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ABSTRACT The transmission of malicious information is often accompanied with normal information
flows in complex networks. For the intrusion of unknown malicious information, if there is no effective
defensivemethod to suppress its diffusion, the networkmay be confronted with incredible catastrophe. In this
paper, to enhance the security of information diffusion in complex networks, a node trust-value management
mechanism (NTVMM) is proposed. Basically, node trust value and threshold are assigned with node
importance at the beginning. According to node benefit and loss in information diffusion, the two algorithms,
node trust-value updated algorithm (NTVUA) and node trust-threshold updated algorithm (NTTUA), are
devised to dynamically update node trust value and trust threshold, respectively. Compared with the existing
node quarantine and edge blockage schemes, NTVMM only relies on the trust relationship of nodes to
suppress malicious information diffusion with no need for knowing the global infection information of the
network. Besides, to further make a trade-off between information security and information loss, NTVMM
is associated with the classical information diffusion model to obtain the most appropriate trust threshold.
Finally, we devise the network profit function to evaluate the profits brought by different methods. The
simulations are respectively carried out in two synthetic complex networks and a real-world complex
network. The results of simulation demonstrate that when malicious information invades the network,
NTVMM can reduce the number of infected nodes in the network and enhance the security of information
diffusion. Moreover, compared with node quarantine and edge blockage schemes, the proposed scheme can
obtain a better network profit, and make a trade-off between information security and information loss.

INDEX TERMS Complex network, information security, malicious information diffusion, node trust-value
management mechanism, network profit.

I. INTRODUCTION
With the rapid development and continuous expansion of
complex networks, many complex systems, in reality, can be
modeled as complex networks for analysis, such as power
networks, transportation networks, computer networks, and
social networks. These networks show the complexity in
structure and function. By investigating complex networks,
the inherent laws of complex systems are revealed grad-
ually, and via structure and function optimization, system
performance is improved increasingly. Generally, complex
network is composed of a large number of nodes and con-
nected edges, where the function of edges is to transmit
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normal information flow (such as messages, voice, and
videos) from one node to another connected. From the per-
spective of cybersecurity, malicious information, such as
rumor or computer virus, can spread accompanied with nor-
mal information flow and threaten the security of information
receiving nodes [1], [2]. For computer viruses, their diffusion
is usually aimed at some target nodes; while rumors are usu-
ally aimless, because their purpose is to cause panic to more
network users. In general, we regard the malicious infor-
mation diffusion is aimless in complex networks. Although
there are many traditional defense systems, such as firewall,
intrusion detecting and et al., to monitor malicious infor-
mation with specific characteristics [3]–[6], new malicious
information with unknown structures and characteristics can
still bypass these external defenses and intrude the internal
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network. For unavoidable intrusion of new malicious infor-
mation, if there is no specific defensive measure to suppress
its diffusion, it may greatly threaten network performance and
even incur network paralysis.

At present, solutions to suppress malicious information
diffusion mainly are concerned on network node quarantine
or edge blockage [7]–[11]. Related schemes can suppress
malicious information diffusion in the network, but effective
quarantine or blockage depends on the degree of understand-
ing of the network structure and network infection. However,
for network managers, it is usually difficult and unfeasible
to collect the global infection information of the network
in the process of malicious information diffusion. Moreover,
these schemes result in the loss of network communication
capacity due to the disconnection of network nodes or edges.
Excessive operations to quarantine node or block edge cause
serious loss of normal information, while deficient operations
lead to malicious information still existing in the network.

To pursuit the security of information diffusion of the net-
work itself, network automation, interoperability, and authen-
tication capabilities should be enhanced [12]. In the aspect
of identity authentication, the whitelist and blacklist mech-
anisms are alternative solutions for network users to iden-
tify the reliability of information sources and avoid multiple
attacks. By manually adding trusted/distrusted users to the
lists, users can avoid being infected by malicious informa-
tion from attackers. Despite the security and speediness of
information diffusion have been greatly improved through
identity authentication between network users, there are still
some obvious constrains. First, malicious attacks are usu-
ally persistent and discontinuous, while users in reality are
imperceptible to these attacks. Thus, these attackers will
escape being identified. Secondly, the manual operation of
adding users to the whitelist and blacklist is relatively more
cumbersome. Massive uncertain information injection will
force users to deal with the authentication of information
sources incessantly. In a sense, the attack is effective and
defense is defective. Thirdly, excessive uncertain communi-
cation blocked by whitelist and blacklist mechanisms will
lead to the blockage of normal information diffusion and
reduce the basic service-bearing capacity of the network.
Based on these considerations above, it is necessary to find a
way out to intercept unreliable information automatically and
tomake a trade-off between network service-bearing capacity
and security protection.

Some trust models or systems are deployed in Wireless
Sensor Networks (WSNs) to automatically detect malicious
information paths [13]–[16] (the specific methods of trust
evaluation and management are described in the related
work). It is convinced that the trust mechanism is conducive
to automatic recognition of malicious information during
the process of information diffusion. However, these trust
models mainly face internal attack, in which trust evaluation
or management is based on the analysis of data packets
provided by sensors. Since common systems cannot detect
newmalicious information, these trust models are unavailable

and have no effect on such malicious information. At present,
there is no specific trust model that can use its own trust
relationship to suppress the spread of new malicious infor-
mation in the network and make a trade-off between network
communication and network security. In Online Social Net-
works (OSNs), trust-based privacy management mechanisms
have been applied by many scholars to protect individu-
als’ privacy and make a trade-off between data sharing and
privacy-preserving automatically [17]–[19]. These achieve-
ments show that users can share common data and maintain
the privacy of stakeholders with reasonable trust-threshold
selected methods after establishing an appropriate trust-value
mechanism in OSNs. Thereby, we are devoted to creating a
node trust-valuemanagementmechanism (NTVMM) in com-
plex networks to suppress malicious information diffusion
while considering the network communication capabilities.

Before introducing NTVMM, there are some differences
between node trust-value management in information dif-
fusion and trust-based collaborative privacy management
in data sharing to be stressed. On one hand, the loss of
user’s privacy is a binary problem in data sharing (for exam-
ple, whether posting photos would violate the interests of
stakeholders is a 0 or 1 problem), but it is multivariant
in information diffusion (for example, the losses of infor-
mation recipient can be caused by malicious information
infection, normal information losing or et al.). Because the
trust value is updated according to user losses, the differ-
ence in user’s losses will bring about differences in the
trust-value updated mechanism. On the other hand, the result
of data sharing comes down to multiple stakeholders and
data owners can make the final judgment according to the
stakeholders’ opinions and trust threshold. While in informa-
tion diffusion, information is usually sent from one user to
another user, which doesn’t involve multiple users. Thus, the
trust-threshold selected method in information diffusion
is different from that in privacy management. Based on
the above considerations, there are two critical approaches
in information diffusion to be addressed urgently before
NTVMM applied in complex networks. One is to formulate a
new node trust-value updated rule, and the other is to explore
an appropriate trust-threshold selected method.

At present, many scholars do pay attention to the problem
of network border defense. In border defense, the network is
divided into intranet and extranet according to the network
security requirements. For example, many companies build
private networks on public networks for encrypted commu-
nications. Compared with public networks, private networks
are intranets. In this paper we focus on intranet security
of complex networks. Under the premise that the malicious
information has infected a part of intranet network, we study
how to restore the network to a healthy state with mini-
mum cost. First, we propose a node trust-value management
mechanism (NTVMM) in complex networks, in which two
algorithms, node trust-value updated algorithm (NTVUA)
and node trust-threshold updated algorithm (NTTUA), are
devised respectively to update node trust value and node trust

138176 VOLUME 7, 2019



G. Wang et al.: Method to Improve the Security of Information Diffusion in Complex Networks

threshold dynamically. Besides, NTVMM is associated with
the typical information diffusion model, named Susceptible-
Infected-Recovered-Susceptible (SIRS) model, to explore
the most appropriate threshold for node trust judgment and
to make a trade-off between network communication and
network security. To compare performances of NTVMM,
node quarantine, and edge blockage, we devise the network
defense profit function to evaluate their network profits.

