =

⋃
k∈N B

k
i (si). Figure 2 shows the timing

characters of a strictly periodic task.

FIGURE 2. Strictly periodic task model used in this paper.

In a multi-core real-time system, tasks are unevenly dis-
tributed and the number of tasks allocated to each core may
be different. Let Tp denote the set of tasks assigned to the
processor p (1 ≤ p ≤ m). Meanwhile, we use gi,j to represent
the greatest common divisor (GCD) of the periods of any two
tasks τi and τj, i.e., gi,j = GCD(pi, pj). Table 1 summarizes
the basic notations used in this paper.

TABLE 1. Basic notations used in this paper.

IV. PREVIOUS RESULTS ON SCHEDULABILITY ANALYSIS
FOR STRICTLY PERIODIC TASKS
Schedulability analysis which determines whether a set
of tasks with temporal parameters meets their constraints
according to a given scheduling algorithm, can significantly
increase the efficiency of design of real-time systems, and is
a critical foundation for sensitivity analysis.

In this section, we analyze the previous research results on
schedulability analysis for tasks with strict periods. We first
introduce a schedulability condition for two tasks allocated to
the same processor. Then, we represent a task by its eigentask
(i.e., setting its computation time to 1), and calculate all free
scheduling slots for the eigentask. Finally, we obtain a new
schedulability condition to determine whether the original
task is schedulable using the free scheduling slots calculated.
The schedulability condition proposed provides a constraint
on the computation time and period of a single task when

135008 VOLUME 7, 2019



J. Chen et al.: Sensitivity Analysis of Strictly Periodic Tasks in Multi-Core Real-Time Systems

it is schedulable with other tasks, and will be adopted to
analyze the parameter variations of strictly periodic tasks in
later sections.

A. SCHEDULABILITY ANALYSIS FOR TWO TASKS WITH
STRICT PERIODS
In 1991, Korst et al. [21] noted that two strictly periodic
tasks are schedulable if and only if the time units occupied
by their instances do not collide, and proposed a necessary
and sufficient condition to determine whether two tasks with
strict periods were schedulable. The schedulability condition
is given by the following theorem.
Theorem 1: Two strictly periodic tasks τi = 〈ci, pi〉 and

τj = 〈cj, pj〉 are schedulable on the same processor if and
only if

ci ≤ (sj − si)mod(gi,j) ≤ gi,j − cj (1)

We can observe that Condition (1) works for two tasks
at a time and cannot be applied into multi-task situations.
It is difficult to directly propose a more general schedulability
condition to determine whether all tasks are schedulable on a
given processor. We solve this multi-task scheduling problem
by adopting the concepts of eigentask and eigenoffset , which
were inspired from eigenvector [25] in the matrix theory and
first introduced by Chen et al. [26].

B. EIGENTASK AND EIGENOFFSET
If a new task is schedulable on a given processor, there
exists at least one valid offset such that the instances of the
new task have no overlapping time unit with those of other
tasks. Therefore, it is a very reliable method to determine
the schedulability of a new task by analyzing whether a valid
offset exists.

Assume that T = {τ1, τ2, . . . , τn} is a set constituted of
all schedulable tasks and τr = 〈cr , pr 〉 is a new task to
be scheduled. It is difficult to obtain all valid offsets for τr
in a multi-task situation. However, if we can get the valid
offsets for a task τr ′ = 〈1, pr 〉, it is quite easy to determine
whether enough many (i.e., as many as the computation time
of τr ) consecutive free time units are available. If there are,
τr can be executed in the corresponding time intervals and is
schedulable with all tasks in T .

We refer to τr ′ = 〈1, pr 〉 as the eigentask of τr = 〈cr , pr 〉.
That is to say, eigentask is the task whose computation time
is 1 but period is the same as that of the original task.
Meanwhile, we refer to the set constituted of all valid offsets
of τr ′ as the eigenoffset of τr , and use ET (r) to denote the
eigenoffset of τr . Then, τr ′ is schedulable with all tasks in T
if its offset s is one of the integers in ET (r), which can be
expressed as:

∀k, l ∈ N, ∀s ∈ ET (r), Bki (si) ∩ B
l
r ′ (s) = ∅

The following theorem which was proposed in [24],
promoted a method for calculating the eigenoffset.

Theorem 2: An eigentask τr ′ = 〈1, pr 〉 is schedulable with
all tasks in a set T on a uniprocessor platform if and only if
its offset s

s ∈ Z (r) \
⋃
τi∈T

BTU (i, r) (2)

In Condition 2, Z (r) denotes the time interval from 0 to
pr−1, i.e., Z (r) = [0, pr−1], andBTU (i, r) can be calculated
by:

BTU (i, r) = {e′ | e′ = (e)mod(pr ), ∀e ∈ Bki (si),

∀k ∈ [0,
v
pi
), v = LCM (pi, pr )}

FromTheorem 2we know, Z (r)\
⋃
τi∈T BTU (i, r) contains

all valid offsets for the eigentask τr ′ . Then the eigenoffset
ET (r) of τr can be calculated via,

ET (r) = Z (r) \
⋃
τi∈T

BTU (i, r)

= {x ∈ N | x ∈ [0, pr − 1], x /∈
⋃
τi∈T

BTU (i, r)} (3)

C. SCHEDULABILITY DETERMINATION
The eigenoffset calculated in Sect. IV-B contains all free
time units that can be used for the eigentask of a given task.
In this section, we use the eigenoffset to determine whether
a new task is schedulable with all tasks running on the same
processor. We need to introduce a notation LLC(S), which
was defined in Chen et al. [27] and represents the longest
length of consecutive integers in a finite set S.
Theorem 3: A task τr = 〈cr , pr 〉 is schedulable with all

tasks in a set T on a uniprocessor platform if and only if

cr ≤ LLC(ET (r)) (4)

where ET (r) is given in Eq. (3)
Proof: We assume τr ′ = 〈1, pr 〉 is the eigentask of τr .

τr is schedulable with all tasks in T if and only if the instances
of τr and the existing tasks in T do not collide, i.e., ∀k, l ∈ N,
∀τi ∈ T , Bkr (sr ) ∩ B

l
i(si) = ∅.

Bkr (sr ) ∩ B
l
i(si) = ∅

⇐⇒ [sr + kpr , sr + kpr + cr − 1] ∩ Bli(si) = ∅

⇐⇒ (
cr−1⋃
w=0

[sr + kpr + w, sr + kpr + w]) ∩ Bli(si) = ∅

⇐⇒ (
cr−1⋃
w=0

Bkr ′ (sr + w)) ∩ B
l
i(si) = ∅

⇐⇒ Bkr ′ (sr + w) ∩ B
l
i(si) = ∅, ∀w ∈ [0, cr − 1]

Therefore, τr is schedulable with all tasks in T if and only if
there are at least cr consecutive integers from sr to sr+cr−1
in the valid offsets of τr ′ , i.e., cr ≤ LLC(ET (r)). �
Condition (4) determines the schedulability of a task

quickly and can be exploited to deliver the optimal timing
parameters of the existing tasks. Based on this condition,
we analyze themaximum computation time and theminimum

VOLUME 7, 2019 135009



J. Chen et al.: Sensitivity Analysis of Strictly Periodic Tasks in Multi-Core Real-Time Systems

period of a single task, and calculate the maximum scaling
factor of the computation times of all tasks in later sections.

V. MAXIMUM COMPUTATION TIME CALCULATION
Since computation time is one of the most important timing
factors in a real-time system, the modification of the compu-
tation time of a single task is a common form of sensitivity
analysis and has received lots of attention in the research
community. In this section, we analyze the maximum pos-
sible increase in the computation time that a single task can
afford without sacrificing the schedulability of the system.
We assume that the design variable is only the computation
time of the target task, whereas the period of the target task
and the timing parameters of other tasks remain the same.

We assume the task that we want to maximize its computa-
tion time is τr = 〈cr , pr 〉. We need to calculate the largest
value of cr before the task set T becomes unschedulable.
This means that the computation time of τr can be set to cr
while keeping T schedulable, and any small increase in cr
would make the set T unschedulable. We first investigate
an exact formulation of this maximization problem based on
linear programming, then propose a more efficient heuristic
to generate optimized allocations for the tasks and get the
maximum computation time for the target task.

A. EXACT FORMULATION
The calculation problem of the maximum computation time
can be defined asmaximizing an object (computation time cr )
subject to linear constraints (schedulability constraints of
all tasks). Because the timing parameters of tasks in this
paper are integers, we propose an exact formulation based on
Mixed Integer Linear Programming (MILP) [28], which can
completely search the solution space if no time limit is set.

