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ABSTRACT The overhead contact system (OCS) is an indispensable part of high-speed railway power
supply system. The stable operation of the OCS depends on the stability of the contact between the
pantograph and catenary. The dropper is an important guarantee for the stable contact. The three faults
of the dropper, such as slack, breakage and disappearance can damage the quality of traction power supply
and reduce the safety of the railway operation. Therefore, it is necessary to efficiently detect the dropper
fault and guide the maintenance in time. Recently, automatic dropper fault detection methods based on
monitor-video have been introduced to improve railway operation safety. However, the existing methods
were still not stable enough in complex backgrounds. To improve the accuracy and real-time performance
of the dropper fault detection, this paper proposed a method combining depthwise separable convolution
with object detection network to detect the dropper fault. The proposed method consists of two stages. First,
a dropper progressive location network (DPLN) was adopted to obtain the dropper. The DPLN was mainly
composed of a pantograph location network (PLN) and a dropper location network (DLN). Then, the dropper
fault recognition network (DFRN) was used to recognize the type of dropper fault. The experimental results

demonstrated the accuracy and real-time performance of the proposed method.

INDEX TERMS OCS, dropper location, fault recognition, depthwise separable convolution.

I. INTRODUCTION
The overhead contact system (OCS) is a key part of the high-

speed railway traction power supply system, and it undertakes
the task of supplying electrical energy to the locomotives.
Generally, the normal operation of the OCS depends on the
good sliding contact between the catenary and the panto-
graph, and the dropper is an important guarantee for good
sliding contact. The slack, breakage and disappearance of
dropper will damage the quality of traction power supply
and reduce the safety of the railway operation. Therefore,
the status of the dropper is one of the greatest concerned
issues of railway companies. It is necessary to efficiently
detect the dropper fault and guide the maintenance in time.
In the OCS, the number of dropper is very large. Due
to the exposure to the natural environment all year round,
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the dropper is not only fragile but also difficult to maintain.
Railway workers have been required to periodically patrol
railway lines for the detection of dropper faults. However,
this method is inefficient and difficult to meet the large-scale
maintenance requirements of high-speed railway. Therefore,
the research on the intelligent detection of the OCS has
made great progress. Many scholars have proposed automatic
detection equipment and intelligent detection methods for the
OCS. These methods are mainly divided into visual detection
based on traditional image processing and visual detection
based on deep learning.

The representative method of visual detection based on
traditional image processing is as follows. The authors in [1]
used feature-based image matching techniques to measure
contact network dynamic interlacing. The Maximum Stable
Extremity Area technique [2] was used to recognize and
visualize the geometric features of the surface defect area
of the rail head in the orbital image. Some scholars had
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used structured light technology [3], [4] to detect geometric
parameters of OCS. Reference [5] used mean shift tracking
and GMM technology to perform robust state monitoring of
the pantograph-contact system, which can effectively detect
the outbreak of the arc and the irregular location of the contact
line. An edge detection method was proposed to obtain the
edge of the pantograph, which had achieved good results in a
simple environment [6].

The representative method of visual inspection based on
deep learning is as follows. Reference [7] used R-CNN
to obtain the image area of the isoelectric line, and then
segmented the image based on the MRF model to realize
the diagnosis of the loose wire of high-speed railway. The
deep convolutional neural network was used to automatically
detect fastener defects in the OCS support device [8]. Schol-
ars used Faster R-CNN for new insulator location and surface
defect recognition through multi-task neural network, which
achieved good results [9].

Over the last few years, the dropper fault detection has been
performed primarily by manual methods, and some scholars
have also adopted visual inspection methods. Reference [10]
obtained the location of the dropper by installing the prior
knowledge of the dropper, and used MLP to classify dropper
faults. Some researchers [11], [12] proposed ridge filter based
on Hessian matrix for edge detection, then expanded corro-
sion treatment, and finally used Hough Transform for dropper
fracture detection. The author in [13] used a faster R-CNN to
locate the dropper image and then used the Hough Transform
to recognize the dropper fault. However, the above studies are
applied to the ideal scene or experimental environment, and
cannot cope well with the dropper fault detection task in the
actual situation, and cannot effectively carry out the dropper
location and recognition.

In recent years, due to the excellent performance of deep
learning, it has been widely used in computer vision. The
researchers proposed a R-CNN object detection method
based on Region Proposal, and improved on this basis, and
then proposed a better Faster R-CNN network [14]-[16],
but the network runs at a slower speed. For this reason,
researchers proposed an end-to-end object detection net-
work YOLO, combined with the FPN [17] multi-scale pre-
dictions, and then proposed the excellent performance of
YOLOV3 [18], [19]. The above method can better accom-
plish the object detection task in complex scenes. However,
the dropper is very small in the image, and it is still difficult
to detect the dropper directly in the entire image.