The main contributions of this paper are summarized as
follows

(i) A node trust-value management mechanism is pro-
posed to suppress the diffusion of new types of malicious
information in complex networks. Besides, two algorithms,
NTVUA and NTTUA, are devised respectively to update
node trust value and trust threshold dynamically. In the case
of no prior network infection information, NTVMM can help
nodes automatically decide whether to receive information
based on the reliability of the information source.

(ii) A new trust-threshold selected method is proposed to
make a trade-off between network communication capability
and network security. By combining NTVMM with SIRS
information diffusion model, a novel SIRS information dif-
fusion model with NTVMM is proposed to explore the most
appropriate trust threshold. To further measure the network
profit under different defensive schemes, we devise a network
profit function according to the network security and commu-
nication loss.

(iii) The effectiveness of NTVMM in suppressing mali-
cious information is verified via simulations respectively in
two synthetic complex networks and a Gnutella P2P network.
By conducting comparisons between different methods, it is
demonstrated the proposed method based on NTVMM can
obtain a better network profit and make a trade-off between
network communication and network security.

The organization of this paper is as follows: in section II,
the related work of trust-value management and information
diffusion model are investigated. In section III, NTVMM
is presented and the corresponding updated algorithms are
devised respectively for node trust value and trust threshold.
In section IV, the novel SIRS information diffusion model
with NTVMM is proposed. Section V describes how to apply
the proposed model to find the most appropriate trust thresh-
old and devises the network profit function. In section VI,
we give the results of simulations. Section VII concludes the
paper.

II. RELATED WORK
A. TRUST-VALUE EVALUATION AND MANAGEMENT
At present, the researches of trust evaluation and manage-
ment are mainly concerned on WSNs and OSNs. In WSNs,
Zhang et al. [13] and Wang et al. [14] designed a fog-based
hierarchical trust mechanism for cyber security deficiencies.
By comparing the real-time service parameters, collecting
exception information, and quantitative evaluating entities,
the trust value between cloud service providers and sensor
service providers can be updated. Liu et al. [15] proposed a

trust routing scheme to avoid black holes, where the nodal
trust was obtained by detecting and analyzing a number of
network routes. In [16], Tang et al. devised an aggregate
signature-based trust routing to guarantee safe data collection
in WSNs. The trust of a path was evaluated according to
the success rate of the path and the path with high trust was
selected for data routing to increase the success rate of data
gathering.

The first two schemes introduced above assume that the
malicious information in the network can be detected and
collected. While for the new types of malicious information,
it is difficult to check whether there is malicious information
in the data package. The signature-based trust routing scheme
selects the appropriate routes for information transmission.
The premise of this scheme is that there aremultiple routes for
information transmission, while in some networks, informa-
tion transmission is in the form of point-to-point. In addition,
the impact of trust management on network business capabil-
ity is not considered in these three schemes.

In OSNs, the trust relationship between users in data shar-
ing has been explored in academia. For peer-to-peer data shar-
ing, Lu et al. [20] proposed a trust-based privacy preservation
method to discuss dynamic trust assessment and the enhance-
ment to the supplier’s privacy. In [21], Squicciarini et al.
modeled the problem of collaborative enforcement of privacy
on shared data by using game theory, and offered automated
ways to share images based on an extended notion of con-
tent ownership. Combined with Condorcet’s preferential vot-
ing scheme, Sun et al. [22] proposed a trust-weighted voting
scheme based on fixed trust value to aggregate different users’
privacy policies. In addition, Gong and Wang [23] provided
the first systematic study for the security of trustee-based
social authentications and extensively evaluated various con-
crete attack and defense strategies using three real-world
social network datasets. Recently, Xu et al. [19] adopted a
changing trust-value mechanism related to users’ privacy loss
and proposed the trust-based collaborative privacy manage-
ment to encourage the data owner to take consideration of
stakeholders’ decisions. The results demonstrated the user
can get higher payoffs than setting the threshold to a fixed
or random value, by applying the proposed UCB policy to
determine the threshold.

At present, there are few studies using the trust-based
mechanism in complex networks to suppress diffusion of
new malicious information. We draw on the experience of
trust mechanism for privacy preservation and propose the
NTVMM to improve the security of information diffusion
in complex networks. The node trust-value updated rule
is related to the node benefit and loss. To further explore
the most appropriate trust threshold and make a trade-off
between information security and information loss, we asso-
ciate NTVMM with the information model.

B. INFORMATION DIFFUSION MODEL
Both virus and rumor spread in the form of information,
which we call them malicious information. In terms of
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malicious information, there are two main approaches to
do research on its diffusion: the microscopic approach and
the macroscopic approach [24]. The microscopic approach
is devoted to the development of more powerful defensive
methods by analyzing the structures of the virus or the
content of the rumor. However, due to the unpredictability
of the structure or content of malicious information, there
is a significant lag from the emergence of a new type of
uncertain information to the release of a defensive method
against them. What is more serious, existing microcosmic
defensive methods can’t provide insight into the laws of mali-
cious information diffusion in the network, hence, they can’t
suppress the spread of new type of malicious information.
To remedy this shortage, Kephart and White [25] proposed
a macroscopic model, inspired by the biologically epidemic
models, featuring the spread of computer viruses, showing
that its propagating behavior can be predicted.

Since then, a series of information diffusion model
has been proposed to investigate the relationship between
diffusion factors. Yang et al. [26] proposed a modified
Susceptible-Infected-Susceptible (SIS) model with an infec-
tive medium on complex networks and examined epi-
demic thresholds for disease spreading by using this new
model. Xiong et al. [27] proposed a Susceptible-Contacted-
Infected-Refractory (SCIR) diffusion model to characterize
information propagation on online microblogs and investi-
gate the relations between node degree and infected fac-
tor. Consider that opinion divergences and differentiations
generally exist as a result of individuals’ extensive par-
ticipation and personalization, Liu et al. [28] proposed a
Susceptible-Hesitated-Infected-Removed (SHIR) model to
study the dynamics of competitive dual information diffusion
and the results demonstrated final density of stifles increases
monotonically as infection rate increases and removal rate
decreases.

In addition, diffusion models are used to investi-
gate the threshold of virus diffusion. To explore the
spreading characteristics of worm in the computer net-
work with a natural death rate, Mishra and Jha [29]
presented a Susceptible-Exposed-Infectious-Quarantined-
Recovered (SEIQR) model. In their follow-up work [30],
they presented a compartmental Susceptible-Exposed-
Infectious-Susceptible (SEIS) epidemic transmission model
and analyzed the stability of equilibriums with the mod-
ified reproductive number Rv. Considering the latency of
the virus, Yang et al. [31] proposed a Susceptible-Latent-
Breaking-Recovered- Susceptible (SLBRS) model to get
the strategies for eradicating viruses spreading across the
Internet effectively and the research also showed the dynamic
behavior of the model is determined by a threshold.

As mentioned above, the transferring parameters have an
influence on the stability of the information diffusion model.
In general, there exists a threshold relevant to transferring
parameters for malicious information diffusion. If the thresh-
old is lower than a specific value, there will be no infected
node when the network is stable. Otherwise, the infected node

will always exist in the network. Therefore, with the help of
the diffusion threshold, we can choose the most appropriate
trust-threshold by combining the SIRS information diffusion
model with NTVMM.

