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ABSTRACT In wireless sensor networks (WSNs), data recovery is an indispensable operation for data loss
or energy constrained WSNs using sparse sampling. However, the recovery accuracy is not satisfying for
WSNs with various sensor types due to the neglect of the correlation among multi-attribute data. In this
paper, we propose a novel data recovery method with joint sparsity and low-rank constraints based on tensor
completion for multi-attribute data in WSNs. The proposed method represents the high-dimensional data as
low-rank tensors to effectively exploit the correlation that exists in the multi-attribute data. The utilization
of the spatiotemporal sparsity in the signal is emphasized by sparsity constraints. Furthermore, an algorithm
based on the alternating direction method of multipliers is developed to solve the resultant optimization
problem efficiently. Experimental results demonstrate that the proposed method significantly outperforms
existing solutions in terms of recovery accuracy in WSNs.

INDEX TERMS Wireless sensor networks, data recovery, low-rank tensors, sparsity constraints, tensor
singular value decomposition.

I. INTRODUCTION
Wireless sensor networks (WSNs) have been widely used in
numerous applications including military surveillance, envi-
ronmental monitoring, and health care monitoring, in which
a number of sensor nodes monitor physical phenomena and
transmit the data to a base station or sink node for process-
ing [1], [2]. Due to the hardware and wireless conditions,
data loss is common in WSNs, especially in large scale
WSNs. Besides, to further reduce the energy consumption
in energy constrained WSNs, one straightforward way is
using sparse sampling to reduce the number of measurement
(i.e., the collected data) [3], [4]. Both data loss situation and
utilization of sparse sampling method result in the recovery
problem to estimate the missing data in WSNs. Therefore,
as an indispensable and important operation, data recovery
becomes one of the key research issues in WSNs.

The associate editor coordinating the review of this manuscript and
approving it for publication was Xianfu Lei.

Recently, a number of methods have been proposed for
data recovery in WSNs, and these methods can be roughly
partitioned into two categories: 1) methods exploiting the
sparsity of the data in networks under various transform
domains (e.g., the Distributed compressed sensing (DCS)
method [5] and [6]) based on compressed sensing (CS)
theory [7], and 2) methods which exploit the spatiotempo-
ral correlation in the form of low-rankness (e.g., Efficient
Data Collection Approach (EDCA) [8] and [9]–[11]) based
on matrix completion [12]. Furthermore, methods utilizing
both the low-rank and temporal sparsity feature were pro-
posed [13], [14], and two stage matrix completion algo-
rithm was also proposed to recover missing and corrupted
values in WSNs [15], [16]. These proposed methods have
achieved impressive results in data recovery in WSNs. How-
ever, when deal with the recovery of multi-attribute data
in WSNs with various types of sensors, these methods still
reconstruct each single attribute separately without utilizing
the inherent correlation between different attributes. In fact,
many physical attributes in the monitored environment have
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strong correlation [17], [18]. Specifically, the temperature
information may be influenced by the illumination in certain
environments, which result in an inherent correlation between
these two attributes. The utilization of correlation in multiple
attributes has also been proposed in [18], [19] to further
improve the recovery accuracy. These methods either exploit
the sparsity or enforce the low-rankness through matriciza-
tion methodologies. Actually, this inherent correlation can be
more straightforwardly exploited using a high-order tensor
model [20]–[24], which takes advantages of the correlation
of the multi-attribute data along multiple directions.

The high order tensors, as a generalization of matri-
ces and vectors, represent multidimensional data more effi-
ciently and powerfully. More recently, the related tensor
decomposition and tensor completion become the research
hotspots and have been applied to various applications,
such as image inpainting, magnetic resonance imaging, and
face recognition. These tensor based methods yield impres-
sive performances in multi-dimensional signal processing.
Besides, several methods based on tensor have also been
proposed for the data recovery inWSNs [25]–[27]. The tensor
completion methods [25], [26] use latent variables based
on CANDECOMP/PARAFAC (CP) [21] model to recover
the data in heterogeneous sensor networks. However, due
to the special structure of tensor consisting of WSNs data,
the tensor methods based on CP perform unsatisfying in the
data recovery in WSNs. Method [27] was proposed to utilize
the tensor Singular Value Decomposition (t-SVD) [23] model
for data recovery in WSNs and achieved better performances
compared to the matricization methodologies. As a new ten-
sor decomposition method, t-SVD has a similar structure to
singular value decomposition in matrix, and many extensions
to t-SVD have been developed [28], [29]. In fact, the t-SVD
model, albeit useful, is not effective enough to exploit some
underlying correlation of the WSNs data for completion. The
spatiotemporal sparsity constraints can be jointly utilized to
further improve the recovery accuracy.

In this paper, we propose a novel data recovery method
with joint sparsity and low-rank constraints based on tensor
completion for multi-attribute data in WSNs. The main con-
tributions of this paper are as following:

Firstly, the proposed method extends the low-rank matrix
based approach by using low-rank tensors to further exploit
the inherent correlation among multiple attributes, beyond
utilizing just spatiotemporal correlation in one attribute. Con-
sidering the features of the data in networks, t-SVD model
is selected to exploit the correlation that exists in multiple
attributes.