We use Condition (1) to describe the non-overlapping con-
straint for two tasks; however the modulo operation (mod)
in it is not linear. In MILP, the modulo operation should be
transformed to

(sj − si)mod(gi,j) = (sj − si)− gi,j × ei,j (5)

where ei,j = b
sj−si
gi,j
c. ei,j is a new integer variable representing

the quotient from themodulo operation. Since 0 ≤ si ≤ pi−ci
and 0 ≤ sj ≤ pj − cj, the value of ei,j ranges from

ci−pi
gi,j

to
pj−cj
gi,j

. Therefore, Condition (1) becomes

ci ≤ (sj − si)− gi,j × ei,j ≤ gi,j − cj
ci − pi
gi,j

≤ ei,j ≤
pj − cj
gi,j

TheMILP formulation for the maximum computation time
problem can be written as the following program:

maximize cr
subject to ci ≤ (sj − si)− gi,j × ei,j ≤ gi,j − cj

ci − pi
gi,j

≤ ei,j ≤
pj − cj
gi,j

∀i, j ∈ [1, n], ai = aj, j 6= i (6)

cr ∈ (0, pr ] (7)

ai ∈ [1,m], si ∈ [0, pi − ci], ∀i ∈ [1, n] (8)

Condition (6) describes the non-overlapping constraints
of tasks allocated to the same processor. Condition (7)
requires that the value of cr should be no more than pr , and
Condition (8) shows the range restrictions of the offsets and
assignments of all tasks.

Even though this MILP formulation can find an exact
solution, it has a serious limitation. It considers all possible
allocations of tasks and has n2+n integer variables. The exact
MILP formulation is inefficient on large scale or even fairly
complex problem instances because of the required execution
times. This is due to the fact that the non-preemptive alloca-
tion and scheduling problem for tasks with strict periods is
NP-Hard [21]. A relatively efficient heuristic is proposed in
the following sections.

We try to optimize the offset si and assignment ai of one
task τi at a time, while keeping the other tasks fixed. All
tasks take turns to select their best offsets and assignments
such that the target task can have the largest permissible
computation time according to the current allocations. This
method has an analogy with Game Theory, where each player
makes a best response according to the mostly known strate-
gies of the other players. This method is known as the Best
Response solution, whichwas first introduced by Sheikh et al.
in [5], [29], and also studied by Pira andArtigues in [15], [30].

In the following, we first give a best offset procedure to
find the best start time for a task on a given processor while
keeping the other task fixed. Then, we extend this procedure
to all processors and design a best response procedure to
obtain the best assignment besides the best offset. Finally,
we present a heuristic to calculate the maximum computation
time for the target task by moving the tasks round after round
until an equilibrium is reached.

B. BEST OFFSET PROCEDURE ON A PROCESSOR
For each task τi (1 ≤ i ≤ n), we design a best offset
procedure BOpi (r) to get an optimal offset for τi such that τr
can have the largest permissible computation time on a given
processor p, while keeping the offsets and assignments of
other tasks fixed. As we pointed out in Sect. III, Tp represents
all tasks allocated to the processor p. We use T−ip to represent
all tasks in Tp but τi, i.e., T−ip = Tp \ {τi}. Then, the offsets
of all tasks in T−ip remain the same.
From Condition (4) in Theorem 3 we know, for the tar-

get task τr , the largest length of consecutive integers in its
eigenoffset is its computation time bound , i.e., the maximum
permissible computation time that τr can have when it is
schedulable on the same processor. Then, for each allocation
of tasks in Tp, there is a computation time bound on the pro-
cessor p. We need to consider all valid allocations, calculate
the corresponding computation time bounds and record the
largest one. Since the offsets of tasks in T−ip remain the same,
each offset si of τi satisfying the non-overlapping constraints
leads to a valid allocation. Then, the BOpi (r) procedure should

135010 VOLUME 7, 2019



J. Chen et al.: Sensitivity Analysis of Strictly Periodic Tasks in Multi-Core Real-Time Systems

consider all valid values of si, and find the best offset for
τi such that τi has the largest permissible computation time.
Algorithm 1 shows the pseudo-code for this procedure.

Algorithm 1 Best Offset Procedure BOpi (r)

Input: τi, τr and a processor p
Output: the largest permissible computation time cpr for

τr , the best offset bsi for τi
1 cpr ←−1; bsi←−1;
2 T−ip ← Tp \ {τi};
3 for k = 0 to pi − ci do
4 si← k;
5 if Condition (6) is satisfied then
6 ETp (r)← Z (r) \

⋃
τj∈T

−i
p
BTU (j, r) \ BTU (i, r);

7 tcr ← LLC(ETp (r));
8 if tcr > cpr then
9 cpr ← tcr ; bsi← k;

10 end
11 end
12 end
13 return (cpr , bsi);

We can find that the main computation part of Algorithm 1
is from line 3 to 12, which is a loop and repeats at most pi
times. In each iteration, the eigenoffset of τi is calculated,
and the complexity is O(np), where np is the number of tasks
allocated to the processor p. Therefore the total running time
of Algorithm 1 is O(nppi). If we use Pmax to denote the
maximum period of all tasks, the running time complexity
of Algorithm 1 is O(npPmax).

C. BEST RESPONSE PROCEDURE ON A MULTI-CORE
PLATFORM
Based on the best offset procedure BOpi (r), we design a best
response procedure BRi(r), which returns the best strategy
(i.e., the best offset and the best assignment) of each task τi
according to the current allocations of other tasks. The best
response procedure ensures that the target task τr can have the
largest permissible computation time when all tasks except τi
keep fixed.

From Sect. V-B we know, when τi is allocated to the pro-
cessor p, the computation time bound for τr on this processor
is BOpi (r). Meanwhile, according to Theorem 3, the compu-
tation time bound for τr on any other core c (1 ≤ c ≤ m
and c 6= p) is LLC(ETc (r)). Note that in a multi-core system,
τr may be executed on any of the processors. We use mcpr
to denote the maximum permissible computation time of τr
when τi is allocated to the processor p, then

mcpr = max
(
BOpi (r), max

1≤c≤m,c6=p
LLC(ETc (r))

)
(9)

The best response procedure BRi(r) needs to assign τi to
each processor and records the largest value. We use mcr
to denote the maximum permissible computation time for τr

when only the offset and assignment of τi can be changed,
then

mcr = max
1≤p≤m

mcpr

= max
1≤p≤m

max
(
BOpi (r), max

1≤c≤m,c6=p
LLC(ETc (r))

)
(10)

The best response procedure BRi(r) stops when all proces-
sors to which τi can be allocated have been considered. The
pseudo-code for BRi(r) is given in Algorithm 2. Since the
complexity of the best offset procedure BOpi (r) isO(npPmax),
the running cost of the best response procedure BRi(r) is
O(nPmax).

Algorithm 2 Best Response Procedure BRi(r)
Input: τi and the target task τr
Output: the maximum permissible computation time

mcr for τr , the best offset bsi and assignment
bai for τi

1 mcr ←−1; bsi←−1; bai←−1;
2 for p = 1 to m do
3 (cpr , tbsi)← BOpi (r);
4 tLen←−1;
5 for c = 1 to m do
6 if c 6= p then
7 tc← LLC(ETc (r))
8 if tc > tLen then
9 tLen← tc; tar ← c;
10 end
11 end
12 end
13 if cpr < tLen then
14 cpr ← tLen;
15 end
16 if mcr < cpr then
17 (mcr , bsi, bai)← (cpr , tbsi, p);
18 end
19 end
20 return (mcr , bsi, bai);

D. EQUILIBRIUM-BASED HEURISTIC
In this section, we extend τi to all tasks in the system and
present an equilibrium-based heuristic to calculate the max-
imum permissible computation time for τr when all tasks
can change their offsets and assignments freely. Each task
optimizes its offset and assignment according to the best
response procedure BRi(r) proposed in Sect. V-C at its turn.
The tasks are moved round after round until an equilibrium
is reached, i.e., no task can improve its offset or assignment
using the best response procedure.

Let T k (k ≥ 1) represent the tasks after the kth iteration,
then the heuristic stops when T k = T k−1. We use ckr ·i, s

k
i

and aki to denote the permissible computation time calculated
for τr , the corresponding offset and assignment for τi after τi

VOLUME 7, 2019 135011



J. Chen et al.: Sensitivity Analysis of Strictly Periodic Tasks in Multi-Core Real-Time Systems

updates its allocation in the kth iteration. Algorithm 3 shows
the pseudo-code for this equilibrium-based heuristic.

Algorithm 3 Maximum Computation Time Algorithm
(MCTA)
Input: τr and a task set T
Output: the maximum permissible computation time

mcr for τr
1 k ← 0;
2 repeat
3 for i = 1 to n do
4 if i 6= r then
5 (ckr ·i, s

k
i , a

k
i )← BRi(r);

6 (si, ai)← (ski , a
k
i );

7 mcr ← ckr ·i;
8 end
9 end
10 k ← k + 1;
11 until T k = T k−1;
12 return mcr

E. CONVERGENCE AND COMPLEXITY ANALYSIS
In this section, we analyze the convergence and computation
complexity of the equilibrium-based heuristic proposed in
Sect. V-D. We first prove that this heuristic will converge in a
finite number of iterations. Then using the converge property,
we analyze the computation complexity of this heuristic and
show that this heuristic runs in pseudo-polynomial time.