III. NODE TRUST-VALUE MANAGEMENT
In this section, the initial trust value and the trust thresh-
old of the network node are established according to node
importance. In the process of information diffusion, node
trust-value matrix and trust-threshold set change dynami-
cally according to node benefit and loss. Two algorithms
are prescribed to update the trust-value and trust-threshold,
respectively.

A. INITIAL NODE TRUST VALUE AND TRUST THRESHOLD
IN COMPLEX NETWORK
In reality, many networks can be abstracted into complex
networks, such as communication network, social network,
and et al. Suppose the total number of network nodes is
N . A complex network can be represented by an undirected
graphG = (V,E), whereV = {V1,V2 . . . ,VN } is the vertices
set or nodes set, and E is the edges set. If a direct relationship
exists between Vi and Vj, there is a connecting edge between
them, which can be denoted as (Vi,Vj). The network node,
in reality, represents the user’s host or other communication
unit. In subsequent instructions, unless otherwise specified,
we use the two terms ‘‘node’’ and ‘‘user’’ exchangeable.
Generally, the adjacency relationship between nodes in the
network is represented as an adjacency matrix A = (aij)N×N ,
where aij can be denoted as

aij =
{
1, if (Vi,Vj) ∈ E,
0, if (Vi,Vj) /∈ E.

(1)

For privacy management, it is regarded that the initial trust
value can be calculated by the shortest distance between two
nodes in the network no matter they are directly connected
or not. However, in information diffusion, information is
transmitted between two directly connected nodes each time.
Thus, we can only calculate the trust value between two nodes
connected directly. Let trij ∈ [0, 1] denote the trust value
of user j in user i. The more user i trusts user j, the higher
trij is. trij(0) represents the trust value of user j in user i at
initial time. Because of the preferential attachment of nodes
in complex network [32], [33], new nodes are more likely to
connect with the node with a larger degree. That is to say,
the node with a larger degree is trustworthy. Thus, the initial
trust-value matrix can be set according to the node degree.
Let T (t) = (trij(t))N×N and kj denote node trust-value matrix
at time t and the degree of node j in the network, respectively.
The larger kj is, the larger trij(0) will be. Suppose kmax is the
maximum degree of network node, then the initial trust-value
trij(0) can be defined as

trij(0) =
{
kj
/
kmax, if aij = 1,

0, if aij = 0.
(2)
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When node i doesn’t connect with node j directly, the trust
value of node j in node i is zero. According to the definition
(2), we can obtain the initial trust-value matrix T (0).

Let λ(t) = {λ1(t), λ2(t), ..., λN (t)} represent node
trust-threshold set at time t . At the initial moment t = 0,
since there is no information transition in the network, the
initial threshold set can be set as rand number set. To ensure
network security, we select a reasonable rand number and
give the initial threshold set

λ(0) = {0.1, 0.1, . . . , 0.1}N . (3)

Certainly, users can set initial thresholds according to their
network environment. If there is no malicious information in
the network, we can set the threshold as zero. At the beginning
of information transition, if trij(0) ≤ λi(0), the information
from user j will be rejected by user i. In other words, the trust
value of node j in i is lower than that of other nodes.

In the following two subsections, we will introduce the
updated mechanisms of node trust-value matrix and trust
threshold set according to node benefit and loss in informa-
tion diffusion.

B. NODE TRUST-VALUE UPDATED ALGORITHM
Generally speaking, there are three kinds of cases that will
bring benefits or losses to node and change the trust value
between nodes in information diffusion. Fig. 1 gives the cor-
responding change of node trust value in each case. In case 1,
the trust value of user j in user i is relatively low, thus, i
refuses to receive the information from j (the information
from j are denoted by j’s information). Because user i doesn’t
receive j’s information which should have been received by i
at that time, we regard it is the communication loss of user
i caused by j and can be denoted as l ijc . In case 2, user i
receives j’s information, but i is infected by the malicious
information hidden in j’s information. Malicious informa-
tion may cause the following performance losses to user
i: delete programs, destroy data stored in hard disk, clear
system memory areas and important information in operating
system, and et al. [34]. Suppose these performance losses
is denoted by l ijp . In general, the level of communication
loss and performance loss in reality should be determined by
actual condition. For simplicity, here we use binary number
to represent the losses. If j’s information is not received by
user i, then l ijc = 1. Contrarily, user i receives the information
and benefits from information acquisition, then l ijc = −1.
Similarly, if node i is infected by j’s information, l ijp = 1;
otherwise l ijp = 0. Under this definition, if l ijc > 0 or
l ijp > 0, the trust value of j in i will descend. In case 3,
user i acquires the normal information and benefits from j’s
information. Hence, l ijc = −1. If the node checks that the per-
formance is greatly affected after receiving the information
or information is intercepted, it immediately changes the trust
value of the information sender. Specifically, in the computer
network NTVMMcan be applied to existing network security

FIGURE 1. The corresponding change of node trust value in each case.

software and evaluate node reliability according to recorded
information of node loss by the monitoring module.

For the information diffusion in the network, there are two
hypotheses

(H1) Assume that the behavior of sending and receiving
information occurs only once between adjacent nodes in
the network per unit time and NTVMM is used at the
beginning of virus infection in the network

(H2) The capability of malicious information to infect
the host is usually limited, and the individual infected
probability is denoted by β.

According to the above updated mechanism of trust value,
the new trust value trij(t + 1) can be computed by

trij(t + 1) =


trij(t) • g(a • l

ij
c ), if l ijc > 0&&l ijp = 0,

trij(t) • g(b • l
ij
p ), if l ijp = 1,

trij(t) • g(c • l
ij
c ), if l ijc < 0&&l ijp = 0,

(4)

where g(•) is an updated function of l ijc and l ijp . An instantia-
tion of g(•) is given by

g(x) =
2e−x

1+ e−x
. (5)

If the node i receives j’s information and i is not infected,
g(x) > 0 and the trust value trij will increase. Otherwise,
g(x) < 0 and the trust value trij will descend. The parameters
a, b, c in (4), belonging to interval [0,1], respectively denote
the weight of information loss, performance loss, and infor-
mation acquisition benefit. In consideration of the serious
hazard of performance loss in network security, we suppose
the performance loss has the greatest weight on trust value,
and set b = 1. Since the information loss and information
acquisition occur more frequently than performance loss,
we set a = 0.02 and c = 0.01. Equation (4) can be rewritten
as

trij(t + 1) =


trij(t) • g(0.02l

ij
c ), if l ijc > 0&&l ijp = 0,

trij(t) • g(l
ij
p ), if l ijp = 1,

trij(t) • g(0.01l
ij
c ), if l ijc < 0&&l ijp = 0,

(6)
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Algorithm 1 NTVUA
Input: current trust-value matrix T (t), current trust-

threshold set λ(t), infection probability β, total
node number N .

Output: updated trust-value matrix T (t + 1)
1: for i = 1 to N do
2: for j = 1 to N do
3: if T(t)[i, j] == 0 then
4: T (t + 1)[i, j]← 0
5: else if T (t)[i, j] ≤ λ(t)[i] then
6: Communication loss lc← 1
7: T (t + 1)[i, j]← T(t)[i, j] • g(0.02lc)
8: else
9: Create a random number rand_num ∈ [0, 1]
10: if rand_num < β then
11: Node i is infected by j, and performance loss lp← 1
12: T (t + 1)[i, j]← T(t)[i, j] • g(lp)
13: else
14: Normal information is acquired and node i is not

infected. Communication loss lc←−1
15: T (t + 1)[i, j]← T(t)[i, j] • g(0.01 ∗ lc)
16: end if
17: end if
18: end for
19: end for

The trust value at current time will be updated according
to node losses. After a unit time, the trust value matrix T (t)
will be updated, and the updated matrix T (t + 1) can be
obtained according to (6). The detail of NTVUA is described
in Algorithm 1.

