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ABSTRACT Cuckoo search algorithm (CSA) has been a candidate for numerous recent applications and
showed great compatibility in solving optimization problems. It is a metaheuristic algorithm which is based
on the odd breeding strategy of the Cuckoo bird spices. It is used to find an optimum or near optimum
solution for a certain problem. In this research, we propose an FPGA hardware implementation for the
CSA based on single precision IEEE floating point (FP). The FP format provides a wider range and higher
precisionwhen compared to fixed point format. To the best of our knowledge, this is the first study to consider
implementing FP format-based CSA on FPGA. The proposed design is implemented using pipelined and
parallel techniques to get a high throughput and speed. The design is controlled and coordinated using
finite state machines (FSMs) modules and is configured on Cyclone IV E FPGA chip from Intel. Three
common benchmark functions are used to evaluate the performance of the proposed design. The design
has a maximum operating frequency of 99 MHz. It was found out the maximum power consumption for the
most complex function is 610.28 mW, mainly due to the use of FP format. In addition, the proposed design is
implementation and evaluated for multidimensional operation. Accordingly, the proposed design is suitable
for path planning for unmanned aerial vehicles (UAVs), sensor deployments for wireless sensor networks
(WSNs) in addition to medical diagnostic and DSP applications.

INDEX TERMS Cuckoo search algorithm (CSA), field programmable gate array (FPGA), finite state
machine (FSM), IEEE floating point format.

I. INTRODUCTION
Optimization algorithm (OA) is a procedure or set of instruc-
tions that is used to find an optimum solution for a given
problem. According to [1], OAs can be divided into two cat-
egories, heuristic and metaheuristic algorithms. The heuristic
algorithms are problem specific and cannot be applied to
any other problems while metaheuristic algorithms are more
general and can be applied to a wide range of problems.
The nature inspired or bio metaheuristic optimization algo-
rithms imitate the techniques found in nature to find the
best solution. They are categorized as follows: evolutionary
algorithms (EAs), swarm-based algorithms, and trajectory-
based algorithms.

One of the most common metaheuristic optimization algo-
rithms is the Cuckoo search algorithm (CSA) which is the
main focus of this research. It belongs to the swarm-based
algorithms and was first introduced by Yang and Deb [2]. The
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CSA imitates the strange breeding behavior of the Cuckoo
bird species. The Cuckoo birds search for a random host
nest with recently laid eggs, then they lay their eggs in the
nest of the host bird. The Cuckoos have evolved to carefully
mimic the color and patterns of the host’s bird eggs. If the
host bird discovers the cuckoo’s eggs, it either gets rid of the
imposter’s eggs or simply just leaves the nest. If the eggs are
not discovered, the Cuckoos eggs hatch earlier than that of the
host and the hatchlings get rid of the host eggs immediately.
This kind of action increases their chance for survival and
hence the re- productivity of the Cuckoos bird species [3]–[5].

According to the statistical analysis performed in [6], [7],
CSA outperforms other swarm-based algorithms such as par-
tial swarm (PSA) and artificial bee colony algorithms (ABC).
CSA has the advantage of convergence to the true global
optimum. For example, in PSA all possible solutions are
crowded around the current solution and thus PSA converges
prematurely and the global minimum cannot be found. On the
other hand, CSA has the feature of local and global search
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which ensures that all the solution space is explored. The
local search improves the current best solution while the
global search ensures the diversity of the population which
is achieved through the use of random walk. Another study
performed in [8] showed that the CSA outperforms other
swarm-based algorithms in terms of problem solving. In addi-
tion, the CSA is computationally more efficient than PSA and
GA as shown in [9], [10].