As with efficiency and dependability, convergence is a
desired property for recursive algorithms. We first prove
that the permissible computation time calculated by the best
response procedure increases as the iterative process contin-
ues. Then we show that the calculated values are bounded in
all iterations and the maximum computation time algorithm
converges in a finite number of iterations.
Lemma 1: In the iterative processes, there are: ∀k ≥ 1,
∀i ∈ [1, n− 1], i 6= r

ckr ·i ≤ c
k
r ·(i+1) and ckr ·n ≤ c

k+1
r ·1

Proof: When τi uses the best response procedure BRi(r)
to improve its offset and assignment in the kth iteration,
only the tasks whose turns are in front of τi have opti-
mized their allocations in this kth iteration. Then, ckr ·i is
obtained when the offset sequence and assignment sequence
for all tasks are [sk1, s

k
2, . . . , s

k
i−1, s

k
i , s

k−1
i+1 , . . . , s

k−1
n ] and

[ak1, a
k
2, . . . , a

k
i−1, a

k
i , a

k−1
i+1 , . . . , a

k−1
n ]. Now τi+1 begins to

update its offset and assignment. The offset sequence
and assignment sequence for all tasks except τi+1 are
[sk1, s

k
2, . . . , s

k
i−1, s

k
i , s

k−1
i+2 , . . . , s

k−1
n ] and [ak1, a

k
2, . . . , a

k
i−1,

aki , a
k−1
i+2 , . . . , a

k−1
n ]. When the offset and assignment of τi+1

are equal to sk−1i+1 and ak−1i+1 , the value of the permissible
computation time calculated is ckr ·i. Therefore, c

k
r ·(i+1) is equal

to ckr ·i even the other offsets and assignments of τi+1 cannot

improve the current value. Thus ckr ·i ≤ ckr ·(i+1). Similarly,
ckr ·n ≤ c

k+1
r ·1 can be proved. �

Theorem 4: The equilibrium-based heuristic converges in
at most

(n+pr
pr

)
n iterations.

Proof: From Sect. V-C we know, the permissible com-
putation time bound when τi is assigned to the processor p is
not larger than pr , i.e., mc

p
r ≤ pr . According to Eq. (10),

mcr = max1≤p≤mmc
p
r ≤ pr . Thus, the value calculated

in each iteration is bounded. Meanwhile, Lemma 1 shows
that the permissible computation time calculated has an inte-
ger value and increases as the iterative process continues.
Therefore, the minimum value that the permissible compu-
tation time increases in each iteration is 1. According to the
Proposition 4 proposed by Sheikh et al. in [29], the heuristic
converges and the maximum number of iterations in this
heuristic is

(n+pr
pr

)
n. �

Now we analyze the complexity of this equilibrium-based
heuristic. According to Theorem 4, the heuristic converges in
at most

(n+pr
pr

)
n iterations where n is the number of tasks and

pr is the period of the target task. In each iteration, the best
response procedure BRi(r) is adopted to select the best offset
and assignment for the considered task. Since BRi(r) runs
in O(nPmax), the computation complexity of the heuristic is
O
(
n2Pmax

(n+pr
pr

))
. Since the running time cost of this heuristic

depends on not only the number of tasks n, the period of the
target task pr , but also the largest period Pmax , this heuristic
runs in pseudo-polynomial time and its complexity explodes
as soon as n becomes large.

VI. MINIMUM PERIOD CALCULATION
Period, as well as the computation time, is one of the most
important timing characters in multi-core real-time systems.
The decrease of a task period would reduce the time duration
between two successive instances and improve the immedi-
ateness and accuracy of the data generated. In this section,
we study the sensitivity problem in the domain of task peri-
ods, and compute the minimum value of the period that a
single task can have while keeping the multi-core system still
schedulable.

Let τr = 〈cr , pr 〉 denote the target task that we want to
reduce its period. The value of cr and the timing parameters
of other tasks are fixed. We need to find the minimum value
of pr that ensures the task set is schedulable. The period of τr
can be optimally decreased to a certain value while the task
set is still schedulable. However, any small further decrease
in pr would results in an unschedulable task set. We first give
an exact formulation for this minimization problem based
on Mixed Integer Quadratically Constrained Programming
(MIQCP) [31], then propose a more convenient heuristic
based on Game Theory to seek the minimum value of the
period of the target task.

A. EXACT FORMULATION
When we calculated the maximum computation time in
Sect. V, the periods of all tasks are fixed; however, in this

135012 VOLUME 7, 2019



J. Chen et al.: Sensitivity Analysis of Strictly Periodic Tasks in Multi-Core Real-Time Systems

section, the period of the target task is an object we want to
minimize and does not remain the same anymore. The great-
est common divisor (GCD) of the periods of τr and any other
task τi would be changed. Therefore, when Condition (1) is
used to determine whether two tasks are schedulable on the
same processor, gi,r is a new variable and gi,r = GCD(pi, pr )
should be transformed to

gi,r × wi,r = pr
gi,r × vi,r = pi

where wi,r and vi,r are two integer variables representing the
quotients from the division operations, i.e., wi,r = pr/gi,r
and vi,r = pi/gi,r .
The optimization process is seeking optimal offset and

assignment allocations for all tasks such that the target task
τr can decrease its period as much as possible while keeping
the task set schedulable. The exact formulation can be written
as the followings:

minimize pr
subject to ci ≤ (sj − si)− gi,j × ei,j ≤ gi,j − cj

ci − pi
gi,j

≤ ei,j ≤
pj − cj
gi,j

gi,j × wi,j = pj, gi,j × vi,j = pi
∀i, j ∈ [1, n], ai = aj, j 6= i (11)

pr ≥ cr (12)

ai ∈ [1,m], si ∈ [0, pi − ci], ∀i ∈ [1, n] (13)

Constraint (11) describes the non-overlapping require-
ments of each two tasks assigned to the same processor.
Condition (12) shows that the value of pr should be larger
than or equal to cr , which is required by the strictly periodic
task model proposed in Sect. III. Condition (13) provides
the range restrictions of the offsets and assignments of all
tasks. Since there are quadratic terms (such as gi,r ×wi,r and
gi,r × vi,r ) in Constraints (11), this formulation is not a linear
program but a mixed integer quadratically constrained one
(i.e., MIQCP formulation), which can be solved using Cplex
Optimizer or LocalSolver.

In this exact formulation, there are n2+4n integer variables
and requires a significant amount of time to seek optimal
offset and assignment allocations for all tasks. Its applica-
tion to large scale or even fairly complex problem instances
may be inefficient because of the required execution times.
We propose a faster heuristic based on Game Theory to solve
the optimization problem. As did in Sect. V, we first design
a procedure to get the best offset si for a task τi such that
τr can has the least integral period on a given processor.
Then, we try to find the best assignment ai besides the best
offset si on amulti-core platformwhile keeping all other tasks
fixed. Finally, we present a heuristic to calculate theminimum
value of pr by moving the tasks round and round until an
equilibrium state is reached.

B. BEST OFFSET PROCEDURE ON A PROCESSOR
In this section, we first propose a minimum period proce-
dure MP(p, r) to calculate the least permissible period of
τr on a given processor p when all tasks are fixed. Then
we modify the offset of any task τi on the processor p (i.e.,
τi ∈ Tp), and design a best offset procedure BPpi (r) to find
an optimal start time for τi such that the value of pr is the
minimum according to current allocations. The pseudo-code
for MP(p, r) is given in Algorithm 4. MP(p, r) increases pr
from cr to LCM (∀j, τj ∈ Tp) and stops when the permissible
computation time calculated is not less than the computation
time of τr .

Algorithm 4Minimum Period ProcedureMP(p, r)
Input: the target task τr and a given processor p
Output: the minimum period mpr for τr

1 mpr ←∞;
2 for pr = cr to LCM (∀j, τj ∈ Tp) do
3 tcr ← LLC(ETp (r));
4 if tcr ≥ cr then
5 mpr ← pr ;
6 break;
7 end
8 end
9 return mpr ;

MP(p, r) seeks the minimum value of pr on the processor p
when the offsets of all tasks keep fixed. Now we consider
the situation that only the task τi can change its offset freely.
Since all tasks in Tp except τi (i.e., tasks in T−ip ) remain the
same, each valid offset si results in a valid task allocation
and a possible period bound for the target task τr . Therefore,
we need to consider all valid values of si, compute the asso-
ciated possible period bound with MP(p, r) and record the
minimum value. The best offset procedure BPpi (r) performs
these operations, and the pseudo-code for this procedure is
given in Algorithm 5.