Secondly, the inherent correlation among multi-attribute
data in WSNs is revealed using tensor decomposition based
on two real datasets collected from GreenOrbs [30] and Intel
Berkeley Research lab [31].

Thirdly, to further improve the recovery accuracy, the uti-
lization of the spatiotemporal sparsity in multi-attribute data
is emphasized with sparsity constraints. For solving the
formulation incorporating the low-rank tensor and sparsity

constraints terms, a reconstruction algorithm is also devel-
oped based on the alternating direction method of multipliers
(ADMM) [32].

The rest of this paper is organized as follows: Section II
presents the basics of tensor and t-SVD model; Section III
reveals the correlation among multi-attribute data and
details the proposed method and the reconstruction method.
Section IV shows the representative simulation results and
analyses, which is followed by the discussion in Section V
and conclusion of the paper in Section VI.

II. BASICS ON TENSOR AND T-SVD
A tensor is a multidimensional array. The order of a tensor
is the number of dimensions, i.e., vectors are the first order
tensors, andmatrices are the second order tensors. For tensors
of order three or higher, the Euler script letters (e.g., A) are
utilized to denote these higher order tensors in this paper.
Fibers of tensors are the higher-order analogue of rows and
columns of matrix, which are defined by fixing every index
but one. Similarly, slices are defined by fixing all but two
indices. As a result, for a third order tensorA ∈ Rn1×n2×n3 , its
column, row, and tube fibers are denoted by A(:, j, k), A(i, :
, k), andA(i, j, :), respectively, and its horizontal, lateral, and
frontal slices are denoted byA(i, :, :),A(:, j, :), andA(:, :, k),
respectively.

There are several common forms for tensor decomposition
used in signal processing, such as CP decomposition [21],
[33], [34], Tucker decomposition [22], [35], [36], tensor train
decomposition [37]–[39], and t-SVD [29], [40], [41]. CP
decomposes a tensor as a sum of rank-one tensors, which
can be considered as a higher-order extension of the matrix
singular value decomposition, and Tucker decomposition is a
form of higher-order principal component analysis. Indeed,
CP model can be viewed as a special case of the Tucker
model [42]. For an N th order tensor P , the Tucker model can
be expressed as

P = C × 1G(1)
× 2G(2)

× · · · × NG(N ). (1)

where C is the core tensor and G(1) to G(N ) are the fac-
tor matrices. The operator ×n denotes the n-model product.
Based on different tensor decomposition models, a number
of tensor completion methods have been proposed and yield
impressive performances in several applications such as video
inpainting [43] and magnetic resonance imaging [35]. How-
ever, the tensor completion methods based on CP model
perform unsatisfying in the data recovery inWSNs [25], [26].
Actually, considering the features of the data in WSNs, t-
SVD [23] model can be selected to exploit the correla-
tion among multiple attributes and achieve satisfying perfor-
mances [27]. In this paper, the method based on t-SVDmodel
with the sparsity constraints is proposed to further improve
the recovery accuracy. The following are some definitions
and relevant mathematical properties for t-SVD [23], [41] to
support our method.

Let A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3 , the
t-product of A with B is denoted by C = A ∗ B with size
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n1 × n4 × n3. Along the tube fibers, we have C(i, j, :) =
n2∑
k=1

A(i, k, :) ? B(k, j, :), where ? denotes the circular con-

volution. The tensor transpose of a tensor A ∈ Rn1×n2×n3

is denoted by AT
∈ Rn2×n1×n3 , which transposing each

of the frontal slices of A and then reversing the order of
transposed frontal slices through n3. The real-valued tensor
Q is orthogonal if QT

∗ Q = Q ∗ QT
= I, where I is the

identity tensor whose first frontal slice is the identity matrix
and all others are zero.

Based on the above definitions, the definition of t-SVD is
as following: Let A be an n1 × n2 × n3 real-valued tensor.
Then the t-SVD of A is shown as A = U ∗ S ∗ VT , where
U ∈ Rn1×n1×n3 , V ∈ Rn2×n2×n3 are orthogonal tensors, and
S is an n1× n2× n3 f -diagonal tensor (each frontal slice is a
diagonal matrix).

It is noteworthy that the t-product in t-SVD can be com-
puted efficiently by taking the fast Fourier transform (FFT)
along the tube fibers of tensors. Let Ã = F3A denote
performing FFT along the tube fibers of A ∈ Rn1×n2×n3

hereafter. For C = A ∗ B, C̃(:, :, i) = Ã(:, :, i)B̃(:, :, i) for
i ∈ {1, 2, · · · , n3} can be calculated first, and then C is
obtained by taking an inverse FFT along the tube fibers of
C̃ (i.e., C = F−13 C̃). Note that F3 and F−13 are the operators
representing the FFT and inverse FFT along the tube fibers,
respectively. The detail decomposition procedure of t-SVD
for a third order tensor is shown in Algorithm 1.