This paper proposed an efficient method for the dropper
fault detection. The first contribution is that a dropper pro-
gressive location network (DPLN) was proposed to obtain an
accurate and real-time dropper location. The second contri-
bution is that a dropper fault recognition network (DFRN)
was proposed to recognize the type of dropper fault. The third
contribution is that this paper used data enhancement, deep
convolution generative adversarial networks and Focal loss to
solve the problem of scarcity of dropper faulty images, which
improved DFRN performance.
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This paper was organized as follows. Section II analyzed
the OCS and gave an OCS online monitor device. The method
of the dropper fault detection was described in Section III.
Section IV presented the experimental results and conclu-
sions were given in Section V.

Il. THE OCS ANALYSIS AND OOM DEVICE

The OCS is the only way for high-speed train to obtain stable
power. Therefore, the reliability of the OCS is very important
to ensure the long-term stable operation of the electrified
railways. The OCS is composed of contact line, messenger
and dropper. The OCS is shown in Fig.1. The messenger and
the dropper are used to fix the contact line. In each span,
the dropper increases the suspension point to the contact line
without increasing the pillar, so that the sag and elasticity of
the contact line are improved, and the working quality of the
contact line is improved. In addition, by adjusting the length
of dropper, the height of the contact line to the rail surface is
ensured to meet the technical requirements. Therefore, it is
necessary to detect the dropper fault.
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FIGURE 1. The overhead-contact system.

Due to the importance of the OCS, it is necessary to carry
out scientifically monitoring and detection of its operating
state. The automatic detection and online monitoring of the
OCS operating state are realized by the OCS online monitor
device, also known as OOM device. The OOM device can
detect the state of the dropper through a set of global shutter
cameras installed on the roof of the train, as shown in Fig.2.

=

FIGURE 2. The OCS online monitor device.

The OOM device will capture the OCS images and the
auxiliary information including mileage, station, etc. will also
be stored in the index table of the corresponding OCS images.
Due to the all-weather operation of the train, the back-
ground of the OCS image will dynamically change, such as
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FIGURE 3. Typical images of OCS.

the tunnel environment, bridge background, building back-
ground, cloudy background, glare background and multiple
complex backgrounds. The complex and variable background
of OCS can reduce the accuracy of dropper fault detection.
The typical images are shown in Fig.3.

Ill. THE DROPPER FAULT DETECTION METHOD
In order to improve the accuracy and real-time performance
of the dropper fault detection in complex and variable back-
ground, this paper proposed an efficient dropper fault detec-
tion method based on depthwise separable convolution. The
method is shown in Fig.4. The method consists of three
stages: the pantograph location network (PLN), the dropper
location network (DLN) and the dropper fault recognition
network (DFRN). DPLN consists of PLN and DLN.

DPLN: Firstly, this paper used bilinear interpolation to
modify the OCS image size to 320 x 320, and then the mean

o
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FIGURE 4. The flowchart of the dropper fault detection method.
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Stage 3: DFRN

normalization process was performed. The image was input
to the PLN to obtain the location of the pantograph, and
the candidate location of the dropper was determined. This
method input the candidate area image to DLN, and finally
output the dropper image.

DFRN: This paper used a depthwise separable convolution
module to construct a network to extract the characteristics
of the dropper image, and then predicted the type of dropper
fault through the fully connected layer and the Softmax layer,
and finally obtained the result of the dropper fault detection.
This paper used the deep convolution generative adversar-
ial networks (DCGAN) and data enhancement to solve the
problem of network over-fitting and low generalization per-
formance caused by scarcity of dropper fault samples during
network training.

A. DROPPER PROGRESSIVE LOCATION NETWORK

By analyzing the OCS image, it can be known that: First,
the size of the OCS image captured by the camera was 1536 x
2048. The pixel area ratio of the dropper image was extremely
small in the whole image, and the number of horizontal pixels
was very small. Therefore, it was very difficult to extract the
dropper image directly from the OCS image, and the process-
ing speed will be low. Second, the installation rules of the
OCS and the pantograph determined that the dropper image
will appear in the rectangular area containing the image of the
pantograph.