The main computation part of Algorithm 5 is from
line 3 to 12, which is a loop and repeats at most pi times.
In each iteration, the minimum period procedure MP(p, r) is
used to obtain the least permissible period of τr according
to the current allocation. Since the complexity of MP(p, r)
is O(nppr lp), where lp = LCM (∀j, τj ∈ Tp), the total
computation time of BPpi (r) is O(nplpprpi). We use Pmax to
denote themaximum period of all tasks, then the running time
complexity of BPpi (r) is O(nplpprPmax).

C. BEST STRATEGY PROCEDURE ON A MULTI-CORE
PLATFORM
In this section, we design a best strategy procedure BSi(r)
to find the best strategy (i.e., the best offset and the best
assignment) for τi, such that the target task τr can have the
minimum period according to the current allocations.

VOLUME 7, 2019 135013



J. Chen et al.: Sensitivity Analysis of Strictly Periodic Tasks in Multi-Core Real-Time Systems

Algorithm 5 Best Offset Procedure BPpi (r)

Input: τi, τr and a processor p
Output: the minimum value of pr , and the best offset for

τi
1 minP←∞; bsi←−1;
2 T−ip ← Tp \ {τi};
3 for k = 0 to pi − ci do
4 si← k;
5 if Condition (6) is satisfied then
6 tpr ← MP(p, r);
7 if tpr < minP then
8 minP← tpr ;bsi← k;
9 end
10 end
11 end
12 return (minP, bsi);

We first remove τi from the set T , then the allocations of all
tasks left are fixed.We use bp to denote the permissible period
bound of τr on the processor p. From Sect. VI-B we know,
bp = MP(p, r). We sort the processors in descending order
according to the values of permissible period bounds and use
Q = {q1, q2, . . . , qm} to represent the ordered processor set,
i.e., ∀k, l ∈ [1,m], k ≤ l ⇐⇒ bqk ≥ bql .
Now we begin to assign τi to the best processor. Note

that the permissible value of pr on a given processor p tends
to increase or remain constant when τi is assigned to p.
Therefore, we allocate τi to the processors in descending
order by their permissible period bounds, i.e., from q1 to qm
in the set Q. When τi can be allocated to the processor qj
(1 ≤ j ≤ m), there are two cases:

(A) If j < m, the minimum period mpr of τr is the
permissible period bound on the processor qm, then

mpr = bqm = MP(qm, r)

(B) If j = m, the minimum permissible period of τr
on the processor qm should be calculated by the best offset
procedure. Meanwhile, the minimum permissible period of
τr on any other processor is the permissible period bound on
the processor qm−1. Since τr can be assigned to any processor
in amulti-core system, theminimum value of pr is the smaller
one of the two permissible periods. Then

mpr = min(BPqmi (r), bqm−1 )

Putting cases (A) and (B) together, we get the minimum
value of pr when only the offset and assignment of τi change.
Algorithm 6 shows the pseudo-code for this best strategy
procedure. Since the running time complexity of BPpi (r) is
O(nplpprPmax), the computation complexity of Algorithm 6
is O(nlprPmax), where l is the least common multiple of the
periods of all tasks, i.e., l = LCM (∀j, τj ∈ T ).

Algorithm 6 Best Strategy Procedure BSi(r)
Input: τi, τr and ordered processor set

Q = {q1, q2..., qm}
Output: the minimum value of pr , and the best offset

and assignment for τi
1 for p = q1 to qm do
2 (minP, bsi)← BPpi (r);
3 if bsi 6= −1 then
4 bai← p;
5 if p 6= qm then
6 minP← bqm ;
7 end
8 else
9 if minP ≥ bqm−1 then
10 minP← bqm−1 ;
11 end
12 end
13 break;
14 end
15 end
16 return (minP, bsi, bai);

D. EQUILIBRIUM-BASED HEURISTIC
An equilibrium-based heuristic is proposed to calculate the
minimum value of the period of τr , by optimizing the offset
and assignment of one task at a time while keeping those of
other tasks fixed. In this heuristic, tasks take turns to make
their best strategy according to the current known allocations.
Each task selects the best start time and processor such that
τr can decrease its period as much as possible.
When no task’s offset or assignment can be modified

according to the best strategy procedure BSi(r), an equilib-
rium state is reached and the heuristic stops. Similar to the
notations used in Sect. V-D, pkr ·i, s

k
i and aki represent the

permissible period calculated for τr , the corresponding offset
and assignment for τi after τi uses the best strategy procedure
to optimize its allocation in the kth iteration. Algorithm 7
shows the pseudo-code for this equilibrium-based heuristic.

E. CONVERGENCE AND COMPLEXITY ANALYSIS
In this section, we first prove that this equilibrium-based
heuristic converges and one or more fixed points would be
reached, then we calculate the running time cost of the min-
imum period algorithm proposed in Sect. VI-D and analyze
its influence factors.
Lemma 2: In the iterative processes, there are: ∀k ≥ 1,
∀i ∈ [1, n− 1], i 6= r

pkr ·i ≥ p
k
r ·(i+1) and pkr ·n ≥ p

k+1
r ·1

Proof: The proof of this lemma is similar to that of the
Lemma 1 presented in Sect. V-D. �
Theorem 5: This equilibrium-based heuristic converges in

at most
(n+l
l

)
n iterations, where l = LCM (∀j, τj ∈ T ).

135014 VOLUME 7, 2019



J. Chen et al.: Sensitivity Analysis of Strictly Periodic Tasks in Multi-Core Real-Time Systems

Algorithm 7Minimum Period Algorithm (MPA)
Input: τr and a task set T
Output: the minimum period minP for τr

1 k ← 0;
2 repeat
3 for i = 1 to n do
4 p← ak−1i ;
5 T−ip ← Tp \ {τi};
6 bp← MP(p, r);
7 sort Q in descending order according to the

permissible period bounds;
8 (pkr ·i, s

k
i , a

k
i )← BSi(r);

9 (si, ai)← (ski , a
k
i );

10 minP← pkr ·i;
11 end
12 k ← k + 1;
13 until T k = T k−1;
14 return minP;

Proof: According to Sect. VI-B, the permissible period
calculated cannot be larger than l or smaller than the bound
on the processor qm, i.e., l ≥ pkr ·i ≥ bqm = MP(qm, r) ≥ cr .
Then, the value calculated after each task τi updates its offset
and assignment in any iteration is bounded. Meanwhile, from
Lemma 2 we know, the period calculated by each step has an
integer value and decreases along with the step. Therefore,
the minimum value that the permissible period decreases
in each step is 1. According to the Proposition 4 proposed
by Sheikh et al. in [29], the heuristic converges and the
maximum number of iterations is

(n+l
l

)
n. �

From Theorem 5 we can find that, the minimum period
algorithm converges in at most

(n+l
l

)
n iterations. In each itera-

tion, the best strategy procedure BSi(r) is used to find the best
strategy for any task τi. Since the running time cost of BSi(r)
is O(nlprPmax), the computation complexity of the minimum
period algorithm is O

(
n2lprPmax

(n+l
l

))
. Therefore, the run-

ning time cost of the minimum period algorithm depends on
four factors: the number of tasks n, the largest period Pmax ,
the least common multiple of the periods of tasks l, and the
period of the target task pr . The complexity of this heuristic
explodes as soon as n and l become large.

VII. MAXIMUM SCALING FACTOR CALCULATION
We study the sensitivity problem in the domain of compu-
tation times of all tasks in this section. We compute the
maximum value of the scaling factor, by which the compu-
tation times of all tasks can be multiplied while the system
remains or becomes schedulable.

The scaling factor λ is an easily recognized sign of
the schedulable state of a task set. For example, in [5],
the authors calculated the scaling factor based on game the-
oretic approach, and used it to provide a determination of
whether all tasks in a set were schedulable. If λ ≥ 1, the task

set was considered to be schedulable upon a limited number
of processors; otherwise, more processors were required.

The scaling factor λ also helps in optimizing the speed
of the processors. Assume that S is the original speed of
the processors. Scaling the computation times of all tasks
by λ is equivalent to changing the speed of the processors
to S/λ. In a schedulable system, λ is the maximum slow down
factor that the processors can have, and the system remains
schedulable as long as the speed of the processors are not less
than S/λ. Reciprocally, λ is the minimum speed up factor in
an unschedulable system. Only when the speed of processors
are increased to S/λ (in this case λ < 1), the system can be
brought back to a schedulable state.

The calculation of the maximum scaling factor is similar
with that of the maximum computation time presented in
Sect. V. We first give an exact formulation of this constrained
maximization problem based on MILP. Then, we propose a
more convenient and time saving heuristic by allowing each
task to optimize its offset and assignment according to the
mostly known allocations.