Algorithm 1 t-SVD for a Third Order Tensor

Input: A ∈ Rn1×n2×n3

Ã← fft(A, [ ], 3)
for i = 1 to n3 do

[U,S,V] = svd
(
Ã(:, :, i)

)
Ũ(:, :, i) = U; S̃(:, :, i) = S; Ṽ(:, :, i) = V;

Output: U ← ifft(Ũ , [ ], 3); S ← ifft(S̃, [ ], 3);
V ← ifft(Ṽ, [ ], 3);

Tensor completion based on t-SVD model penalizes the
tensor complexity with tensor-nuclear-norm (TNN) denoted
by ‖A‖TNN . Specifically, ‖A‖TNN , defined as the sum of the
singular values of all the frontal slices of Ã, is a valid norm
and is the tightest convex relaxation to `1 norm of the tensor
multi-rank (a vector with the ith element equal to the rank of
the ith frontal slice of Ã).

III. THE PROPOSED METHOD
A. PROBLEM FORMULATION
A WSN consisting of n various sensor nodes and sensing
m different attributes is considered. Let Nj denote the jth
node and Ak denote the kth attribute. Assume the sensor
nodes sense and transmit the data to the sink once every τ
time. As a result, during t = p × τ time, total n × m × p
readings should be gathered in the sink as the multi-attribute
data. Here, p denotes the number of time slots in monitoring

FIGURE 1. A third order tensor M ∈ Rn×m×p consisting of
multi-attribute data in WSNs.

period. The multi-attribute data can be organized into a third
order tensor M ∈ Rn×m×p, as illustrated in Fig. 1. Data
in column fiber M(:, k, i) represent readings of attribute Ak
from different nodes at the ith time slot, and data in tube
fiber M(j, k, :) represent readings of attribute Ak from node
Nj at different time slots. The row fiber M(j, :, i) consists of
different attribute readings from the node Nj at the ith time
slot, and the number of attributes is usually small in most
WSNs application. Thus, the row fiber is obviously short
compared to the column fiber representing different sensor
nodes and the tube fiber representing different collection time
slots. As a result, the tensors consisting of WSNs data show
the ‘‘narrow’’ property. Specifically, the ith frontal slice ofM
can be expressed as

M(i)
=

 f (N1,A1, i) · · · f (N1,Am, i)
...

. . .
...

f (Nn,A1, i) · · · f (Nn,Am, i)

 ∈ Rn×m,

(2)

where f
(
Nj,Ak , i

)
denotes the reading of attribute Ak from

node Nj at time t = i× τ . It is worth noting that f
(
Nj,Ak , i

)
corresponds to the element M (j, k, i) of the tensor.
However, in practice, there are only partial data can be

transmitted to the sink due to data loss situation or sparse
sampling method in WSNs. Let d ∈ RD×1 denote the par-
tially known data (i.e., the measurements) acquired fromM.
Then we have d = �(M), where � : Rn×m×p

→ RD×1 is
the operator to obtain the partially known data from the whole
multi-attribute data. Therefore, the reconstruction method is
of necessity for WSN to reconstruct the multi-attribute data
M from the partial measurements d with size D (D� nmp).
Here, we propose a novel method with sparsity constraints
based on t-SVD to recover whole multi-attribute data from
the partial measurement. Beyond just utilizing the spatiotem-
poral correlation in one attribute, the proposedmethod further
exploits the inherent correlation among multiple attributes.
Note that the time component is assigned to the tube direction
to ensure a low tubal rank ofM, which is more suitable to the
t-SVD model.
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B. CORRELATION AMONG MULTI-ATTRIBUTE DATA
To verify the inherent correlation among multi-attribute data
in WSNs with various types of sensors, two datasets gathered
from GreenOrbs [30] and Intel Berkeley Research lab [31]
were used as the sensor network testing data. Since data
loss exists in both two datasets, two small but completed
subset data are selected to obtain the ground truth, respec-
tively. Specifically, the selected subset data of the GreenOrbs
(denoted as GreenOrbs data hereafter) come from 130 sensors
sensing three attributes for 129 time intervals, and the selected
subset data of the Intel Berkeley Research lab (denoted as
Berkeley data hereafter) come from 54 sensors sensing four
attributes for 120 time intervals. The spatiotemporal correla-
tion in one attribute can be verified by the low-rankness of the
data matrix with singular value decomposition (SVD) [13].
In order to verify the correlation among multi-attribute data,
the high order SVD (HOSVD) [44], [45], which is a general-
ization of the matrix SVD to tensor, can be adopted to the data
tensor M. The HOSVD computes a Tucker decomposition
of the tensor and generates a core tensor C and corresponding
factor matrices {G(i)

}
3
i=1 via specifying the ranks.

FIGURE 2. The ER of HOSVD of GreenOrbs data tensor with different
Tucker ranks.