The applications of the CSA are diverse and can be applied
in problem solving and design optimization [1], [11]. For
example, the maximum power tracking of photovoltaic sys-
tems using CSA is investigated in [12], [13]. The results have
shown that the CSA surpasses other optimization techniques
such as perturb and observe (P&O) and particle swarm opti-
mization (PSO). Likewise, the design of reliable embedded
systems using the CSA as a multi-objective optimization can
also be found in [14]. Engineering Structural design opti-
mization and structural damage identification using CSA are
investigated in [15], [16]. The CSA is also used in signal
processing to design a stable higher order infinite impulse
response (IIR) filters such as low pass filter (LPF) and high
pass filter (HPF) as indicated in [17]. The results show that
the design is computationally more efficient than other opti-
mization algorithms. In image processing, the CSA with levy
flight is used to increase the computational efficiency and
implementation of multilevel thresholding techniques used
for color image segmentation [18]. CS is successfully utilized
in multilevel image thresholding in order to maximize the
entropy criterion in [19], [20]. The design showed compa-
rable results to that of the PSA, GA and BAT algorithms.
Furthermore, the CSA was used to generate an optimal mask
in order to suppress the noise found in speech signals [21].

Combinatorial optimization such as scheduling and
resource allocation problems can effectively be solved
using CSA. For instance, in [22] the CSA combined with
random-key encoding scheme was successfully used to solve
the travelling salesman problem (TSP). Virtual machine
placement problem for resource optimization of data cen-
ters using CSA is investigated in [23]. Moreover, CSA is
also found suitable for medical applications. Machine learn-
ing methods along with CSA and PSA are used to fore-
casting and diagnoses of heart diseases, breast cancer and
diabetes [24], [25]. Another popular application that increas-
ingly employ the CSA is clustering and mining applications.
The CSA can be used to cluster medical data, web document
and gene data clustering as specified in [26]–[28]. In data
mining application, combining CSA with association rule
mining (ARM) produces rules that are simple, easy to fol-
low, and provide good coverage of the dataset as specified
in [29]. In addition, this combination consumed less time
than other algorithms which is very critical when number of
items or transactions becomes large [30]. In [31], the CSA
was examined in order to act as a cryptanalysis tool for cryp-
tosystems specifically for Vigenere cipher. The simulation
results show that the CSA successfully recover the cipher key
with a performance better than genetic algorithm (GA) and

PSA. The solution of the localization problem in wireless
sensor network (WSN) is solved using CSA as indicated
in [32]. It offers high localization accuracy in addition to
fast convergence rate. In [33], Chaotic CS algorithm was suc-
cessfully used to solve the path planning problems for UAV.
The simulation results showed that the CSA give comparable
results in terms of convergence rate, mean, standard deviation
and the generated best solution when compared to PSA and
ABC. It is worth mentioning that most of the research paper
test the CSA or the hybrid CSA using a group of functions
known as Benchmark functions before implementing it on the
targeted application such as in [34]. These functions can be
constrained and unconstrained, continuous and discrete vari-
ables, and unimodal and multimodal problems as specified
in [1].

A growing trend in electronics circuits and components
is reconfigurability. The best candidate for reconfigurabil-
ity is field programable gate array (FPGA). The increasing
cost of application specific integrated circuit (ASIC) and
long time to market make the FPGA more appealing to
researchers [35]. The FPGA consists mainly of configurable
logic blocks (CLBs), hard-core intellectual property (IP)
blocks and configurable wires. Modern FPGAs are suitable
for real time applications since they include digital signal
processing (DSP) blocks, digital clock management (DCM)
blocks, memory controller, error correcting code (ECC)
blocks and one or more dedicated microprocessors. More-
over, they include protocol engines supporting common
peripheral interfaces and a variety of high-speed I/O standard
peripherals [36]. Hardware description languages (HDL) are
commonly used in programing FPGAs. Recently programing
the FPGAs became easier as they can be programed using
C-based languages, MATLAB and LabVIEW. FPGAs are
suitable for the following applications: signal and image
processing, financial applications, security, pattern matching,
networking, numerical and scientific computing, molecular
dynamics and optimization problems.