A. EXACT FORMULATION
In this section, we propose an MILP formulation for cal-
culating the maximum scaling factor. We first analyze the
extension process of task computation times when they are
scaled. Figure 3 illustrates the impact of λ on the compu-
tation times of two tasks assigned to the same processor.
Hashed rectangles represent the initial time units occupied
by the first instances of the two tasks, whereas the larger
filled ones represent the scaled time budgets. Figure 3 (a)
extend the computation times of two tasks according to the
method proposed by Sheikh et al. [5], in which the start times
of the instances remain the same but the end times change
in accordance with the scaling factor. However, as shown
in Fig. 3 (b), the extension process discussed in this paper
is different. The computation time of each instance is equally
extended from the center to both the left and right side. This
means that the centers of the computation time units remain
the same; but the start times and end times of the instances
are changed when the scaling factor λ is not equal to 1.

FIGURE 3. Impact of the scaling factor λ on the computation times of two
strictly periodic tasks.

Since all computation times are scaled by λ proportionally,
for any task τi (1 ≤ i ≤ n), the value of its computation

VOLUME 7, 2019 135015



J. Chen et al.: Sensitivity Analysis of Strictly Periodic Tasks in Multi-Core Real-Time Systems

time is changed to λci. We use s′i to denote the start time of
τi after its computation time has been scaled. From Fig. 3 (b)
we know, 2(si − s′i) + ci = λci, which yields s′i = si − (λ −
1)ci/2. Condition (1), which is used to determine whether two
original tasks are schedulable on the same processor, should
be updated to

λci ≤ (s′j − s
′
i)mod(gi,j) ≤ gi,j − λcj (14)

As we pointed out in Sect. V-A, the modulo operation in
Condition (14) is not linear and should be replaced by Eq. (5)
in the MILP formulation. Then, Condition (14) becomes

λci ≤ (s′j − s
′
i)− gi,j × ei,j ≤ gi,j − λcj

λci − pi
gi,j

≤ ei,j ≤
pj − λcj
gi,j

(15)

The calculation of the maximum scaling factor is seeking
optimal offset and assignment allocations for all tasks, such
that the largest possible change in the task computation times
can be affordable to satisfy the non-overlapping constraints.
The exact formulation can be written as follows:

maximize λ

subject to λci ≤ (s′j − s
′
i)− gi,j × ei,j ≤ gi,j − λcj

λci − pi
gi,j

≤ ei,j ≤
pj − λcj
gi,j

∀i, j ∈ [1, n], ai = aj, j 6= i (16)

s′i = si − (λ− 1)ci/2, ∀i ∈ [1, n] (17)

ai ∈ [1,m], si∈ [0, pi − λci], ∀i ∈ [1, n] (18)

Condition (16) is the non-overlapping constraint of each
two tasks distributed to the same processor. Equation (17)
provides the start time of each task after its computation time
is scaled by λ. Constraint (18) shows the range restrictions of
the offsets and assignments of the tasks.

The exact MILP formulation discussed above seeks the
maximum scaling factor by searching all possible offset and
assignment allocations for the tasks, which is exceedingly
laborious and time-consuming. Sometimes the exact formu-
lation fails in supplying any solution within 24 hours, which
is not acceptable in practice. Inspired from the Best Response
solution presented in Sheikh et al. [5] and in Chen et al. [14],
a highly efficient heuristic is proposed in the following
sections.

We first optimize the center (i.e., the middle time point of
the first instance) of one task τi on a given processor p. Then
on a multi-core platform, we try to find the best assignment
besides the best center for τi to ensure that τi has the largest
scaling factor λi. Finally, tasks take turns to optimize their
centers and assignments according to mostly known alloca-
tions until an equilibrium is reached. When this calculation
stops, the maximum scaling factor is the minimum value of
the factors of all tasks, i.e., λ = min1≤i≤n λi.

B. BEST CENTER PROCEDURE ON A PROCESSOR
For each task τi (1 ≤ i ≤ n), we design a best center
procedure BC(i, p) to find an optimal center oi such that the

computation times of τi and all other tasks can be scaled
by the largest factor. The offsets, assignments and centers of
other tasks remain the same.

Since oi is the center of τi, oi = si +
ci
2 = s′i +

λci
2 . τi is

schedulable with any task τj on the same processor if and only
if Condition (15) is satisfied. Then, putting the variable oi into
Condition (15), we get

λci ≤ (s′j − s
′
i)− gi,j × ei,j ≤ gi,j − λcj

H⇒ λci ≤ (oj −
λcj
2
− oi +

λci
2
)− gi,jei,j ≤ gi,j − λcj

H⇒λci+
λ(cj−ci)

2
≤oj−oi−gi,jei,j≤gi,j−λcj+

λ(cj−ci)
2

H⇒
λ(ci + cj)

2
≤ oj − oi − gi,jei,j ≤ gi,j −

λ(ci + cj)
2

H⇒
λ(ci + cj)

2
≤ (oj−oi)mod(gi,j)≤gi,j −

λ(ci + cj)
2

H⇒λ≤min
(2(oi − oj)mod(gi,j)

ci+cj
,
2
(
gi,j−(oi−oj)mod(gi,j)

)
ci+cj

)
(19)

We use λpi,j to denote the largest scaling factor for τi and
any task τj assigned to the processor p. Then according to
Condition (19):

λ
p
i,j =min

(2(oi − oj)mod(gi,j)
ci+cj

,
2
(
gi,j−(oi−oj)mod(gi,j)

)
ci+cj

)
(20)

Nowwe extend τj to all the tasks assigned to the processor p
except τi (i.e., τj ∈ T−ip ), and use λpi to denote the largest
scaling factor that the computation times of all tasks can be
multiplied by. Then,

λ
p
i = min

τj∈T
−i
p

λ
p
i,j (21)

We usemλpi to denote the largest permissible scaling factor
when τi can changes its center freely on the processor p. Then

mλpi = max
0≤oi≤pi

λ
p
i = max

0≤oi≤pi
min
τj∈T

−i
p

λ
p
i,j (22)

The best center procedure BC(i, p) performs this calcula-
tion and stops after all valid values of oi have been considered.
Its pseudo-code is shown in Algorithm 8.

The main computation part of Algorithm 8 is from
line 3 to 14, which has a structure of double closed loops.
The inner loop (from line 5 to 10) at most repeats n times.
Given that the outer loop repeats at most pi times, the total
running time of Algorithm 8 is O(npi). Since Pmax is used
to denote the maximum period of all tasks, the running time
complexity of Algorithm 8 is O(nPmax).

C. BEST RESPONSE PROCEDURE ON A MULTI-CORE
PLATFORM
In this section, we extend the best center procedure BC(i, p)
to a multi-core platform, and present a best response proce-
dure BR(i) to find the best assignment besides the best center

135016 VOLUME 7, 2019



J. Chen et al.: Sensitivity Analysis of Strictly Periodic Tasks in Multi-Core Real-Time Systems

Algorithm 8 Best Center Procedure BC(i, p)
Input: τi and a processor p
Output: the largest permissible scaling factor mλpi , and

the best center for τi
1 mλpi ←−1; boi←−1;
2 T−ip ← Tp \ {τi};
3 for k = 0 to pi do
4 oi← k; t ← pi/ci;
5 foreach τj ∈ T−ip do
6 λ

p
i,j =

min
(
2(oi−oj)mod(gi,j)

ci+cj
,
2
(
gi,j−(oi−oj)mod(gi,j)

)
ci+cj

)
;

7 if λpi,j < t then
8 t ← λ

p
i,j;

9 end
10 end
11 if t > mλpi then
12 mλpi ← t; boi← k;
13 end
14 end
15 return (mλpi , boi);

for a given task τi. The best assignment and the best center
guarantee that τi has the largest scaling factor according to
the current allocations.

From Sect. VII-B we know, when τi is assigned to the
processor p, the permissible factor by which the computation
times of all tasks can be multiplied, is mλpi and can be calcu-
lated by the best center procedure BC(i, p). In order to choose
the best assignment, we need to compute the permissible
factor on each processor and select the largest one. We use
λi to denote the maximum permissible scaling factor for τi
when only the center and assignment of τi change on a multi-
core platform, then

λi = max
1≤p≤m

mλpi (23)

The pseudo-code for this best response procedure is given
in Algorithm 9. Since the best center procedure BC(i, p) has a
complexity of O(nPmax), the complexity of the best response
procedure BR(i) is O(mnPmax).

D. EQUILIBRIUM-BASED HEURISTIC
Now we present a heuristic to calculate the maximum scaling
factor for the computation times of all tasks based on Game
Theory. We think of tasks as players and their strategies
are the modification of their centers and assignments. All
tasks take turns to use the best response procedure BR(i) to
update their strategies such that their computation times can
be scaled as much as possible. When no task in the set T
can improve its center or assignment using the best response
procedure, an equilibrium state is reached and the iterative
process stops. At this time, the maximum scaling factor λ

Algorithm 9 Best Response Procedure BR(i)
Input: τi in a task set T
Output: the largest factor λi for τi, the corresponding

center boi and assignment bai
1 λi← 0; boi←−1; bai←−1;
2 for p = 1 to m do
3 (t, toi)← BC(i, p);
4 if t > λi then
5 λi← t; boi← toi; bai← p;
6 end
7 end
8 return (λi, boi, bai);

is the minimum value of the permissible factors of all tasks.
i.e., λ = min1≤i≤n λi.