As shown in Fig. 2, the numerical values along x-axis
denote the index of different Tucker ranks {[n1,i, n2,j,
n3,k ]}

5,3,5
i=1,j=1,k=1, where {n1,i}5i=1 = {1, 6, 11, 16, 21},

{n2,j}5j=1 = {1, 2, 3}, {n3,k}
5
k=1 = {1, 6, 11, 16, 21}. There-

fore, the number (n1,i + 25(n2,j − 1) + (n3,k − 1)/5) on
x-axis indicates the Tucker rank [n1,i, n2,j, n3,k ]. The blue line
indicates the error ratio (ER) of HOSVD of GreenOrbs data
tensor, where ER is defined as

ER =
‖C ×1 G(1)

×2 G(2)
×3 G(3)

−M‖
‖M‖

. (3)

Here, the norm of a tensor is the square root of the sum of
the squares of all its elements. The red line indicates the
reduction in the degrees-of-freedom by 1/Compression ratio,
where Compression ratio is defined as

Compression ratio

=
n× m× p

n1,i × n2,j × n3.k + n1,i × n+ n2,j × m+ n3,k × p
.

(4)

FIGURE 3. The ER of HOSVD of Berkeley data tensor with different Tucker
ranks.

FIGURE 4. The first 20 singular values of the block diagonal matrix for
GreenOrbs and Berkeley data.

Specifically, for Tucker rank specified as [6, 3, 11], the ER
is less than 0.05 with Compression ratio larger than 20.
Similar results can be obtained with the Berkeley data tensor,
as shown in Fig. 3. The results indicate that the inherent cor-
relation exists in multi-attribute data in WSNs, and the tensor
methodologies can be utilized to exploit that correlation.

Although HOSVD method obtains satisfying results in
verifying correlation among multi-attribute data, the HOSVD
can not yield the best rank-r approximation in general. In this
paper, the proposed method for multi-attribute data recovery
in WSNs is mainly based on the t-SVD. In this subsection,
the t-SVD is also utilized to verify the correlation among
multi-attribute data. As shown in Fig. 4, the singular values
of the block diagonal matrix illustrate the low-rankness for
both two testing datasets. The block diagonal matrix [41] of
M̃ consists of all the frontal slices of the tensor M̃ along
the matrix diagonal. The rank of the block diagonal matrix
is the tightest convex relaxation of the tensor-nuclear-norm
of M, which is mainly constrained in the t-SVD. Therefore,
the correlation among multi-attribute data in WSNs can also
be exploit by the t-SVD model.

C. TENSOR COMPLETION WITH JOINT SPARSITY AND
LOW-RANK CONSTRAINTS
Let X represent the incomplete data tensor with �(X ) =
�(M), and the other entries in X are missing. Recovering
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the missing entries of X is known as tensor completion,
which has generated a great deal of research interest recently.
According to the basics on t-SVD in Section II, the data in X
can be recovered by solving the following formulation:

minimize ‖X‖TNN
subject to d = �(X ) . (5)

From the definition of the tensor-nuclear-norm, we have

‖X‖TNN =
p∑
i
‖X̃ (i)
‖∗, where X̃ (i) is the ith frontal slice of

X̃ and ‖ · ‖∗ the nuclear norm. Then (5) can be equivalently
expressed as:

minimize
p∑
i

∥∥∥X̃ (i)
∥∥∥
∗

subject to d = �
(
F−13 X̃

)
. (6)

Here, F−13 X̃ = X according to Section II. Besides, in order
to improve the recovery accuracy, the utilization of the spa-
tiotemporal sparsity is emphasized with sparsity constraints
by the following formulation:

minimize
p∑
i

∥∥∥X̃ (i)
∥∥∥
∗

+ µ

∥∥∥vec (F1X̃
)∥∥∥

1

subject to d = �
(
F−13 X̃

)
. (7)

where vec(F1X̃ ) denotes the vector whose elements are taken
columnwise from F1X̃ , µ the regularization parameter, and
F1 is the operator representing the FFT along the column
fibers. It is noteworthy that 2D Fourier transform of X is
utilized for the spatiotemporal sparsity constraints in this
paper. Essentially, each lateral slice of F1X̃ is equal to
performing 2D Fourier transform to each lateral slice of X .
The data in the kth lateral slice of X (i.e., X (:, k, :)) contain
readings of attribute Ak from different nodes at different
time slots. Since these readings generated by the nodes in
a certain area during a consecutive time are redundant and
highly correlated, each lateral slice of X is sparse under the
2D Fourier transform. By enforcing the sparsity constraints∥∥∥vec (F1X̃

)∥∥∥
1
, the utilization of the spatiotemporal sparsity

in WSNs data is emphasized to further improve the recovery
accuracy.

By introducing a quadratic penalty term, Eq. (7) can be
converted as optimizing the following unconstrained formu-
lation:

ˆ̃X = argmin
X̃

∥∥∥d−� (F−13 X̃
)∥∥∥2

2
+ λ

p∑
i

∥∥∥X̃ (i)
∥∥∥
∗

+µ

∥∥∥vec (F1X̃
)∥∥∥

1

X̂ = F−13
ˆ̃X (8)

where λ and µ denote the regularization parameters. The
regularization parameter λ and µ control the tunable tradeoff

between the goal of achieving low-rankness of the tensor,
presenting a spatiotemporal sparsity feature, and a precise fit

to the data-fidelity term
∥∥∥d−� (F−13 X̃

)∥∥∥2
2
. The proposed

method incorporates both the low-rank tensor constraints and
sparsity constraints in a single formulation to further take
advantage of the correlation of the multi-attribute data in
WSNs. The solution to (8) reduces to the basic t-SVDmethod
in (6) when µ = 0. After ˆ̃X is recovered in (8), the whole
tensor X̂ can be generalized by taking an inverse FFT along

the tube fibers of ˆ̃X , i.e., X̂ = F−13
ˆ̃X .