As the CSA requires high resources and arithmetic opera-
tions with high speed, it is considered the best candidate for
FPGA hardware implementation. The use of FPGA reduces
the computational time through utilizing the pipelining and
parallel computation techniques [37]. In addition, FPGAs
support arithmetic operations based on fixed- and floating-
point formats. Floating point arithmetic is very crucial for
DSP application and specific systems that require high data
range, higher accuracy and high complexity [38], [39].

This paper is concerned with FPGA hardware implemen-
tation for CSA-based on IEEE single precision floating point
format. To the best of our knowledge, the proposed design
has not been published in literature yet.

This paper is organized as follows: Section 2 discusses
the use of Mantegna’s algorithm to generate random Levy
flight walks followed by an overview on the CSA in section
3. Section 4 presents the proposed FPGA implementation
for the CSA and the proposed control units that are imple-
mented using FSM. Section 5 shows the simulation results
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and section 6 presents the system synthesis, performance
evaluation results and the FPGA resources used. Finally,
the conclusion of our work and the summary of the results.

II. LEVY FLIGHT BASED CUCKOO SEARCH
The main objective of the CS optimization algorithm, is to
find a new and better solution for a certain problem. The nest
that contains eggs is considered as a solution for the problem
and the cuckoo’s egg is considered as a new and better solu-
tion that replaces the old one. The percentage of the cuckoo’s
eggs that are discovered by the host must be replaced by a new
solution. The location of the nest in the CS is found using a
randomwalkwhich is a random process. It is a nature inspired
technique that imitate the forging pattern path of animals and
the flight behavior of birds and insects [3]–[5]. The random
walk is composed of successive random steps and can be
expressed as:

Sn =
∑n−1

i=1
Xi + Xn = Sn−1 + Xn (1)

where Sn the random walk with n random steps, Xi is the ith

random step that has a predefined length and Xn is the motion
or transition from the current to the next state. The above
equation indicates that the next state depends on the current
state in addition to the transition Xn. When the step size
or length follows Levy’s distribution, the random walk is
called a Levy flight or Levy walk. Mantegna’s algorithm is
used to generate the Levy flight step length S in a fast yet
accurate manner and can be evaluated using the following
equation [40], [41]:

S =
u

|v|
1/β

(2)

where β is a parameter between 1 and 2 usually taken as 1.5,
u and v are random numbers derived from normal distribu-
tions as:

u ∼ N
(
0,σ 2

u

)
, v ∼ N

(
0,σ 2

v

)
(3)

where

σu =

{
0 (1+ β) sin (πβ

/
2)

0[ (1+ β)
/
2]β2(β+1)/2

}1/β
, σv = 1 (4)

III. CUCKOO SEARCH ALGORITHM
Optimization problem by imitating the breeding behavior
of the cuckoo bird as described earlier. The pseudocode in
Figure 1 is used to exemplify how the CSA can be imple-
mented. Each egg in a host nest (xi) represents a solution
for the specified problem. The cuckoo algorithm is used to
generate a new egg (xj) that represents a new solution for the
problem. A fitness function also known as objective function
(f(x)) is used to indicate if the Cuckoo’s egg is similar to
the host egg. If the egg is somehow similar to the host egg
(Fi > Fj), it replaces the host egg aiming for a better or
optimum solution for the problem. A portion of the unfit
eggs (Pa ) that represent the ones discovered by the host are

FIGURE 1. Pseudocode of the CSA.

replaced by new eggs. In order to describe the CSA there are
three rules that must be consideredwhile using this algorithm.
The first rule is that each cuckoo lay only one egg at a time
in a random nest. The second rule is eggs in the best nest are
passed to the succeeding generation. The third rule dictates
that the number of nests is constant and a portion of the nests
are replaced by new ones to represent the eggs discovered by
the host. The flowchart in Figure 2 is used to understand the
operation of the CSA. In the beginning, the CSA starts by
generating an initial population consisting of n host nests.