The algorithm NTVUA first traverses each row of current
trust-value matrix T (t). For i-th row, it compares each trust
value (not zero) in this row with the trust threshold of node i,
and makes a judgment to determine whether the node i suffers
the communication loss. On this basis, the performance loss
of node i is judged again according to the infection probability
of malicious information. The time complexity of NTVUA
is O(N 2) because the maximum time of updating trust-value
matrix is spent at traversing the current trust-value matrix.
The space complexity is also O(N 2) in storing the current and
next trust-value matrix.

C. NODE TRUST-THRESHOLD UPDATED ALGORITHM
The initial node trust-value matrix T (0) and trust-threshold
set λ(0) are obtained according to node degree. At each
unit time, T (t) is updated dynamically with NTVUA. After
trust value matrix is updated, we sort each row of updated
trust-value matrix T(t + 1) in ascending order and repre-
sent sorted matrix as Tsort(t + 1). Trust-threshold set λ(t) at
current time can be updated by the sorted trust-value matrix
Tsort(t + 1) and the updated trust-threshold set λ(t + 1) can
be obtained.

To maintain the normal network communication, the trust
threshold shouldn’t be too large. Here we introduce a

Algorithm 2 NTTUA
Require: updated trust-value matrix T (t+1), node degree

set K , total nodes number N , threshold selected
proportion set sp(t).

Ensure: updated trust threshold set λ(t + 1)
1: sort the trust-value matrix with ascending order

Tsort(t + 1) = sort(T(t+1), 2, ’ascend’)
2: Initialize the number set of refused nodes Ref_num =

zeros(N ,1)
3: for i = 1 to N do
4: if (K(i) • sp(t)[i]← bK(i) • sp(t)[i]c) > 0.5 then
5: Ref _num[i]← K(i) • sp(t)[i]
6: else
7: Ref _num[i]← K(i) • sp(t)[i]
8: end if
9: λ(t + 1)[i]← Tsort(t + 1)[i,Ref_num[i]]
10: end for

simple but effective threshold selected method. From the
sorted trust-value matrix Tsort(t), we can select a certain
proportion of untrusted nodes adjacent to node i. These nodes
are directly connected to node i and have relatively low trust
values in node i. Thus, the information from untrusted node
is refused by node i. Suppose the selected proportion and the
maximum trust value of the untrusted nodes at current time
are respectively spi(t) ∈ [0, 1] and tr imax. The trust threshold
of node i can be represented as

λi(t) = tr imax. (7)

Before the trust threshold is obtained, we should calculate
the number of untrusted nodes adjacent to i. Let Ref _numi
denote the number of nodes refused by node i. Ref _numi can
be computed by

Ref _numi

=

{
dki · spi(t)e , if (ki · spi(t)− bki · spi(t)c) > 0.5,
bki · spi(t)c , if (ki · spi(t)− bki · spi(t)c) ≤ 0.5,

(8)

where ki is the degree of node i, εi(t) is the threshold selected
proportion of node i at time t , b•c and d•e are respectively
floor function and ceil function. According to Ref _numi,
the trust threshold of node i can be obtained by

λi(t) = tr imax = Tsort(t)[i,Ref _numi]. (9)

The trust-threshold set is updated by trust-value matrix at
each time. Let sp(t) = (sp1(t), sp2(t), ..., spN (t)) and K =
(ki)N denote the threshold selected proportion set at time t
and node degree set respectively. We devise the algorithm of
NTTUA in Algorithm 2.

Because the nodes with 0 degree are isolated, there is no
information transmitted to them. Thus, the trust threshold
of isolated node can be set as zero and remain unchanged.
The maximum time cost and space time of NTTUA are to
sort trust-value matrix. Since different sort algorithms have
different time complexity and spatial complexity, here we
use the quick sort algorithm to sort the matrix. Therefore,
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the time complexity of NTTUA is O(N 2
∗log2N ) and the

space complexity is O(N 2
∗log2N ) ∼ O(N 3)

By means of NTVUA and NTTUA, the trust-value matrix
and trust-threshold set will be updated automatically in infor-
mation diffusion. Based on trust-value matrix and trust-
threshold set, all users in network can make the judgment to
decide whether the information should be received. It is worth
noting the effect of judgment depends on the selected propor-
tion. If a larger threshold proportion is selected, the commu-
nication capacity of the network will be severely degraded.
On the contrary, a smaller threshold proportion will cause the
malicious information still existing in the network. There-
fore, to make a trade-off between information security and
information loss, we associate NTVMM with typical SIRS
information diffusionmodel and explore themost appropriate
threshold proportion. Other information diffusion model is
also feasible and the proposed method is universal.

IV. INFORMATION DIFFUSION MOEL WITH NTVMM
There are many information diffusion models proposed
by previous studies to investigate the relations between
information diffusion factor and network healthy state.
We herein choose the typical SIRS model as the basis of our
research [35]–[37].

A. THE TRADITIONAL SIRS INFORMATION DIFFUSION
MODEL
In traditional SIRS model, all nodes in complex network are
assumed to be in one of three possible states: susceptible,
infected and recovered, which can be abbreviated as S, I, R.
The number of three kinds of nodes at time t can be denoted
as S(t), I (t), R(t).
The model has the following hypotheses:
(H3) The total number of network node is N .
(H4) For a rand susceptible node in complex network,

it can be infected with probability β 〈k〉 I (t)/N , where β >
0 is individual infected probability and 〈k〉 is the average
degree of network nodes. Without ambiguity, here the
average degree 〈k〉 is abbreviated as k .
(H5) Due to the effect of treatment or immunity, every

infected node in complex network become recovered with
probability γ > 0.

(H6) Every recovered node in complex network loss
immunity with probability α > 0.
(H7) Owing to the appearance of new vaccine, every

susceptible node in complex network acquires temporary
immunity with probability ϕ > 0.

The process of information diffusion can be presented as
the diffusion diagram in Fig. 2.

The dynamical model is established as

dS(t)
dt
= αR(t)− βkS(t)I (t)

/
N − ϕS(t),

dI (t)
dt
= βkS(t)I (t)

/
N − γ I (t),

dR(t)
dt
= γ I (t)− αR(t)+ ϕS(t),

(10)

FIGURE 2. The transfer diagram of SIRS information diffusion model.

where the initial condition is (S(0), I (0),R(0)) ∈ R3
+. In gen-

eral, the total number of network node is unchanged, thus,
there is an additional condition

R(t) = N − S(t)− I (t). (11)

Substituting (11) into (10) gives
dS(t)
dt
= α(N − S(t)− I (t))− βkS(t)I (t)

/
N − ϕS(t),

dI (t)
dt
= βkS(t)I (t)

/
N − γ I (t).

(12)

B. INFORMATION RECEPTION RELATIONS BETWEEN
NODES IN SIRS MODEL
For the SIRS model mentioned above, every susceptible node
can be infected by an adjacent infected node in the network
with the average probability β. While the precondition of
infection is that the malicious information from infected
node is received by susceptible node. If the susceptible node
refuses to receive information from infected node, it can’t
be infected by infected node absolutely. Thus, information
reception relation has impact on malicious information diffu-
sion.