D. RECONSTRUCTION ALGORITHM BASED ON ADMM
Note that (8) is a convex optimization problem with nons-
mooth regularization. Here, an efficient, globally convergent
algorithm based on ADMM [32] is developed to solve it. The
optimization equation in (8) can be converted into the fol-
lowing equivalent constrained optimization problem through
variable splitting:

{
ˆ̃X ,Z,Y} = arg min

X̃ ,Z,Y

∥∥∥d−� (F−13 X̃
)∥∥∥2

2
+λ

p∑
i

∥∥∥Z (i)
∥∥∥
∗

+µ‖vec (Y)‖1
s.t. Z = X̃ , Y = F1X̃ . (9)

Then the augmented Lagrangian function for (9) can be
written as

L(X̃ ,Z,Y,A,B)

=

∥∥∥d−� (F−13 X̃
)∥∥∥2

2

+ λ

p∑
i

∥∥∥Z (i)
∥∥∥
∗

+

〈
A,Z − X̃

〉
+
α

2

∥∥∥Z − X̃
∥∥∥2
F

+µ‖vec (Y)‖1 +
〈
B,Y −F1X̃

〉
+
β

2

∥∥∥Y −F1X̃
∥∥∥2
F
,

(10)

where A and B are two Lagrangian multipliers, and α and
β are the penalty parameters related to convergence speed of
the algorithm. Eq. (10) can be minimized by the following
alternating direction method:

X̃k+1 = argmin
X̃

L(X̃ ,Zk ,Yk ,Ak ,Bk ), (11)

Zk+1 = argmin
Z

L(X̃k+1,Z,Ak ), (12)

Yk+1 = argmin
Y

L(X̃k+1,Y,Bk ), (13)

Ak+1 = Ak + α
(
Zk+1 − X̃k+1

)
, (14)

Bk+1 = Bk + β
(
Yk+1 −F1X̃k+1

)
. (15)

The general solutions to the subproblems (11) to (13)
and computational complexity analyses are described in
Appendix. Specifically, the procedures of the reconstruction
algorithm based on ADMM for solving (8) can be summa-
rized in Algorithm 2.
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Algorithm 2 The Reconstruction Algorithm for the Pro-
posed Method
Input:
Initialized X̃0, Z0, Y0, A0, and B0;
The regularization parameters λ and µ and the penalty
parameters α and β;
The measurements d, the sampling operator � and the
iteration number k = 0;
do

1) Iteration number k = k + 1;
2) Update X̃k by solving (11);
3) Update Zk by solving (12);
4) Update Yk by solving (13);
5) Update Ak and Bk with(14) and (15);

while

∥∥∥X̃k−X̃k−1

∥∥∥
F∥∥∥X̃k−1

∥∥∥
F

> ε and k 6 Kmax ;

Output: X̂ = F−13 X̃k ;

In practical implementation, the X̃0,Z0,Y0,A0, andB0 are
all initialized with zeros tensors. The algorithm is terminated
when

∥∥∥X̃k − X̃k−1

∥∥∥
F
/

∥∥∥X̃k−1

∥∥∥
F
is smaller than a predefined

tolerance parameter ε, or k exceeds a maximum number
of iterations Kmax . It is worth noting that for the convex
optimization problem in (8), the reconstruction algorithm
based on ADMM is guaranteed to have global convergence
from any initializations. With respect to the regularization
parameters λ and µ, we can empirically choose them based
on the prior information of the signal in the networks.

IV. EXPERIMENTS AND ANALYSIS
In order to evaluate the effectiveness of the proposed method
for recovery of multi-attribute data in WSNs, the matri-
cization methodologies including the sparsity constraint
method [5] and the matrix completion method [8] and the
tensor methodologies including the smooth PARAFAC ten-
sor completion (SPC) [34], the low-rank tensor comple-
tion (LRTC) [43] and t-SVD [23], [27] are chosen for
comparisons.

A. EXPERIMENTAL ENVIRONMENTS
The two subset data (i.e., the ground truth) adopted to verify
the correlation among multi-attribute data are also utilized
for the reconstruction experiments. The data loss or energy
constrained WSNs using sparse sampling is considered in
experiments. Therefore, only partial data (i.e., the measure-
ments d ∈ RD×1) can be gathered in the sink, while the
other data aremissing randomly due to data loss or unsampled
in sparse sampling method. The missing ratio ρ is utilized
to represent the ratio of the number of missing data to the
number of whole data (i.e., the number of elements in M).