The cuckoo will use the Levy flight and start to lay eggs
in these nests. The new nest quality is then evaluated using
the fitness function. Then the calculated fitness of the new
nest (Fj) is compared to the initial/old nest (Fi). If the new
nest is better than the initial nest, the new nest will replace the
initial nest otherwise the initial nest is unchanged. A portion
of the worst nests, represented by the probability Pa, are
replaced by new randomones to represent the eggs discovered
by the bird. In this case the bird throws the eggs out of the
nest or simply abandon the nest and build a new one [42].
Generating a new solution/nest follows the below equations:

x(t+1)i = x(t)i + α · S · r (5)

where

α = α0 · (x
(t)
i − x

(t)
best ) (6)

where x(t+1)i is the generated new solution for the iteration t
using the cuckoo’s ith egg, x(t)i is the current solution, x(t)best
is the best solution in the current iteration, α0 is a constant
and it is usually greater than 0, α is the biased step size, and r
is a random number from a Gaussian distribution. It is worth
pointing out that in the real world if a cuckoo’s egg is very
similar to a host’s eggs, then this cuckoo’s egg is less likely
to be discovered, thus the fitness should be related to the
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FIGURE 2. CSA operation flowchart [33].

difference in solutions. Therefore, it is a good idea to do a
random walk in a biased way with some random step sizes as
follows [43].

stepsize = rand ·
(
permute1

(
x ti
)
− permute2

(
x ti
))

(7)

where permute1 and permute2 are different random permuta-
tion functions applied to nests, and thus the new solution can
be calculated using the following equation

x t+1i = x ti + stepsize ∗ P (8)

The P is using the below equation where Pa is the fraction
probability which is usually equals 0.25 [1]:

P =
{
1 if rand < Pa
0 if rand ≥ Pa

(9)

IV. PROPOSED FPGA BASED HARDWARE
IMPLEMENTATION
This section describes a detailed FPGA implementation for
the proposed CSA design. The proposed design adopts the

32 bits single precision IEEE 754 standard floating-point
formats. This format is suitable for a wide range of applica-
tions when compared to the fixed-point format. Floating point
can represent very small or very large numbers as indicated
in [35]. In this format, the number is composed of three
parts: sign, exponent and significand. The sign is either ‘0’
or ‘1’ for positive or negative numbers respectively, while
the exponent is an integer value represented in 8 bits. The
significand or mantissa is represented in 23 bits as shown in
Figure. 3 [35], [36].

FIGURE 3. Representation of single precision 32-bit IEEE 754 floating
point number.

The proposed CSA is composed of four main units: habitat
memory unit (HM), get best nest unit (GBN), get cuckoo
unit (GC), and empty nest unit (EN). A master control unit
is designed to organize the operation of each unit in the
proposed design.

The structure and operation of each unit will be explained
in the following subsections. Standard benchmark functions
can be used in order to validate the performance of any
optimization algorithm as specified in [37], [38]. For our pro-
posed design we adopted the two dimensional (2-D) ‘Sphere’
benchmark F2 function with search boundary range (−5, 5).
The function can be expressed as follows:

F2(x, y) = x2 + y2, −∞ ≤ x, y ≥ ∞ (10)

A. GET CUCKOO UNIT (GC)
The role of GC unit is to apply Levy flights which are random
walks used to generate new nests (solutions) as described in
equation (5). Two steps are required to generate this random
walk with Levy flights. The first step is to choose a random
direction, and the second step is to generate step length which
obeys Levy distribution [41], [42]. In our proposed design,
we apply Levy flights based on Mantegna’s approach which
was expressed by equation (2). The β value is 3/2 and the
random numbers u and v follow equation (3, 4).