Generally speaking, information transmission exists any
two adjacent nodes in the network. Since our research focuses
mainly on the problem whether the information sent by
infected nodes will be received by other nodes, we just give
a sketch to understand the information reception of infected
node with the other two state nodes in Fig. 3. The information
reception relation between susceptible nodes and recovered
nodes isn’t described in the sketch.

In Fig. 3, although the infected node B has the abil-
ity to infect other node, the susceptible node A can’t be
infected because it refuses information from B (B→A is No).
Node D and node E can’t be infected as a result of autoim-
munity. Only susceptible node C is likely to be infected
because it is without autoimmunity and receives information
from B. Therefore, C can be infected with the probability β
by B.

From above research, we know NTVMM can be used to
make a trust judgment about information reception relations
between nodes. Moreover, malicious information diffusion is
related to the information reception relation. Hence, in next
subsection, we associate the NTVMM with traditional infor-
mation diffusion model to investigate the effect of NTVMM
on suppressing malicious information diffusion and select the
most appropriate threshold proportion.
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FIGURE 3. A sketch of nodes information reception in SIRS model.

FIGURE 4. The transfer diagram of SIRS information diffusion model with
trust judgment.

C. THE NOVEL SIRS INFORMATION DIFFUSION MODEL
WITH NTVMM
On the basis of traditional SIRS information diffusion model,
we introduce the trust judgment to determine whether sus-
ceptible node is deceived by infected node. For example,
if node j is infected and trij > λi, the susceptible node i
will receive j’s information and may be infected by mali-
cious information. Let Sd denote the state node deceived by
infected node. Since deceived state node set is a subset of
susceptible state node set, we use the dotted circle to represent
the deceived state in the novel model. The transfer diagram
of SIRS information diffusion with trust judgment is shown
in Fig. 4.

If the susceptible node i meets the judgment condition
trij > λi, its state will change from S to Sd. In fact, sus-
ceptible nodes in traditional SIRS model are all regarded as
deceived node. While in virtue of trust judgment mechanism,
the number of nodes that can be infected decreases compared
to that without trust judgment mechanism. Thus, malicious
information diffusion can be suppressed.

To illustrate the stability of suppressing effect, the
stability analysis of the model is essential. In previous stud-
ies [30], [31], the stability of information diffusion is inves-
tigated with probability transfer model. Thus, to study the
stability and get the equilibrium point of the trust judgment
model, an equivalent method is proposed to deal with the part
of trust judgment. Here, since the state transition process from
S to Sd is only related to trust-valuematrix and trust-threshold
set at current time, the transition probability from S to Sd can
be expressed as

ε(t) = f(T(t),λ(t)). (13)

FIGURE 5. The transfer diagram of novel SIRS information diffusion
model with NTVMM.

f (•) is a time-varying function related to trust-value matrix
and trust-threshold set. To simplify the calculation, there is an
additional hypothesis for threshold selection.

(H8) Trust-threshold selected rules of all nodes are the
same and time-invariant.

Under (H8), f (•) can be rewritten as f (•). The threshold
selected proportions of all nodes are the same. Thus, the fol-
lowing formulas can be obtained,{

spi(t) = sp, i = 1, 2, . . .N ,
ε(t) = ε = 1− sp.

(14)

On the basis of above discussion, the trust judgment
in Fig. 4 can be replaced by transition probability ε and the
diagram of novel SIRS information diffusion with NTVMM
can be shown as Fig. 5.

The dynamical model of the proposed model is established
as 

dS(t)
dt
= αR(t)− εS(t)− ϕS(t)

dSd(t)
dt
= εS(t)− βkSd(t)I (t)

/
N − ϕSd(t)

dI (t)
dt
= βkSd(t)I (t)

/
N − γ I (t)

dR(t)
dt = γ I (t)+ ϕS(t)+ ϕSd(t)− αR(t),

(15)

where the initial condition of the proposed model (15) is
(S(0), Sd(0), I (0),R(0)) ∈ R4

+. Similarly, the number of
recovered nodes can be represented as R(t) = N − S(t) −
Sd(t)− I (t), then (15) can be rewritten as

dS(t)
dt
= α(N − S(t)− Sd(t)− I (t))− εS(t)− ϕS(t),

dSd(t)
dt
= εS(t)− βkSd(t)I (t)

/
N − ϕSd(t),

dI (t)
dt
= βkSd(t)I (t)

/
N − γ I (t).

(16)

V. THE MOST APPROPRIATE TRUST THRESHOLD AND
THE NETWORK PROFIT FUNCTION
For model (12) and model (15), there is no additional exter-
nal nodes and removal of internal nodes. In other words,
the range of the number of state nodes is [0, N ]. There-
fore, the local stability of two models is equivalent to global
stability. In this section, we analyze the local stabilities of
model (12) and model (15) to obtain their equilibrium points
and basic reproductive number, respectively. On this basis,
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the relationship between the most appropriate threshold and
infected probability is revealed. Besides, the network profit
function is designed to calculate the network profits brought
by NTVMM and other defensive methods.

A. STABILITY ANALYSIS OF TRADITIONAL SIRS
INFORMATION DIFFUSION MODEL
In model (12), let dS(t)

dt = 0 and dI (t)
dt = 0. And we can

get two equilibrium points. One is virus-free equilibrium
point P0(S0, I0,R0) =

(
αN
α+ϕ

, 0, ϕN
α+ϕ

)
, and the other is virus

equilibrium point

P1(S1, I1,R1)

=

(
γ

βk
N ,
αβk − (α + ϕ)γ
βk(α + γ )

N ,
γ (βk + ϕ − γ )
βk(α + γ )

N
)
. (17)

Let R0 denote basic reproductive number of model (12),
which indicates the number of susceptible nodes infected by
an infected node during the average infected period [38], [39].
Generally speaking, R0 can be used as a threshold of informa-
tion diffusion to determine whether the virus disappears when
the transition of network node state is stable. According to
virus equilibrium point P1, R0 can be represented by

R0 =
αβk

(α + ϕ)γ
(18)

Equations (17) and (18) illustrate that if R0 ≤ 1, then
I1 ≤ 0. Because the number of infected nodes is not negative,
in this case we regard there is no infected node in network
when R0 ≤ 1. Otherwise, infected nodes will persist in the
network.

From Ref. [40] and [41], the local stability of differential
equation can be proved by its Jacobian matrix. Thus, we get
the follow theorems of model (12).
Theorem 1: When R0 ≤ 1, traditional SIRS information

diffusion model in (12) is locally asymptotically stable at the
equilibrium point P0.

Proof: The Jacobian matrix of (12) can be got as follow

J1(P∗) =


−α − ϕ − βkI∗

N
−α − βkS∗

N
βkI∗

N
βkS∗

N
− γ

 . (19)

Using the equilibrium point P0 in (19) gives

J1(P0) =

−α − ϕ −α −
αβk
α + ϕ

0
αβk
α + ϕ

− γ

 . (20)

The corresponding eigenvalue polynomial of J1(P0) is

(λ+ α + ϕ)(λ+ γ −
αβk
α + ϕ

) = 0. (21)

One eigenvalue of (21) is λ1 = −(α + ϕ), and the other is
λ2 = αβk

/
(α + ϕ)− γ . If R0 ≤ 1, then λ1, λ2 < 0. Accord-

ing to the Routh–Hurwitz stability criterion in Ref. [28]
and [29], the Theorem 1 is verified.

Theorem 2: When R0 > 1, traditional SIRS information
diffusion model in (12) is locally asymptotically stable at the
equilibrium point P1.