We use λki , o
k
i and aki to denote the permissible scaling

factor, the corresponding center and assignment obtained
from the best response procedure BR(i) when τi update its
allocation in the kth (k ≥ 1) iteration. As the authors did
in Sheikh et al. [5], we assume that τi does not change its
center or assignment if the best response procedure does not
improve its current scaling factor. That is to say: if λki ≤ λ

k−1
i ,

oki = ok−1i and aki = ak−1i . The pseudo-code for this heuristic
is given in Algorithm 10.

Algorithm 10 Maximum Scaling Factor Algorithm
(MSFA)
Input: a task set T
Output: the maximum scaling factor λ for all tasks

1 k ← 1;
2 repeat
3 for i = 1 to n do
4 (λki , boi, bai)← BR(i);
5 if λki > λk−1i then
6 oi← boi; ai← bai;
7 end
8 else
9 oki ← ok−1i ; aki ← ak−1i ;

10 end
11 end
12 k ← k + 1;
13 until T k = T k−1;
14 λ← min1≤i≤n λki ;
15 return λ

E. CONVERGENCE AND COMPLEXITY ANALYSIS
According to the Proposition 4 presented in Sheikh et al. [29],
this heuristic converges and reaches one or more fixed points
in at most

(n+h
h

)
n iterations where h is the maximum number

of increasing steps and calculated by h = dαmax1−1e,
αmax = maximinj6=i

gi,j
ci+cj

and 1 = minj,k 1
lcm(cj,ck )

.
In each iteration, the best response procedure BR(i) is used

VOLUME 7, 2019 135017



J. Chen et al.: Sensitivity Analysis of Strictly Periodic Tasks in Multi-Core Real-Time Systems

to select the best center and assignment. As we pointed
out in Sect. VII-C, the best response procedure BR(i) runs
in O(mnPmax). Hence, the running time complexity of the
heuristic is O

(
mn2Pmax

(n+h
h

))
.

The running time cost of this heuristic depends on the
number of processors m, the number of tasks n, the largest
period Pmax , and the maximum number of increasing steps h
calculated according to the periods of all tasks. Similarly, this
heuristic runs in pseudo-polynomial time and its complexity
explodes as soon as n becomes large. It cannot be deduced
that our heuristic is better than MILP or other solutions
whose computational complexity is NP-Complete. However,
the bound on the worst case number of steps of our heuristic
considers a very pessimistic situation, and our heuristic typ-
ically performs better to solve the allocation problem on the
same task sets.

VIII. EXPERIMENTAL RESULTS
In this section, we conduct simulation experiments to evaluate
the performance of the proposed heuristics. We compare our
experimental results with those of the exact MILP or MIQCP
formulations.

The proposed heuristics have a wide range of applications
and can be adapted to tasks with both harmonic and non-
harmonic periods. However, all of them provide approx-
imate but not exact solutions because they are based on
Game Theory and stop when equilibrium states are reached.
Compared with the exact formulations, they do not require
completely searching the solution space and take less time to
find solutions.

We evaluate the performances of our approaches from two
aspects: time consumption which shows the speeds of the
heuristics, and relative error ratios which represent the errors
on results calculated by the heuristics. In addition, we put a
300 seconds time limit on the exact formulation execution of
each input task set, for little improvements on the solutions
could be made even the solver remains running to the end.
In the case of a time out, the solution of the exact formulation
is the best solution found up until the time limit.

A. TASK GENERATION
Tasks adopted in experiments were generated with the
UUnifast-Discard algorithm [32], which is a simple extension
of UUniFast [33] on a multi-core platform and produces a
random utilization for each task under a given system uti-
lization. There were three parameters for each task set: the
number of tasks n, the system utilization u and the task type
(harmonic or non-harmonic).

The generation procedure was the same as that described
in Chen et al. [27]. First we adopted the UUnifast-Discard
algorithm to produce a random utilization ui (1 ≤ i ≤ n) for
each task τi, i.e., u =

∑
1≤i≤n ui. Then, we chose a random

value p0 from 5 to 9 as a base period, i.e., p0 = U [5, 9].
Subsequently, for non-harmonic tasks, periods were chosen
randomly from the set {2x3y5zp0 : x, y, z ∈ [0, 3]}, which
was inspired from Eisenbrand et al. [34]. For harmonic tasks,

p0 was the period of the first task and a period ratio ki
(1 < i ≤ n) was selected randomly from [1,5]. The periods
of the harmonic tasks were constructed as pi = kipi−1.
Finally, the computation time of each task was constructed as
ci = piui.

B. MAXIMUM COMPUTATION TIME ALGORITHM
EVALUATION
We start by evaluating the performance of the maximum
computation time algorithm (MCTA) proposed in Sect. V-D
in terms of execution time. With a logarithmic scale, Figure 4
shows the execution times required to compute the sensitivity
in the domain of the computation times with different meth-
ods. The task sets were generated when the system utiliza-
tion was 0.5. ‘‘MILP_H’’, ‘‘MILP_NH’’, ‘‘MCTA_H’’ and
‘‘MCTA_NH’’ represent the average times required by the
MILP formulation and our approach for tasks with harmonic
and non-harmonic periods.

FIGURE 4. Execution times required for the sensitivity analysis of
computation times using the MILP formulation and the maximum
computation time algorithm (MCTA).

Wecan see that the time consumption of two solutions has a
similar changing tendency that it grows gradually along with
the increase of the number of tasks. This is because that the
more tasks are tested on in the experiments, the more possible
offset and assignment allocations should be considered to find
an optimal solution. Compared with the MILP formulation,
our approach has lower time consumption and a smoother
growth because it considers the tasks one by one and does
not completely search the solution space.When the number of
tasks is 30, the execution times required by our approach for
harmonic and non-harmonic tasks are 6.55 and 1.36 seconds,
which are 32 and 133 times less than those required by the
MILP formulation respectively. This demonstrates that our
method is faster in analyzing the sensitivity of computation
times.

In the experiment of Fig. 5, the speed of our approach is
evaluated by varying system utilizations under which non-
harmonic tasks are generated. We can find that the time con-
sumption of our approach grows alongwith the increase of the
number of tasks and the system utilizations. As pointed out in
Sect. V, our approach has a pseudo-polynomial complexity,
which depends on not only the number of tasks n, but also the
largest period Pmax . Since a larger system utilization leads to

135018 VOLUME 7, 2019



J. Chen et al.: Sensitivity Analysis of Strictly Periodic Tasks in Multi-Core Real-Time Systems

FIGURE 5. Time consumption of our approach (MCTA) on non-harmonic
tasks generated with different system utilizations.

the generation of tasks with larger periods, the time consump-
tion conforms with the computation complexity analyzed
in Sect. V.

Figure 6 shows the relative errors of our approach on the
harmonic tasks through varying the number of tasks and
the system utilizations. The relative error ratio er repre-
sents the relative difference between the computation time
calculated by our approach and by the exact formulation,
i.e., er = (MILP − MCTA)/MILP × 100%. The number of
tasks increases from 5 to 30 and the system utilization is tuned
from 0.5 to 1.5. We can see that, when the number of tasks
is 15, the largest error ratio appears and its value is 7.1%.

FIGURE 6. Relative error ratios of the values of computation times
calculated by our approach on harmonic tasks.

In Fig. 6, all of the three curves have essentially the
same changing tendency that they first increase from zero
to the maximum values and then drop down gradually. This
is because our approach is inspired from Game Theory and
just provides approximated solutions. As the number of tasks
grows, there are more and more possible allocations that
our approach does not consider, thus the relative error ratio
increases in the first phase. Meanwhile, the increasing num-
ber of tasks results in an explosive growth in solution space
of the constrainedmaximization problem. There aremore and
more task sets that the MILP formulation fails to find optimal
solutions under a time limit. Then, according to the definition
of er , the error ratios decrease in the second phase.

In order to quantify the amount of variation of the relative
error ratios of our approach, we record the relative error
ratio on each task set, select the minimum and the maximum

TABLE 2. Relative error ratio statistic of our approach (MCTA) on
harmonic tasks when the system utilization is 0.5.

values, and calculate the standard deviations. Table 2 shows
the relative error ratios statistic of our approach on harmonic
tasks when the system utilization is 0.5. As can be seen that,
when the number of tasks is 25, the largest average relative
error ratio and the largest standard deviation appear, and their
values are 0.0334 and 0.1855 respectively.

C. MINIMUM PERIOD ALGORITHM EVALUATION
In this section, we conduct experiments to evaluate the time
consumption and relative error ratios of the minimum period
algorithm (MPA) proposed in Sect. VI-D. The exact method,
which our approach is compared with, is an MIQCP formu-
lation and presented in Sect. VI-A.