To generate new solutions (new_nestx/ new_nesty), the
GC unit takes lower bound (Lb), upper bound (Ub),
nestx(i)/nesty(i) and best_nestx/ best_nestx as inputs. The
GC generates a new solution and updates the existing nest
in five pipelined phases as illustrated in Figure 4. The first
phase after initializing the Levy flight step (S) based on
Mantegna’s algorithm is to get the difference between the
current nest and the best_nestx/ best_nesty to keep the best
solution unchanged as expressed in equation (6). The second
phase computes the step size of the walks by multiplying
the Levy walk by the output of phase one. The third and
fourth phases are to compute the actual random walks or
flights as expressed in equation (5). In the fifth phase the
bound checker module is enabled to check if the calcu-
lated solution is within the specified boundaries. If the new
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FIGURE 4. Block diagram of GC unit.

FIGURE 5. Part of the GC control unit (FSM).

solution lies within the specified boundaries, the GC unit
will update the current nest. The GC unit is duplicated as
this hardware is concerned to implement the F2 benchmark
function.

The GC unit is supervised by an internal control unit which
is implemented by the synthesized finite state machine (FSM)

shown in Figure 5. This unit comprises five sub FSMs that
control each of the six phases described above. Accordingly,
this controller guarantees that the five pipelined phases are
working in a parallel manner to get benefit from the FPGA
hardware parallelism which is not provided if a central pro-
cessing unit (CPU) is used instead.
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FIGURE 6. Block diagram of GBN unit.

B. GET BEST NEST UNIT (GBN)
In our proposed design, the GBN is responsible for updating
both the nests (solutions) and the fitness memories (habitats).
At the beginning, it evaluates the fitness of the new generated
solution for both x and y (as we consider a 2-D function) and
hence keep the solution that has the best fitness.

The inputs for this unit are the generated new solutions
(new_nestx/ new_nesty) and the fitness. The outputs pro-
vided from this unit are the best_nestx/best_nesty and their
corresponding minimum fitness, the updated nest and the
fitness. The GBN accomplishes its calculation for each solu-
tion in three main pipelined phases as shown in Figure 6.
In phase one, the fitness function is calculated for each
new_nestx/new_nesty solution (line 6 in the algorithm as
in Figure 1).

Then phase two starts by comparing the evaluated fitness
with the fitness of the current solution to preserve the best
solution. Hence update the nest and fitness habitat mem-
ories (line 8-10 in the algorithm as in Figure 1). Finally,
the third phase keeps the best solution with the minimum
fitness (line 12 in the algorithm as in Figure 1).

This unit is controlled by its dedicated control unit which is
implemented by a synthesizable FSM. Similar to the control
unit of the GC module, this unit is designed to ensure that the
processing time is optimized by allowing all phases to operate
in parallel. The detailed structure of the BNG control unit is
shown in Figure 7.

C. EMPTY NEST (EN) UNIT
The role of the EN unit is to replace a fraction of the worst
solutions Pa with random solutions which are generated by
random Levy flight. The nest, Ub, Lb, and Pa are the input
ports for EN unit while new_nest is the output port.

This unit accomplishes its function in five phases as shown
in Figure 8. The first phase starts by getting the difference

between two different nests which are chosen randomly.
The second phase multiplies the output of the previous stage
with a random number of RAND to adjust the step size of the
random walks as in equation (7).

Each alien solution (egg) in the nest is discovered and
replaced in phase three and four. The operation of these
phases depends on the P values generated according to equa-
tion (9) that are stored in a separate SRAMmemory. Accord-
ing to equation (8) the new solution is generated by adding
the biased step size to the original solution if the value of P
equals ‘1’

On the other hand, the original solution is unchanged if the
value of P is ‘0’. In the final phase, the bounds are applied
to the new solutions to guarantee that they lie in the search
domain. All phases in the EN unit are coordinated using a
FSM-based control unit as shown in Figure 9.