Proof: Using the equilibrium point P1 in (19) gives

J1(P1) =

 −α − ϕ − βkI
1

N
−α −

βkS1

N
βkI1

N
−γ +

βkS1

N

. (22)

The corresponding eigenvalue polynomial of J1(P1) is

λ2 +
αβk + α(α + ϕ)

α + γ
λ+ [αβk − (α + ϕ)γ ] = 0. (23)

In accordance with Vieta theorem, the two eigenvalues
of (23) have the following relationship λ1 + λ2 = −

αβk + α(α + ϕ)
α + γ

,

λ1 • λ2 = αβk − (α + ϕ)γ.
(24)

If basic reproductive number R0 > 1, then λ1 < 0 and
λ2 < 0. According to the Routh–Hurwitz stability criterion,
the Theorem 2 is verified.

B. STABILITY ANALYSIS OF NOVEL SIRS MODEL WITH
NTVMM
Let dS(t)

dt = 0, dSd(t)
dt = 0, dI (t)

dt = 0 in (16), and the two
equilibrium points are obtained as follows

P2(S2, S2d , I
2)

=

(
αϕ

(α + ϕ)(ϕ + ε)
N ,

αε

(α + ϕ)(ϕ + ε)
N , 0

)
,

P3(S3, S3d , I
3)

=


αγ (βk + ϕ − γ )

βk(αγ + αε + ϕγ + γ ε)
N ,

γ

βk
N ,

αβkε − γ (α + ϕ)(ε + ϕ)
βk(αγ + αε + ϕγ + γ ε)

N

 . (25)

Let R1 denote basic reproductive number of model (16).
According to virus equilibrium point P3 in (25), R1 can be
represented by

R1 =
αβεk

γ (α + ϕ)(ε + ϕ)
=

αβk
γ (α + ϕ)

(
1−

ϕ

ε + ϕ

)
. (26)

Theorem 3: When R1 ≤ 1, SIRS information diffusion
model with NTVMM in (16) is locally asymptotically stable
at the equilibrium point P2.

Proof: The Jacobian matrix of (16) can be got as follow

J2(P∗) =


−α − ε − ϕ −α −α

ε −
βkI∗

N
− ϕ −

βkS∗d
N

0
βkI∗

N

βkS∗d
N
− γ

.
(27)
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Using the equilibrium point P2 in (27) gives

J2(P2) =


−α − ε − ϕ −α −α

ε −ϕ −
αβεk

(α + ϕ)(ε + ϕ)

0 0 −
αβεk

(α + ϕ)(ε + ϕ)
− γ

.
(28)

The corresponding eigenvalue polynomial of J2(P2) is

(λ+α+ϕ)(λ+ε + ϕ) [λ+ γ (α + ϕ)(ε + ϕ)− αβεk] = 0.

(29)

If basic reproductive number R1 ≤ 1, then λ1 < 0,
λ2 < 0 and λ3 < 0. According to the Routh–Hurwitz stability
criterion, Theorem 3 is verified.
Theorem 4: When R1 > 1, SIRS information diffusion

model with NVTMM in (15) is locally asymptotically stable
at the equilibrium point P3.

Proof: Using the equilibrium point P3 in (27) gives

J2(P3) =


−α − ε − ϕ −α −α

ε −
βkI3

N
− ϕ −

βkS3d
N

0
βkI3

N

βkS3d
N
− γ

.
(30)

The corresponding eigenvalue polynomial of J2(P3) is

λ3 + µ1λ
2
+ µ2λ+ µ3 = 0, (31)

where the parameters are as follows
µ1 =

βkI3

N
+ α + ε + 2ϕ,

µ2 = (
βkI3

N
+ ϕ)(α + ε + ϕ)+

βγ kI3

N
+ αε,

µ3 =
αβεkI3

N
+ (α + ε + ϕ)

βγ kI3

N
.

(32)

When R1 > 1, µ1, µ2 > 0 and µ1µ2 − µ2 > 0.
Hence, the eigenvalues λ1, λ2, λ3 < 0. According to the
Routh–Hurwitz stability criteria, Theorem 4 is verified.

By comparing basic reproductive number R0 with R1,
we can get R1 ≤ R0 when the same parameter set (except ε) is
taken. It proves that when the network suffers external attack,
the network with NTVMMhas better ability to suppress virus
diffusion than that without NTVMM.

From Theorem 3 and Theorem 4, we can conclude 1 is a
critical value of basic reproductive number R1. When R1 > 1,
the network will be in an unhealthy state. As is shown in
(26), we can reduce the transition probability ε to make R1
decreased. However, reducing ε will increase the threshold
selected proportion sp and result in more information loss.
Therefore, the most appropriate transition probability εapp
should be selected as follow

εapp =
ϕγ (α + ϕ)

αβk − γ (α + ϕ)
. (33)

Substituting (33) to (26), we can getR1 = 1. Thus, themost
appropriate threshold proportion spapp can be represented by

spapp = 1− εapp = 1−
ϕγ (α + ϕ)

αβk − γ (α + ϕ)
, (34)

Equation (34) is the paradigm of the most appropriate
threshold of NTVMM. As long as the defense software
starts the NTVMM module, spapp can be calculated imme-
diately according to the transition parameters and network
average degree. Certainly, the transition probabilities should
be assigned according to the actual situation. At the most
appropriate threshold spapp, NTVMM can thoroughly sup-
press malicious information diffusion in the network and
minimizing network loss.

C. NETWORK PROFIT FUNCTION
To quantitatively compare the impact of different methods
on network security and network communication, the net-
work profit function is constructed to measure the bene-
fits of the method. Suppose network profit is NP, network
security index is NSI ∈ [0, 1], and network information
loss proportion is NSIP ∈ [0, 1]. Although the all of three
methods, node quarantine, edge blockage and NTVMM, can
enhance the security of information diffusion, they will lead
to the network information loss. Therefore, we construct the
network profit function as follows:

NP = µ1 • NSI − µ2 • NILP, (35)

where µ1 and µ2 are the weights of network security and
network communication in the given network, respectively
and meet the condition µ1 + µ2 = 1. If the network focus
on security performance, such as banking sector network, µ1
is bigger than µ2. Otherwise, µ1 is relatively smaller. The
value of NSI depends on the number of infected nodes when
the network evolution is stable. Suppose ts represents the
time when the network evolution is stable, then NSI can be
computed by

NSI = 1−
I (ts)
N
. (36)

If there is no infected node in the network, the network
is secure and NSI = 1. Otherwise, the network is insecure
and NSI < 1. NSIP is related to the amount of information
lost and total information number. Suppose the number of
lost information and total information at time t are NLI (t)
andNTI (t) respectively. Network information loss proportion
NSIP be computed by

NSIP =

ts∑
t=0

NLI (t)

ts∑
t=0

NTI (t)
. (37)

In the real network environment, we can design a process-
ing center to store lost information and recordNLI . Certainly,
after the stored information is checked or recovered, it can
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be sent to the recipient again. NTI needs to record the net-
work information flows. We will investigate focus on these
technologies in our next research. Here, NSIP is calculated
according to (H1). Suppose the total number of network edge
is NE . Since only two messages are transmitted on each edge
of the network per unit time, we can represent (37) as

NSIP =

ts∑
t=0

NLI (t)

2NE • ts
=

____
NLI
2NE

. (38)

____
NLI is the average number of lost information in the time

ts. Substituting (36) and (38) to (35), network profit NP can
be obtained by

NP = µ1 •

(
1−

I (ts)
N

)
− µ2 •

____
NLI
2NE

, (39)

From (39), if the defense method can reduce the proportion
of infected nodes in the final network, the network security
index can be improved. Besides, the smaller the average
amount of information loss, the higher the network profit.