Since we already have the ground truth from GreenOrbs
and Intel Berkeley Research lab, the data missing proce-
dure can be implemented by applying the random sampling

operator� to the ground truth (i.e., data tensorM ∈ Rn×m×p,
specifically, MG ∈ R130×3×129 for GreenOrbs data and
MB ∈ R54×4×120 for Berkeley data) to obtain the mea-
surements d = �(M). In this case, the missing data are
randomly distributed in the whole data tensor. The Error
Ratio of Interest (ERI ) was used to measure the recovery
performances of different methods and defined as:

ERI =

√∑
i,j,k,(i,j,k)∈5 |Xijk −Mijk |

2√∑
i,j,k,(i,j,k)∈5 |Mijk |

2
, (16)

where 5 represents the missing data subset of the complete
set of entries [n]× [m]× [p] (i.e., only errors on the missing
data are counted in ERI ).
In the simulation, the first step was to generate the sam-

pling operator � to sample b(1 − ρ)nmp + 1
2c entries in the

whole data M and discard the other entries randomly. Then
the measurements d can be calculated as the input for the
reconstruction methods. The sparsity constraint method [5],
the matrix completion method [8], SPC [34], LRTC [43],
t-SVD [23], [27] and the proposed method were utilized to
recover the whole data, respectively. After the reconstruction
data were obtained, the corresponding ERI can be calculated.
In our experiments, the process of randomly sampling and
reconstructionwere repeated 20 times for all themethods, and
the average ERI results were presented. Besides, the regular-
ization parameters of each method were manually selected to
optimize their performances.

It should be noted since the matricization methodologies
reconstruct each single attribute separately, b(1− ρ)np+ 1

2c

entries were random selected as the sampled data in each
attribute for the sparsity constraint method and the matrix
completion method. In order to compare these methods for
each attribute, we selected the corresponding part of data
to calculate the ERI (e.g., fixing j = 1 in (16) to compare
the ERI of temperature information if M(:, 1, :) denotes the
temperature data). For SPC method, the total variation (TV)
was employed as a smoothness constraint to achieve better
performances.

B. RECOVERY PERFORMANCE COMPARISONS
To compare the proposed method with the existing meth-
ods, four attributes in Berkeley data and three attributes in
GreenOrbs data were utilized for the recovery performance
comparisons. Fig. 5 to Fig. 8 show the recovery performance
of each method for the four attributes: temperature, humidity,
light, and voltage sensed in Intel Berkeley Research lab,
respectively. Fig. 9 to Fig. 11 show the recovery performance
of eachmethod for the three attributes: temperature, humidity,
and light sensed in GreenOrbs, respectively.

The numerical values on the x-axis denote themissing ratio
ρ, while the numerical values on the y-axis represent ERI.
Tomake the recovery performance comparisonsmore visible,
the missing ratio was set from 0.8 to 0.99.

As can be seen, methods based on t-SVD obtain the
lower ERI for almost every attributes in two testing datasets.
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FIGURE 5. The recovery performance of each method for temperature
data sensed in Intel Berkeley Research lab.

FIGURE 6. The recovery performance of each method for humidity data
sensed in Intel Berkeley Research lab.

FIGURE 7. The recovery performance of each method for light data
sensed in Intel Berkeley Research lab.

And the proposed method performs better than the basic
t-SVD method by emphasizing the spatiotemporal sparsity
in multi-attribute data using sparsity constraints. Although
the SPC and LRTC method are also based on the tensor
model, they perform not well compared to the methods based
on t-SVD. Actually, the LRTC method utilizes the low-rank
constraints of the unfolded matrix along each mode. For
the multi-attribute data in WSNs with the narrow property,
the simulation results show that the low-rank completion
method by tensor unfolding is not suitable.

As shown in Fig. 5, as the missing ratio increases to 0.9 or
more, the corresponding recovery errors of sparsity constraint
method, matrix completion method, SPC, and LRTC dramat-
ically increase, while the ERI of the proposed method for

FIGURE 8. The recovery performance of each method for voltage data
sensed in Intel Berkeley Research lab.

FIGURE 9. The recovery performance of each method for temperature
data sensed in GreenOrbs.

FIGURE 10. The recovery performance of each method for humidity data
sensed in GreenOrbs.

temperature data is still below 0.1 even when the missing
ratio is up to 0.98. Specifically, when the missing ratio is 0.99
(i.e., only 1% data are collected in the sink), the ERI of the
proposed method and the basic t-SVD method are 0.130 and
0.196, respectively, while the ERI of the other methods are
larger than 0.98. To ensure that the ERI of the reconstruction
for Berkeley data is less than 0.05, the missing ratio for the
proposed method should be lower than 94%, 94%, and 96%
for temperature, humidity, and voltage data, respectively. The
results show that the utilization of spatiotemporal sparsity
in the proposed method can further improve the recovery
accuracy, especially with large missing ratio.

The recovery errors for the light data sensed in Berkeley
and GreenOrbs are shown in Fig. 7 and Fig. 11, respectively.
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FIGURE 11. The recovery performance of each method for light data
sensed in GreenOrbs.

FIGURE 12. The recovery performance of each method for temperature
data sensed in Intel Berkeley Research lab at SNR = 10dB.

As can be seen, the above methods are all of poor perfor-
mances, although the proposed method still performs better
than the other methods. This is because the light data in both
two testing datasets have looser spatiotemporal correlation.
For the Berkeley light data, since the light data were collected
from different rooms, the light data sensed by each sensor
node were approximately independent. Although the light
data were collected outdoors in GreenOrbs, the spatiotempo-
ral correlation among the light data is weak for the existing of
shade and the considerable variation of illumination in nature.