V. SIMULATION RESULTS AND DISCUSSION
The proposed CSA is designed using Advantage Pro 8 tool
from Mentor Graphics. The simulations are performed using
ModelSim SE Plus 6.3. The required parameters for sim-
ulation are saved in storage elements (SRAM or registers)
and are loaded before running the simulation. The random
initial population and fitness values are generated using a
Matlab program and stored in a separate SRAM with a size
of 128 nest. The value of pa is set to 0.25, σv = 1 and β =
1.5. All these parameters along with Ub and Lb are stored
in separate registers. The following subsections explain the
main design modules and their simulation results.

A. GET CUCKOO UNIT
The outputs of the five phases of the GC unit are
diffx, stp_sizex, rnd_stp_multx, s_newx and new_nestx as
shown in Figure 10. Each phase lasts 11 clock cycles in
order to calculate its output. Figure 11 shows the control
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FIGURE 7. Part of the GBN FSM based control unit.

FIGURE 8. Block diagram of EN unit.

signals generated by the FSM. These signals are en_part2,
en_part3 and en_part4 which enable the operation of phase 2,
phase 3 and phase 4 respectively. The FSM generates these
signals every 11 clock cycles (1100 ns) to control the opera-
tion of each phase. The operation of the GC unit will generate
the final output new_nestx after 30 clock cycles i.e. latency
equals 30 clocks. However, since the proposed design is
pipelined and the FSM-based control unit is used to grantee
that the outputs are overlapped, only the first output takes 14
clock cycles and further on each output takes 11 clock cycles.
The pipeline operations due to the use of the FSM-based
control unit increases the throughput of the unit.

B. GET BEST NEST UNIT (GBN)
The GBN unit simulation results are presented in Figure 12.
This unit includes the objective function (F2 = x2 + y2)
which calculates the fitness value f2 for both new solutions
new_nestx and new_nesty as shown in Figure 12. From
the simulation results, the objective function takes 15 clock
cycles to evaluate f2. Then the new fitness f2 is compared
with the stored one, which is called fitness in Figure 12.

The comparison operation starts when the internal
FSM based control unit generates the control signal
en_comp1 immediately when f2 is available. If the com-
parator output update_fit is high, the FSM generates control
signals for the nestx, nesty and fitness habitat memories and
updates their values. The duration of the update operation is
4 clock cycles and hence the total latency of the GBN unit is
19 clock cycles. On the other hand, if the comparator output
update_fit is low, the values of nestx, nesty and fitness habitat
memories are kept unchanged. Meanwhile during the update
of the memories, the objective function starts to evaluate the
fitness for another new nest.

Finally, when the unit finish evaluating the fitness for all
nests it starts to preserve the best nests (bestx and besty)
that have the minimum fitness (best_fit) as illustrated in
Figure 13.

C. EMPTY NEST UNIT (EN)
The EN unit replaces the worst solutions that are calcu-
lated by the GBN unit based on Pa values with other ran-
dom ones. As mentioned earlier, the EN unit acquires the
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FIGURE 9. Part of the EN FSM-based control unit.

FIGURE 10. Simulation results of GC unit.

difference between two stored solutions from the habitat.
These solutions are addressed randomly using two linear
shift registers (LFSRs). The random addresses adrs_x1 and
adrs_x2 in Figure 14 represents the LFSRs outputs and
nx_r1 and nx_r2 are the corresponding outputs for the nestx

habitats. After seven clock cycles the difference nest_diff is
evaluated and ready for the multiplication phase to get the
step size.

The FSM sends control signals for the multiplication phase
to start and another signal for the current phase to handle the
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FIGURE 11. Simulation results of FSM control unit.

FIGURE 12. Fitness function f2. calculation and simulation results.

new nests. The step size (step_size) is calculated by multiply-
ing the random value rnd_mem_empy which is stored on an
SRAM with nest_diff.

This phase lasts five clock cycles. The calculated step_size
is transferred to the addition block based on the pa_nest
output which is generated in the next clock cycle based on
the pa value. If pa value is ‘1’ the pa_nest equals step_size
otherwise pa_nest equals zero as shown in Figure 14.