In the experiment of Fig. 7, tasks were generated when the
system utilization was 1.5, and we recorded the execution
times required to analyze the sensitivity in the domain of
the periods. The values of ‘‘MIQCP_NH’’, ‘‘MIQCP_H’’,
‘‘MPA_NH’’ and ‘‘MPA_H’’ represent the average execution
times required by the MIQCP formulation and our approach
for tasks with non-harmonic and harmonic periods.

FIGURE 7. Execution times required for the sensitivity analysis of periods
using the MIQCP formulation and the minimum period algorithm (MPA).

Similar to the results shown in Fig. 4, the execution times
of the two solutions grow gradually along with the increase
of the number of tasks, no matter the tasks are with har-
monic or non-harmonic periods. Our approach has a better
performance than the MIQCP formulation in terms of time
consumption when they are used on the same task sets.
When the number of tasks is 20, the execution times required
by our approach for harmonic and non-harmonic tasks are
63 and 74 seconds, which are 3.6 and 3.4 times less than those
required by the MIQCP formulation respectively.

In order to quantify the amount of variation of the time
consumption of the minimum period algorithm proposed,
we record the time consumption results on each task sets,

VOLUME 7, 2019 135019



J. Chen et al.: Sensitivity Analysis of Strictly Periodic Tasks in Multi-Core Real-Time Systems

select the minimum and the maximum values, and calculate
the standard deviations. The statistical results on harmonic
tasks generated with u = 1.5 are shown in Table 3. We can
find that, along with the increase of the number of tasks,
the average time cost and standard deviations become higher.

TABLE 3. Time consumption statistic of our approach (MPA) on harmonic
tasks when the system utilization is 0.5.

Figure 8 demonstrates the time consumption of our
minimum period algorithm on the task sets that are deter-
mined schedulable on a four processors platform according
to MIQCP. Tasks are generated with harmonic periods and
different system utilizations. As expected, the time consump-
tion becomes higher when more tasks are tested on. When the
number of tested tasks is fixed, the time cost of our approach
grows with the increase of the system utilization. The time
consumption of our approach explodes as soon as the number
of tasks n and the system utilization become large.

FIGURE 8. Time required by our approach (MPA) to calculate the
minimum periods of harmonic tasks.

Through varying the system utilizations, the relative error
ratios of periods computed by our approach are shown
in Fig. 9. The tasks are chosen from non-harmonic types and

FIGURE 9. Relative error ratios of the values of periods calculated by our
approach.

the system utilization is tuned from 0.5 to 1.5. As can be seen
that all of the three curves grow first and then drop down
along with increase of the number of tasks. The reason is
similar to that we explained in the previous section. We can
also find that when the number of tasks is fixed, the results
of our approach on the task instances with u = 0.5 have the
lowest relative error ratios, which means that the values of
periods calculated by our approach on this series of task sets
are the closest to the exact solutions.

D. MAXIMUM SCALING FACTOR ALGORITHM
EVALUATION
The final experiment we carried out is calculating the sensi-
tivity of scaling factors for the computation times of all tasks.
As did in Sect. VIII-B and VIII-C, we show the performance
of our algorithm from two aspects: time consumption and
relative error ratio.

With a logarithmic scale, Fig. 10 shows the execution
times used to analyze the sensitivity of scaling factors by
our approach (MSFA) and the MILP formulation. The task
sets were generated when the system utilization was 1.0.
The fields of ‘‘MILP_H’’, ‘‘MILP_NH’’, ‘‘MSFA_H’’ and
‘‘MSFA_NH’’ represent the average execution times required
by the MILP formulation and our approach on tasks chosen
from harmonic and non-harmonic period types.

FIGURE 10. Execution times required for the sensitivity analysis of
scaling factors using the MILP formulation and the maximum scaling
factor algorithm (MSFA).

From Fig. 10 we can know that, our methods result in much
shorter times for all experiments, not only in the domains
of computation times and periods, but also in the domain of
scaling factors. For each task set, our approach has a better
performance than theMILP formulation in terms of time con-
sumption. When the number of tasks is 10, the execution time
required by our approach for harmonic and non-harmonic
tasks are 0.5 and 1.1 seconds, which are 34 and 45 times less
than those required by the MILP formulation.

Figure 11 shows the time cost of our approach (MSFA)
in calculating the maximum scaling factor for tasks with
non-harmonic periods. The number of tasks increases from
50 to 300 and the system utilization is tuned from 0.5 to 1.5.
Similar to the results shown in Fig. 5 and Fig. 8, the time
consumption of our approach grows along with the increase
of the number of tasks and the system utilizations. As can

135020 VOLUME 7, 2019



J. Chen et al.: Sensitivity Analysis of Strictly Periodic Tasks in Multi-Core Real-Time Systems

FIGURE 11. Execution times required by our approach (MSFA) to calculate
the maximum scaling factor for non-harmonic tasks with different system
utilizations.

be seen that the time cost explodes as soon as the number of
tasks n becomes large. Meanwhile, when the number of tasks
is fixed, a larger system utilization leads to a higher time cost.
As pointed out in Sect. VII, our approach runs in pseudo-
polynomial time and its complexity depends the number of
tasks and the largest period Pmax . The results conforms with
the computation complexity analyzed in Sect. VII.

Figure 12 demonstrates the relative error ratios on the
scaling factors calculated by our approach with respect to the
MILP formulation. The tasks were generated with harmonic
periods under different system utilizations. For all of the con-
sidered task instances, the relative error ratios on the results
of our approach, as compared to the exact solutions, remain
below 7%. The largest relative error ratio appears when the
number of tasks is 10 and its value is 6.5%. At the same
time, the time consumption of our approach is 0.9 seconds,
which is 73 times less than that of the MILP formulation. The
results are within the allowable range and can be accepted
when taking into account the time cost.

FIGURE 12. Relative error ratios of the values of scaling factor calculated
by our approach on harmonic tasks.

Table 4 shows the time relative error ratio statistic of
our approach on harmonic tasks when the system utilization
is 1.0. Similar to the results shown in Table 2, the relative
error ratios and standard deviations change along with the
increase of the number of tasks. When the number of tasks
is 10, the largest average relative error ratio and the largest
standard deviation appear, and their values are 0.0466 and
0.1050 respectively. The results indicate that the relative error

TABLE 4. Relative error ratio statistic of our approach (MFSA) on
harmonic tasks generated with u = 1.0.

ratios of our approach are spread out over a wider range of
values.

IX. CONCLUSIONS AND FUTURE STUDIES
In this paper, we aimed at analyzing the possible changes
in task computation times, periods and scaling factors on
a multi-core platform in real-time systems. The tasks have
strict periods and can be non-preemptively scheduled with
proper offset and assignment allocations. Using the multi-
task sensitivity analysis, we presented heuristics to compute
the maximum computation time and the minimum period for
a single task, and obtain the maximum scaling factor for the
computation times of all tasks. Experiments with randomly
generated task sets show that our approach is faster and more
efficient than the existing solutions to solve the sensitivity
problems in large scale multi-core real-time systems.

There are two possible directions for our future work. First,
although it has been shown that our heuristics can provide
reasonable solutions in a relatively short amount of time,
we would like to consider some aggressive notions of approx-
imation and see whether or not the heuristics’ performance
could be improved. Second, we are interested in studying the
schedulability and sensitivity analysis of non-strictly periodic
tasks, and would like to see whether some of the results in
this paper can be used to find the permissible changes in the
timing parameters of non-strictly periodic tasks.

REFERENCES
[1] E. Bini, M. Di Natale, and G. Buttazzo, ‘‘Sensitivity analysis for fixed-

priority real-time systems,’’ Real-Time Syst., vol. 39, nos. 1–3, pp. 5–30,
Aug. 2008.

[2] R. Racu, M. Jersak, and R. Ernst, ‘‘Applying sensitivity analysis in real-
time distributed systems,’’ in Proc. 11th IEEE Real Time Embedded Tech-
nol. Appl. Symp., Mar. 2005, pp. 160–169.

[3] F. Zhang, A. Burns, and S. Baruah, ‘‘Sensitivity analysis of arbitrary
deadline real-time systemswith EDF scheduling,’’Real-Time Syst., vol. 47,
no. 3, pp. 224–252, 2011.

[4] F. Eisenbrand, N. Hähnle, M. Niemeier, M. Skutella, J. Verschae, and
A. Wiese, ‘‘Scheduling periodic tasks in a hard real-time environment,’’ in
Proc. 37th Int. Colloq. Automata, Lang., Programming Berlin, Germany:
Springer, 2010, pp. 299–311.

[5] A. A. Sheikh, O. Brunl, P. L. Hladik, and B. J. Prabhu, ‘‘Strictly periodic
scheduling in IMA-based architectures,’’ Real-Time Syst., vol. 48, no. 4,
pp. 359–386, Jul. 2012.