VI. SIMULATION
In the following subsections, the validity of SIRS model with
NTVMM is verified first. In addition, the simulation demon-
strates the validity of NTVMM in suppressing malicious
information diffusion. Afterwards, the influence of infected
probability and threshold selected proportion on basic repro-
ductive number is illustrated and the most appropriate thresh-
old is given to make a trade-off between information security
and information loss. Finally, the network profits of different
methods are given out according to network profit function.

A. THE VALIDITY OF SIRS MODEL WITH NTVMM
Information diffusion model can rapidly predict the scale of
malicious information diffusion when the network is stable.
However, because some practical situations are simplified
or equivalent in modeling, the validity of model (12) and
model (15) need to be verified. The validity of information
diffusion model in (12) was already verified in [36], [37].
Here we only need to validate the validity of novel SIRS
information diffusion model with NTVMM. The simulations
of verification are divided into two parts. One is to simulate
the process of actual node evolution in complex networks.
The other is to simulate model (15) and get the evolution
results of model.

In case of SIRS paradigm, there are three types of nodes in
the network—susceptible node, infected node and recovered
node. The premise of the research is that there are some
infected nodes in the network, and then we discuss how to
reduce the number of infected nodes in the final network.
At the beginning of malicious information diffusion, these
existing infected nodes will infect the susceptible nodes with
infected rate β. In actual network evolution, we suppose that
every two nodes in the network send information to each other
once per unit time. If the information is sent by the infected

node, it may contain malicious information. As long as infor-
mation is sent from infected node and received by the adjacent
susceptible node, the susceptible node may be infected with
a probability β. Because of autoimmunity or vaccination,
susceptible and infected nodes will respectively evolve into
recovered nodes with probabilities ϕ and γ in each unit time.
However, since immunization may be temporary, immune
nodes will degenerate into susceptible nodes with probability
α in unit time. In simulations, we generate random numbers
per unit time to compare with theoretical probabilities and
determine the state changes of network nodes per unit time.
According to the method of control variables, we assume
that in different networks, only the number of initial state
nodes and the network topology are different, and the other
evolution parameters are the same. The relevant network data
sets and parameter settings are described as follows.

1) DATASET
Due to the huge cost of complex network construction,
the data sets of complex networks are collected and employed
to simulate and verify the theory based on complex net-
works. Our simulations are carried out with synthetic data
and real-world data. The obtained data sets of two syn-
thetic networks and a real-world network are all accurate
and authentic. According to the generating rule of scale-
free network proposed by Barabási and Albert (BA) and
small-world network proposed by Watts and Strogtz (WS),
the adjacency matrices of two synthetic networks are gener-
ated by ourMATLABprocedures. The BA scale-free network
contains 1000 nodes, 7936 undirected edges and the average
degree is approximate to 8. The WS small-world network
contains 1000 nodes, 4000 undirected edges, and the aver-
age degree is approximate to 4. In addition, the adjacency
matrix of Gnutella peer-to-peer(P2P) network is collected
from Stanford larger network dataset collection [44]. The
P2P network contains 8846 nodes, 31839 undirected edges
and the average degree is approximate to 3.6. After obtaining
the adjacency matrices of three networks, we transform them
into the CVS file that can be read by Gephi. The diagrams
of BA scale-free network, WS small-world network and
Gnutella P2P network are respectively shown in Fig. 6(a)-(c).
In the diagrams, the bigger node represents the node with a
larger degree. To observe the network structure more clearly,
the Fruchterman-Reingold (FR) algorithm is used to optimize
network layout in Gephi.

Three networks have different distributions of node
degrees and different topology structures. To illustrate the
applicability of NVTMM for complex networks, the simu-
lations are conducted in the three networks.

2) PARAMETER SETTING
The total number of nodes N in the model depends on the
specific network used for simulation. For individuals or small
groups, it is not easy to make new malicious information
(such as virus or rumor). Therefore, in simulation, we assume
some nodes in the network have been infected, and then the
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FIGURE 6. The diagrams of three complex networks. (a) BA scale-free network. (b) WS small-world network. (c) Gnutella P2P network.

malicious information propagation processes are simulated.
Suppose initial number sets of state node are both set to
(S(0), Sd(0), I (0),R(0)) = (750, 0, 200, 50) in BA scale-free
network and WS small-world network. As a result of the dif-
ferent node number of the P2P network, initial number set of
state node in P2P network is set as (S(0), Sd(0), I (0),R(0)) =
(8346, 0, 400, 100). At the beginning of actual evolution,
infected nodes and recovered nodes are randomly distributed
in the network. Because the threshold selected proportion sp
has no effect on model validity, here we set sp = 0.1 (i.e.
ε = 0.9) for further simulations. In the process of actual
evolution, 10% of nodes are rejected because of their low
trust value. Considering that a low infected rate β results in
basic reproductive numberR1 ≤ 1 and the number of infected
nodes tends to zero. In this case, the number of susceptible
nodes and recovered nodes in different networks doesn’t
differ much. Thus, we choose a high infected probability
β = 0.5 for simulations. That is to say in actual evolution,
if the malicious information sent by the infected node is
received by the susceptible node, it will infect the susceptible
node with probability 0.5. The other transition probabilities
are set as γ = 0.2, α = 0.3, ϕ = 0.15 (ensure R1 > 1). The
specific meanings of three transition probabilities in actual
evolution are the same with (H5), (H6) and (H7). In the
following simulation, without special illustration, the transfer
probabilities do not change.

3) NODE STATE EVOLUTIO
The actual evolution and model evolution are implemented
in the three complex networks mentioned above. After the
code of actual evolution is executed, the state diagram of the
network node per unit time will be given, and the different
state nodes are distinguished by different colors. However,
to display the number of each state conveniently and get
corresponding conclusions, we count the number of state
node per unit time. The specific operation of actual evolution
can review the script in the code. The actual evolution curve
of the state node number in BA scale-free network is shown
in Fig. 7(a). It should be noted that Sd is the equivalent state
of S. Hence, we add the number of deceived nodes to the

number of susceptible nodes and depict the curve of their
sum. Fig. 7(b) gives the proportion of information loss at
each time (compared with the total amount of information)
caused by NTVMM. In the same transition probabilities and
initial state node set, Fig. 7(c) shows the theoretical evolution
curve of state node number in model (16). Fig. 8(a)-(c) and
Fig. 9(a)-(c) are similar to the simulations in Fig. 7(a)-(c),
but the networks used for simulation are WS small-world
network and Gnutella P2P network respectively.

Comparing the evolution curves of state node number in
scale-free network, WS small-world network, and Gnutella
P2P network with those in model (16), we can conclude
the number of state nodes and the final equilibrium points
in three networks are consistent with those in model (15).
In other words, the SIRS model with NTVMM can effec-
tively describe the evolutionary process of information dif-
fusion with NTVMM in complex networks as long as the
above parameters are known. In addition, by observing
Fig. 7∼9(b), 10% information in the network are practi-
cally blocked and lost as a result of NTVMM, which is
consistent with the threshold selected proportion sp. Since
we equate the trust judgment with the transition of node
state in the model, there is a difference of node number
between model (16) and actual network. But the difference
doesn’t exceed 5%. Thus, here we regard the equivalence is
reasonable.

The validity of traditional SIRS information diffusion
model (12) was verified in previous references [35]–[37].
In this subsection, model (15) is also validated to effectively
describe the process of information diffusion in complex
networks with NTVMM. Since in the following subsections,
we only focus on the number of state nodes in the network.
Therefore, in following simulations, the process of informa-
tion diffusion can be simulated by the corresponding infor-
mation diffusion model.