In summation phase, both pa_nest and the current solution
nestx are added to get the new solution sum_opwithin 7 clock
cycles. The final phase compares the new solution sum_op
with the upper and lower bounds. The survive_nest is the
result of this phase, which is confined in the solution range,
and then will be stored in the habitat nest with a total latency
of 32 clock cycles. The designed FSM controls this unit,
ensures that the operation is pipelined and guarantees that the
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FIGURE 13. Simulation results of saving the best solution with minimum fitness.

unit generates survive_nest every 11 clocks cycles (1100 ns)
as in Figure 14.

VI. SYSTEM SYNTHESIS AND PERFORMANCE
EVALUATION
The targeted FPGA for hardware implementation is
Cyclone R© IV E FPGA from Intel (Altera). The FPGA
chip consists of 114 k programmable logic elements (LEs),
388 embedded memory (Kbits), four PLLs, and 532 multipli-
ers (9-bit). In addition, it contains 20 global clock networks,
8 user I/O banks and 528 maximum user I/O ports. Cyclone
R© IV E offers low cost, low power and high functionality as
indicated in [48].

A. SYNTHESIS RESULTS
The proposed hardware implementation of the CSA is syn-
thesized using Quartus 15.1 tool from Intel. The resources
utilized in designing F2 based CSA after place and route
(P&R) are summarized in Table 1.

The post P&R results show that the proposed design occu-
pies 7282 logic elements, 3754 register, around 58 k memory
bits and 49 embedded multipliers. The total power dissipated
is 424.83 mW and the maximum operating frequency for the
proposed CSA is 99 MHz.

B. SYSTEM PERFORMANCE EVALUATION
In order to evaluate the performance of the proposed CSA
system, two of the most common benchmark functions
were implemented along with the spherical function as
in [49], [50].

The functions are Rosenbrock (F1) and Rastrigin (F9)
functions. The F1 function, also known as the Banana

TABLE 1. Place and route results for 2-D F2.

function, is a non-convex, unimodal and non-separable func-
tion. It is defined as follows

F1 =
∑d−1

i=1
(1− xi)3 + 100

(
yi − x2i

)2 (11)

The function is in the range−10 ≤ xi, yi ≤ 10 where d is the
domain dimension.

The Rastrigin function (F9) is a non-convex, multimodal
and separable function. The function falls in the range
−5.12 ≤ xi ≤ 5.12 and is defined in d-dimensions as in
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FIGURE 14. Simulation results of FSM control unit.

TABLE 2. Place and route results for 2-D F1.

equation 12.

F9 = 10 · d −
∑d

i=1

[
x2i + 10 cos (2πxi)

]
(12)

Tables 2 and 3 show the synthetization results for 2-D
Rosenbrock (F1) and 2-D Rastrigin (F9) respectively on the
same FPGA. The GC and EN modules are kept the same
while the GBN module is modified according to the imple-
mented objective function. The implementation results show
that as the complexity of the objective function increases the
FPGA utilization increases. When compared to F2, the total
power consumption is increased by 13 % for F1 and 44 %

TABLE 3. Place and route results for 2-D F9.

for F9. The maximum frequency for F1 is 99 MHz. and the
maximum frequency of F9 is 98 MHz.

In addition, four-dimensional (4-D) operation is consid-
ered to evaluate the performance of the proposed hardware
design. New 4-D GBN modules for both Rosenbrock (F1)
and Rastrigin (F9) functions are designed based on parallel
architecture. Minor changes are done for the GC unit and EN
unit to be compatible with the 4-D operations. Table 4 shows
the allocated resources, power consumption and maximum
operating frequency of the 4-D F1 and F9 functions. The
resources allocated for the 4-D F1 increased in the range
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TABLE 4. Place and route results for 4-D operation.