[6] O. Kermia and Y. Sorel, ‘‘Schedulability analysis for non-preemptive
tasks under strict periodicity constraints,’’ in Proc. 14th IEEE Int. Conf.
Embedded Real-Time Comput. Syst. Appl., Aug. 2008, pp. 25–32.

[7] P. Tendulkar, P. Poplavko, and O. Maler, ‘‘Strictly periodic scheduling of
acyclic synchronous dataflow graphs using SMT solvers,’’ Verimag, Saint-
Martin-d’Hères, France, Tech. Rep. TR-2014-5, 2014.

[8] J. Lehoczky, L. Sha, and Y. Ding, ‘‘The rate monotonic scheduling algo-
rithm: Exact characterization and average case behavior,’’ in Proc. Real-
Time Syst. Symp., Dec. 1989, pp. 166–171.

VOLUME 7, 2019 135021



J. Chen et al.: Sensitivity Analysis of Strictly Periodic Tasks in Multi-Core Real-Time Systems

[9] S. Rani, R. Talwar, J. Malhotra, S. H. Ahmed, M. Sarkar, and H. Song,
‘‘A novel scheme for an energy efficient Internet of things based onwireless
sensor networks,’’ Sensors, vol. 15, no. 11, pp. 28603–28626, 2015.

[10] L. Ren, H. Liao,M. Castillo-Effen, B. Beckmann, and T. Citriniti, ‘‘Chapter
22-transformation of mission-critical applications in aviation to cyber-
physical systems,’’ in Cyber-Physical System. Jan. 2017, pp. 339–362.

[11] M. Shojafar, S. Javanmardi, S. Abolfazli, and N. Cordeschi, ‘‘FUGE:
A joint meta-heuristic approach to cloud job scheduling algorithm using
fuzzy theory and a genetic method,’’ Cluster Comput., vol. 18, no. 2,
pp. 829–844, 2015.

[12] R. Racu, A. Hamann, and R. Ernst, ‘‘Sensitivity analysis of com-
plex embedded real-time systems,’’ Real-Time Syst., vol. 39, nos. 1–3,
pp. 31–72, 2008.

[13] S. K. Baruah and S. Chakraborty, ‘‘Schedulability analysis of non-
preemptive recurring real-time tasks,’’ in Proc. 20th IEEE Int. Parallel
Distrib. Process. Symp., Apr. 2006, p. 8.

[14] J. Chen, C. Du, and P. Han, ‘‘Scheduling independent partitions in inte-
grated modular avionics systems,’’ PLoS ONE, vol. 11, no. 12, 2016,
Art. no. e0168064.

[15] C. Pira and C. Artigues, ‘‘Line search method for solving a non-preemptive
strictly periodic scheduling problem,’’ J. Scheduling, vol. 19, no. 3,
pp. 227–243, Jun. 2016.

[16] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez, ‘‘Dynamic and
aggressive scheduling techniques for power-aware real-time systems,’’ in
Proc. 22nd IEEE Real-Time Syst. Symp., Dec. 2001, pp. 95–105.

[17] S. Vestal, ‘‘Fixed-priority sensitivity analysis for linear compute time
models,’’ IEEE Trans. Softw. Eng., vol. 20, no. 4, pp. 308–317, Apr. 1994.

[18] S. Punnekkat, R. Davis, and A. Burns, ‘‘Sensitivity analysis of real-time
task sets,’’ in Advances in Computing Science (Lecture Notes in Computer
Science), vol. 1345, R. Shyamasundar and K. Ueda, Eds. Berlin, Germany:
Springer, 1997, pp. 72–82.

[19] S. Baruah and G. Fohler, ‘‘Certification-cognizant time-triggered schedul-
ing of mixed-criticality systems,’’ in Proc. IEEE 32nd Real-Time Syst.
Symp., Nov./Dec. 2011, pp. 3–12.

[20] H. Kopetz, Real-Time Systems: Design Principles for Distributed Embed-
ded Applications. New York, NY, USA: Springer, 2011.

[21] J. Korst, E. Aarts, J. Lenstra, and J. Wessels, ‘‘Periodic multiprocessor
scheduling,’’ in Parallel Architectures and Languages Europe (Lecture
Notes in Computer Science), vol. 505, E. Aarts, J. van Leeuwen, and
M. Rem, Eds. Berlin, Germany: Springer, 1991, pp. 166–178.

[22] M. Marouf and Y. Sorel, ‘‘Scheduling non-preemptive hard real-time tasks
with strict periods,’’ in Proc. IEEE 16th Conf., Sep. 2011, pp. 1–8.

[23] T. Zhang, N. Guan, Q. Deng, and W. Yi, ‘‘Start time configuration for
strictly periodic real-time task systems,’’ J. Syst. Archit., vols. 66–67,
pp. 61–68, May 2016.

[24] J. Chen, C. Du, F. Xie, and B. Lin, ‘‘Scheduling non-preemptive tasks
with strict periods in multi-core real-time systems,’’ Journal Syst. Archit.,
vol. 90, pp. 72–84, Oct. 2018.

[25] G. H. Golub and C. F. Van Loan, Matrix computations. 1996. Baltimore,
MD, USA: Johns Hopkins Univ., Press, 1996, pp. 374–426.

[26] J. Chen, C. Du, F. Xie, and B. Lin, ‘‘Allocation and scheduling of strictly
periodic tasks in multi-core real-time systems,’’ in Proc. IEEE 22nd Int.
Conf. Embedded Real-Time Comput. Syst. Appl., Aug. 2016, pp. 130–138.

[27] J. Chen, C. Du, F. Xie, and Z. Yang, ‘‘Schedulability analysis of non-
preemptive strictly periodic tasks in multi-core real-time systems,’’ Real-
Time Syst., vol. 52, no. 3, pp. 239–271, May 2016.

[28] A. Lodi and J. Linderoth, ‘‘Milp software,’’ Encyclopedia of Operations
Research and Management Science. Hoboken, NJ, USA: Wiley, 2011.

[29] A. A. Sheikh, O. Brun, P. Hladik, and B. J. Prabhu, ‘‘A best-response algo-
rithm for multiprocessor periodic scheduling,’’ in Proc. 23rd Euromicro
Conf. Real-Time Syst., Jul. 2011, pp. 228–237.

[30] C. Pira and C. Artigues, ‘‘An efficient best response heuristic for a non-
preemptive strictly periodic scheduling problem,’’ in Learning and Intel-
ligent Optimization (Lecture Notes in Computer Science), G. Nicosia and
P. Pardalos, Eds. Berlin, Germany: Springer, 2013, pp. 281–287.

[31] S. Burer and A. Saxena, ‘‘The MILP road to MIQCP,’’ in Mixed Integer
Nonlinear Programming (The IMAVolumes inMathematics and its Appli-
cations), vol. 154, J. Lee and S. Leyffer, Eds. NewYork, NY,USA: Springer
2012, pp. 373–405.

[32] R. I. Davis and A. Burns, ‘‘Improved priority assignment for global fixed
priority pre-emptive scheduling in multiprocessor real-time systems,’’
Real-Time Syst., vol. 47, no. 1, pp. 1–40, 2011.

[33] E. Bini and G. C. Buttazzo, ‘‘Measuring the performance of schedulability
tests,’’ Real-Time Syst., vol. 30, nos. 1–2, pp. 129–154, May 2005.

[34] F. Eisenbrand, K. Kesavan, and R. Mattikalli, ‘‘Solving an avionics real-
time scheduling problem by advanced IP-methods,’’ in Algorithms (Lec-
ture Notes in Computer Science), vol. 6346, M. de Berg and U. Meyer,
Eds. Berlin, Germany: Springer, 2010, pp. 11–22.

JINCHAO CHEN received the Ph.D. degree in
computer science from Northwestern Polytech-
nical University, Xi’an, China, in 2016, where
he is currently an Assistant Professor with the
Department of Computer Science. His research
interests includemultiprocessor scheduling theory,
real-time systems design, and modeling and veri-
fication of embedded systems.

CHENGLIE DU received the Ph.D. degree in com-
puter science from Northwestern Polytechnical
University, China, in 1999, where he is currently
a Professor with the Department of Computer Sci-
ence. His research and teaching interests include
scheduling theory, real-time distributed computing
systems, design and verification of cyber-physical
systems, and domain software engineering.

PENGCHENG HAN received the M.S. degree in
computer science from Northwestern Polytechni-
cal University, Xi’an, China, in 2015, where he
is currently pursuing the Ph.D. degree with the
Department of Computer Science. His research
interests include parallel and distributed systems,
workflow scheduling, resource management, and
cloud computing.

YONG ZHANG is currently a Professor and
the Head of the Department of Software System
Development, North Automatic Control Tech-
nology Institute, Taiyuan, China. His research
interests include parallel and distributed systems,
scheduling theory, real-time-embedded systems,
control systems, and resource management.

135022 VOLUME 7, 2019