In order to demonstrate the efficiency of the proposed
method, the situation in the presence of noise is also consid-
ered. In the simulation, the raw sensed data corrupted with
noise were generated by adding the white Gaussian noise to
each attribute with the specified signal-to-noise ratio (SNR).
Fig. 12 shows the recovery performance of each method for
temperature data sensed in Intel Berkeley Research lab at
SNR = 10 dB. As can be seen, methods based on t-SVD
exhibit the denoising effect in the presence of noise, and
the proposed method results in the lowest ERI for different
missing ratios. It demonstrates that the proposed method
can achieve satisfying performance in both the absence and
presence of noise.

C. RECOVERY PERFORMANCE WITH DIFFERENT
NUMBER OF ATTRIBUTES
Consider the complex correlation among multiple physical
attributes, tensor, as a multidimensional array, can represent

FIGURE 13. The recovery performance of the proposed method for
temperature data sensed in Intel Berkeley Research lab with different
number of attributes.

FIGURE 14. The recovery performance of the proposed method for light
data sensed in Intel Berkeley Research lab with different number of
attributes.

themulti-attribute datamore efficiently and have the potential
of utilization of the complex correlation. Thus, we propose
the recovery method with sparsity constraints based t-SVD
to utilize the correlation among different attributes in WSNs.
It raises a question that what is the relationship between the
number of attributes and the data recovery accuracy.

In this subsection, in order to explore the influence of
other attributes on the recovery of the selected attribute,
the recovery performances with different number of attributes
were compared. The recovery of temperature and light data
sensed in Intel Berkeley Research lab were selected as the
representatives for the experiment. Fig. 13 and Fig. 14 show
the recovery performances of the proposedmethod for Berke-
ley temperature data and light data with different number of
attributes, respectively.

Here, one attribute means only the selected attribute data
(i.e., temperature data for Fig. 13 and light data for Fig. 14)
are utilized in the proposed method for the data recovery
in WSNs. The two attributes contain the selected attribute
data and humidity data, and the three attributes contain
temperature data, humidity data, and light data. The four
attributes represent all the attributes sensed in the Berkeley
data. As shown in Fig. 13, the proposed method utilizing
more attributes obtains better recovery performance for the
temperature data. Besides, the humidity data and the voltage
data in Intel Berkeley Research lab with different number
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of attributes have the similar recovery performances as the
temperature data. However, Fig. 14 shows that for the Berke-
ley light data, the increase of the number of attributes has
little influence on the recovery accuracy. Since the looser spa-
tiotemporal correlation of the Berkeley light data, the recov-
ery method can not take much advantage of the utilization
of other attributes. It is interesting that although the other
attributes can not improve the recovery accuracy of the light
data, the light data can significantly improve the recovery of
the other attributes.

V. DISCUSSION
The experimental results demonstrate that the proposed
method yields significantly better performance than the com-
pared existing methods. Theoretically, compared to the matri-
cization methodologies (e.g., the sparsity constraint method
and the matrix completion method), the proposed method
uses the tensor model to represent multi-attribute data and
benefits from utilization of correlation among multi-attribute
data. Besides, considering the narrow property of WSNs data
tensor, the selection of t-SVD model can achieve higher
recovery accuracy than the low-rank completion method by
tensor unfolding (e.g., LRTC method). Furthermore, com-
pared with the basic t-SVDmethod, the proposed method can
benefit from utilizing the sparsity constraints to emphasize
the utilization of spatiotemporal sparsity.

It is also worth noting that the proposed method requires
the selection of the regularization parameters λ and µ. We
set λ = 10, µ = 1 for Berkeley data and λ = 10, µ =
5 for GreenOrbs data in our simulation experiments. The
regularization parameters were manually selected for optimal
performances, which was only possible when we have the
ground truth. For now, automatic selection of optimal regu-
larization parameters is still an open problem. The selection
of regularization parameters in practical applications should
be considered. Actually, for a large range of λ and µ values,
the proposed method would produce similar recovery accu-
racy. As a result, we can initialize parameters according to
the prior information of the signal in the networks.

VI. CONCLUSION
In this paper, we propose a novel data recovery method with
joint sparsity and low-rank constraints based on tensor com-
pletion to increase the recovery accuracy for multi-attribute
data inWSNs. The inherent correlation amongmulti-attribute
data is revealed with the low-rank tensors for the testing
dataset from GreenOrbs and Intel Berkeley Research lab.
Based on the features of multi-attribute data in WSNs, t-SVD
model is selected to effectively exploit the correlation, and
enforcing the sparsity constraints is also utilized to empha-
size the exploitation of spatiotemporal sparsity. Furthermore,
an efficient algorithmwas presented to solve the optimization
problem based on ADMM. Although the algorithm requires
the choice of the regularization parameters λ and µ, we can
easily make selection with the prior information of the sig-
nal in the networks. The experimental results show that the

proposed method outperforms the sparsity constraint method,
matrix completionmethod, SPC, LRTC, andmethod based on
t-SVD for each type of signals.