TABLE 5. Performance Comparison.

between 50% and 113% when compared to that of the 2-D
design. Compared to the 2-D design, the allocated resources
for the 4-D F2 increased in the range from 16% to 42%. The
total power consumption for the 4-D F1 and F9 designs are
596.91 mW and 703.74 mW respectively. The results show
that the total power consumption for the F1 design increased
by 24% and by 15% for the F9 design when compared to the
2-D designs. Since both designs employ parallel architecture
the maximum operating frequency is maintained at 99 MHz.
The proposed architecture sacrificed the allocated resources
and power consumption in order to preserve the operating
frequency.

C. PERFORMANCE COMPARISON
The performance of the proposed CSA is compared to the
recently published work in [51]. The CSA in [51] is based
on fixed point format and implemented on Cyclone IV GX
FPGA from Altera.

Table 5 sums up the results of both designs in terms of
FPGA utilization, consumed power and maximum operation
frequency. The habitat of the proposed CSA is 128 nests while
that of [51] is 75 nests with 32 bits word size for both designs.
The proposed design utilizes logic elements ranging from
8,413 to 13,121 that are less than the elements used in [51].
On the other hand, more registers are used in the proposed
design with a maximum of 6888 registers.

As far as the occupied memory is concerned, the proposed
design utilizes around 50 k bits for both F1 and F9 based
systems. The F2 based system employs around 58 k memory
bits which is higher than that in [51].

The proposed CSA made use of the provided 9-bit embed-
ded multiplier elements in all the designs while in [51] no
embedded multipliers were used. The total power consump-
tion for the proposed design, with different objective func-
tions, is relatively high due to two main reasons. The first
reason is the use of FP arithmetic which is more complex than
fixed point arithmetic. The second reason is the number of
nests used which is 70% higher in the proposed design than
that in [51].

The spherical function F2 consumes less power as it has
less arithmetic operations. The consumed power is 480 mW
for the proposed design and 116 mW for the design in [51].
For more complex objective functions such as F9, the power
consumption increased around 25 % in the proposed design
and 275 % in [51] when compared to F2 based systems.
The maximum frequency range for the design in [51] is
250 - 300 MHz while in the proposed design the maximum
frequency is settled around 99 MHz. Although the proposed
design consumes more power and has a lower operating
frequency, it provides a higher precision and a wider range
which makes it suitable for DSP and biomedical applications.

VII. CONCLUSION
This paper presented an FPGA hardware implementation for
CSA based on IEEE single precision floating point data. The
design adopted Mantegna’s algorithm to generate a random
Levy flight walk. The proposed design consisted of four main
units: HM unit, GBN unit, GC unit, and EN unit. All these
modules were controlled using FSM based control units. The
system is designed using parallel and pipeline techniques to
maintain a reasonable operating speed. A 2-D benchmark
spherical function is used to validate the proposed hardware
design.

The design was implemented on Cyclone IV R© E from
Intel. It occupied 6.4 % of the available logic elements,
3754 register, less the 1.4 % of the available memory and
49 embedded multipliers. The maximum speed achieved was
99MHz and the consumed power was 424.83 mWwhich was
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relatively high due to the use of the FP format and the large
number of nests. Rosenbrock and Rastrigin function were
used to evaluate the performance of the proposed CSA. The
total consumed power increased by 13% for the Rosenbrock
based design and by 44% for the Rastrigin based design
when compared to the spherical function-based design. 4-D
operation of the F1 and F9 was also examined.

The results showed that the allocated resources and power
consumption increased while the maximum frequency is
maintained around 99 MHz. This is attributed to the parallel
architecture used in designing the CSA. In addition, the per-
formance of the proposed CSA was compared to recently
published research. Even though the design in [51] was based
on fixed point format, the proposed CSA design gave compa-
rable results especially for complex objective functions. From
the obtained results, it could be concluded that the proposed
design can be used to solve optimization problems related to
WSN, UAV, DSP and medical diagnostic applications as they
require wide range and high precision.
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