B. THE VALIDITY OF NTVMM IN INFORMATION
DIFFUSION
To discover the validity of NVTMM in suppressing malicious
information diffusion, the traditional SIRS model without
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FIGURE 7. Simulation results of information diffusion with NTVMM in BA scale-free network. (a) The actual evolution curve of state node number. (b) The
proportion of information loss. (c) The theoretical evolution curve of state node number in model (16).

FIGURE 8. Simulation results of information diffusion with NTVMM in WS small-world network. (a) The actual evolution curve of state node number.
(b) The proportion of information loss. (c) The theoretical evolution curve of state node number in model (16).

FIGURE 9. Simulation results of information diffusion with NTVMM in Gnutella P2P network. (a) The actual evolution curve of state node number.
(b) The proportion of information loss. (c) The theoretical evolution curve of state node number in model (16).

NTVMM in (12) and SIRS model with NTVMM in (15) are
compared. Except infected probability β, other parameters
and initial node number are the same with those in Gnutella
P2P network. When malicious information has a high infec-
tion probability, β is set as 0.5 to ensure the basic reproductive
numbers R0 > 1 and R1 > 1. Otherwise, β is set as 0.05 to
makeR0 < 1 andR1 < 1. The evolution curves of the number
of state nodes with high infection rate and low infection rate
are given in Fig. 10(a) and Fig. 10(b) respectively. Both of the
two figures compare the evolution process with NTVMM or
without NTVMM.

In Fig. 10(a), we can observe that in a high infected
probability, the number of infected nodes can be reduced
by almost 20% after introducing NTVMM to the network.
Thus, NTVMM has obvious effect on suppress the scale of
malicious information diffusion in the network. In addition,
suppose that there is no infected node in the network when the
number of infected nodes is less than 1. In Fig. 10(b), whether
there is NTVMM or not, the number of infected nodes
approaches zero. However, without NTVMM, the infected
node vanishes at 76(s); with NTVMM, the infected node
vanishes at 60(s). Therefore, NTVMM can help the network
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FIGURE 10. The evolution curves of the number of state nodes. (a) High infected probability β = 0.5. (b) Low infected probability β = 0.05.

recover to healthy state faster. To summarize, NTVMM is
effective in suppressing malicious information diffusion.

C. THE VALIDITY OF THRESHOLD SELECTED METHOD
Equation (34) illustrates the selected method of the most
appropriate trust threshold. If other transfer probabilities
remain unchanged (except infected probability), spapp is only
related to the infected probability of malicious information.
To verify the validity of threshold selected method under
different infected probability, we adjustβ and sp dynamically,
and give the mesh grids of basic reproductive number and
infected node number with these two parameters. Except β
and sp, other parameters and initial node number are the
same with those in WS small-world network. The results
of multiple simulations, finished with same procedure in
the previous section, show the stable time of model (16)
is always less than 100(s). Thus, we choose the number of
infected nodes at 100(s) to represents finial infected node
number in the network. Fig. 11 gives the relationship of
basic reproductive number R1 with infected probability β
and transition probability sp. Fig. 12 gives the relationship
of infected nodes number with β and sp when the network is
stable.

As is shown in Fig. 11 and Fig. 12, when R1 > 1, with the
decrease of infected probability β and the increase of thresh-
old selected proportion sp, the basic reproductive number R1
becomes smaller. Correspondingly, the number of infected
nodes is reduced when the network is stable. It is consistent
with actual situation.When the infected intensity ofmalicious
information is low, the degree of network infection is low
as well; when the number of rejected information is large,
the spread ofmalicious informationwill be suppressed.While
R1 ≤ 1, the number of infected nodes remains unchanged
with the change of β and sp.
The simulation results are consistent with those mentioned

in Theorem 3 and Theorem 4. In a certain infected probability,
when R1 > 1, the network security is enhanced by increasing
the threshold to refuse to receive more information. It is not
recommended to adopt the same operation measure when

FIGURE 11. The influence of infected probability β and threshold selected
proportion sp on basic reproductive number R1.

FIGURE 12. The influence of infected probability β and threshold selected
proportion sp on the number of infected nodes.

R1 ≤ 1, because it can’t continue to improve network
security, but will cause the loss of network information.
In other words, it is most worthwhile to select a threshold to
ensure R1 = 1. Therefore, the proposed threshold selected
method is effective.
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FIGURE 13. The network profits of different defensive methods in different types of networks. (a) Communication-oriented network.
(b) Security-oriented network. (c) Balanced network.

D. COMPARISON OF DIFFERENT DEFENSIVE METHODS
There are three defensive methods to suppress malicious
information diffusion: node quarantine, edge blockage,
NTVMM. To obtain the profits of three methods in network
security and communication, we calculate the network profit
according to (39).

Since NTVMM is simulated without knowing the global
infection of the network, the other two methods should also
be simulated in this premise. Thus, the two most common
network isolation methods, random node quarantine (RNQ)
and random edge blockage (REB), are employed for com-
parison. Since the network is infected by new malicious
information, it is usually difficult for network managers to
grasp the direction or purpose of virus spread. In order to pre-
vent malicious information from causing greater harm to
the network, network managers will choose to temporarily
stop communication between some or all nodes. However,
because the termination of all communicationwill cause great
communication loss to the network, managers usually choose
a part of the nodes to isolate. Thus, managers often select
random node quarantine or random edge blockage to prevent
malicious information diffusion. Certainly, if the manager
knows the global network information, some other targeted
isolation methods can be used to suppress the spread of mali-
cious information effectively. Here random node quarantine
will select a certain number of network nodes and make them
quarantine with other nodes. Random edge blockage will
choose a certain number of network edge and prohibit the
transmission of information in it. Because we selected several
values of infected probability β for simulation, the number
of isolated nodes and blocked edges remained unchanged,
which is equivalent to selecting different number of quar-
antine nodes and blocking edges at the same infection
rate.

The simulation is conducted in the three networks men-
tioned above. Three networks represent three different types
of networks: security-oriented, communication-oriented and
balanced. The parameters of network profit function are set
in Table I.

Five infected probabilities, from low to high, are selected
for simulation on each network. The network profits of dif-
ferent defensive methods are shown in Fig. 13.

TABLE 1. The parameters of network profit function.

As is shown in Fig. 13, compared with the other two
methods, NTVMM obtains maximum network profits under
different infected probability in different networks. Thus,
NTVMM can guarantee network security with minimum
information loss cost. In other words, NTVMM can make a
trade-off between information security and information loss.

VII. CONCLUSION
In this paper, a node trust-value management mechanism,
called NTVMM, is proposed to reduce the network losses
caused by new malicious information. Under the assumption
that malicious information already exists in the network,
NTVMM can suppress and eliminate malicious informa-
tion diffusion in the network with less communication loss.
According to the gains and losses of nodes after receiv-
ing information, two algorithms in NTVMM, NTVUA and
NTTUA, can automatically update the trust relationship
between nodes to determine the followed information receiv-
ing relationship between network communication nodes.
Besides, by associating NTVMM with SIRS information
diffusion model, we propose a new trust threshold selected
method to find the most appropriate threshold that can restore
the network to health with minimum communication loss.
Additionally, the network profit function is devised to eval-
uate the network profit brought by the method of NTVMM,
node quarantine and edge blockage. Finally, four simulations
are designed to demonstrate the validity and performance
of NVTMM and the threshold selected method. The results
of simulation show that NTVMM can suppress malicious
information diffusion in the network and the threshold
selected method is able to find the most appropriate threshold
to make the network restore to health with minimum cost.
Compare with node quarantine and edge blockage, NTVMM
obtains the highest network profit and make a trade-off
between network communication and network security.
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