APPENDIX
SOLUTIONS FOR THE SUBPROBLEMS OF (10)
The general solutions to the subproblems (11) to (13) are
established here. Note that (11) can be rewritten as

X̃k+1

= argmin
X̃

∥∥∥d−� (F−13 X̃
)∥∥∥2

2
+

〈
Ak ,Zk − X̃

〉
+
α

2

∥∥∥Zk−X̃
∥∥∥2
F
+

〈
Bk ,Yk−F1X̃

〉
+
β

2

∥∥∥Yk −F1X̃
∥∥∥2
F

= argmin
X̃

∥∥∥d− 0(X̃ )
∥∥∥2
2
+
α

2

∥∥∥∥Zk − X̃ +
Ak

α

∥∥∥∥2
F

+
β

2

∥∥∥∥Yk − ϒ(X̃ )+
Bk
β

∥∥∥∥2
F

(A.1)

where 0(X̃ ) = �
(
F−13 X̃

)
and ϒ(X̃ ) = F1X̃ are linear

operators. Note that (A.1) is a large-scale quadratic optimiza-
tion problem, and the optimal solution to (A.1) is given by the
following normal equations:(
0∗0 +

α

2
+
β

2
ϒ∗ϒ

)
X̃k+1

= 0∗(d)+
α

2
(Zk +

Ak

α
)+

β

2
ϒ∗(Yk +

Bk
β
). (A.2)

Here 0∗ and ϒ∗ are the Hermitian adjoint of the operator
0 and ϒ , respectively. Since the operator ϒ(·) performs
FFT along the column fibers of tensor, the operator ϒ∗(·) is
equivalent to performing the inverse FFT along the column
fibers. Thus we have(
0∗0 +

α + β

2

)
X̃k+1 =

(
0∗(d)+

α

2
(Zk +

Ak

α
)

+
β

2
ϒ∗(Yk +

Bk
β
)
)
. (A.3)

Eq. (A.3) can be efficiently solved by a number of numer-
ical algorithms. Here, the preconditioned conjugate gradi-
ent (PCG) algorithm is applied in this paper, initialized with
X̃k to improve computational speed. The main computational
cost to update X̃k+1 lies in the FFT operator. As a result,
the computational complexity to update X̃k+1 in each iter-
ation is O

(
nmp (log(n)+ log(p))

)
.

Similarly, the subproblem (13) can be rewritten as

Yk+1 = argmin
Y
µ‖vec (Y)‖1 +

〈
Bk ,Y −F1X̃k+1

〉
+
β

2

∥∥∥Y −F1X̃k+1

∥∥∥2
F

= argmin
Y
µ‖vec (Y)‖1 +

β

2

∥∥∥∥Y −F1X̃k+1 +
Bk
β

∥∥∥∥2
F
.

(A.4)
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Then the well-known soft-thresholding formula [46] can be
utilized:

Yk+1 = S(F1X̃k+1 −
Bk
β
,
µ

β
), (A.5)

where S(Q, τ ) : Cn×m×p
→ Cn×m×p is a soft-thresholding

operator defined as

S(Q, τ )ijk =


0, if

∣∣Qijk
∣∣ < τ

Qijk∣∣Qijk
∣∣ (∣∣Qijk

∣∣− τ) , if
∣∣Qijk

∣∣ ≥ τ (A.6)

for each element Qijk in Q.
As for the subproblem (12), a similar procedure as above

can be utilized. First, Eq. (12) can be simplified as:

Zk+1 = argmin
Z
λ

p∑
i

∥∥∥Z (i)
∥∥∥
∗

+

〈
Ak ,Z − X̃k+1

〉
+
α

2

∥∥∥Z − X̃k+1

∥∥∥2
F

= argmin
Z
λ

p∑
i

∥∥∥Z (i)
∥∥∥
∗

+
α

2

∥∥∥∥Z − X̃k+1 +
Ak

α

∥∥∥∥2
F

(A.7)

The well-known singular value shrinkage formula [47]
can be applied to solve (A.7). Furthermore, since exact
SVD of the matrix with size m × n has time complexity
O(min{mn2,m2n}), in order to reduce the recovery time,
the singular value shrinkage is utilized to each frontal
slice of Z rather than the block diagonal matrix of Z .
For Z ∈ Rn×m×p, the time complexity reduces from
O(min{mn2p3,m2np3}) to O(min{mn2p,m2np}). As a result,
each frontal slice of Z is calculated in this paper. For the ith
frontal slice of Z , we have

Z (i)
k+1 = argmin

Z (i)
λ

∥∥∥Z (i)
∥∥∥
∗

+
α

2

∥∥∥∥∥Z (i)
− X̃ (i)

k+1 +
A(i)
k

α

∥∥∥∥∥
2

F

.

(A.8)

Applying singular value shrinkage formula, we have

Z (i)
k+1 = shrink(X̃ (i)

k+1 −
A(i)
k

α
,
λ

α
), (A.9)

where shrink(A, τ ) is a nonlinear function which applies the
soft-thresholding operator at level τ to the singular values of
the matrix A.
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