Object location based on deep learning is mainly divided
into region proposal and end-to-end methods. For example,
Faster R-CNN and YOLO, there is also a traditional object
location method HOG. For the dropper location task, it is
very difficult to extract the dropper directly from the whole
image by using the above method. Therefore, based on the
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FIGURE 6. The OCS image feature extraction module (bneck block).

depthwise separable convolution [20] and the end-to-end
object location structure, this paper proposed a dropper pro-
gressive location network (DPLN), which mainly included
the pantograph location network (PLN) and the dropper loca-
tion network (DLN). As shown in Fig.4.

Depthwise separable convolution (DWC) is made up of
two parts: depthwise convolutions layer (DW) and point-
wise convolutions layer (PW). As shown in Fig.5. The DW
convolutes the input feature maps by channel-wise fashion
and the PW convolution convolutes the feature maps of all
channels with a 1 x 1 convolution kernel. Reference [21]
verified the computational advantage of DWC by comparing
the theoretical computation between traditional convolution
and DWC.

The DPLN used MobileNet’s excellent practice [22] to
construct an OCS image feature extraction module (bneck
block), as shown in the Fig.6.

The linear rectification function Relu6 (RE) or HS was
used as the activation function of the network. The RE and
HS function expressions are as follows.

RE = min (max (0, x) , 6) €))
HS — xRelu6 éx + 3) @

The residual connection was used to solve the problem
of gradient dissipation and explosion of deep neural net-
works [23] and added a squeeze excitation module [24].
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B. PANTOGRAPH LOCATION NETWORK

This paper used the PLN to locate the pantograph location.
The network structure is shown in the Fig.7. The backbone
network of the PLN was a pantograph image feature extrac-
tion network (PFEN). After inputting an image to PFEN,
a matrix block with a length of 10, a width of 10, and a depth
of 15 was obtained. In this paper, the end-to-end object loca-
tion structure was used to map the 10 x 10 grid into the input
image, and the image was divided into 10 x 10 grids. Each
grid was responsible for predicting the pantograph center
point to fall into the pantograph location within the grid. The
pantograph location contained the center of the pantograph
and the width and height of the pantograph image.
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FIGURE 7. The pantograph location network (PLN).

For the three main forms of pantograph in the image
sample, each grid was pre-set with three anchors: anchorl,
anchor2, and anchor3, SxS represents the number of grids,
B represents the number of anchors. Each anchor needs to
return to the pantograph center point coordinates (X, y), width
and height (w, h), confidence (C). Each anchor is responsible
for locating objects with IOU greater than the threshold. C is
equal to the probability (P) of the object contained in the
anchor box multiplied by the IOU of the anchor box.

The FPEN was mainly composed of bneck block, and the
detailed PFEN parameters are shown in the Table 1. Input
represents the input of the upper layer, Operator represents the
arithmetic module in the middle of the layer, Out represents
the number of output channels, SE indicates whether the
Squeeze Excitation module is used, NL indicates different
activation modes, and S indicates the network step size.

After obtaining the confidence of each anchor, the thresh-
old was set to filter out the anchor with low confidence,
and the remaining anchor was subjected to non-maximum
suppression processing to obtain the final locating result.

The PLN network loss function (L) mainly includes two
parts. L1 is the location loss of the anchor, including the
coordinate loss of the object center point and the loss of the
object height and width; L2 is the loss of the confidence (C),
including the presence or absence of the object in the grid.
In order to make the model more stable, this paper added a
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TABLE 1. Pantograph image feature extraction network (PFEN).

Input Operator Out SE NL S
320° X1 conv2d 3x3 16 0 HS 2
160° X 16 bneck block 16 1 RE 2
80° X 16 bneck block 24 0 RE 2
40° X24 bneck block 24 0 RE 1
40° X 24 bneck block 40 1 HS 2
20° X 48 bneck block 96 1 HS 1
20° X 96 bneck block 96 1 HS 2
10° X 96 conv2d 1x1 15 0 RE 1

weighting coefficient of 5 to the anchor coordinate prediction
loss, and reduced the confidence prediction loss of the anchor
that does not contain the object. The loss weight coefficient
was set to 0.5. In the formula, i represents the grid number, j
represents the number of anchor prediction value. The PLN
loss can be written as:

Acoord =5, )\noobj =05
s B obj
Ly = Acoord Z Z ﬂijj (xi_xiA)2 + (Yi_yt(\)2
i=0 j=0
s B obj 2
e SV (V=7
i=0 j=0

+ (th- - \/h7>2 3)
L= ZZH (c-cr)’

i=0 j=0
s> B )
+ )\.noobj Z Z m:ﬂb] (Ci_Cl{\)z “)
i=0 j=0
L=L+1L (5)

C. DROPPER LOCATION NETWORK

After obtaining the location of the pantograph, according to
the relationship of the OCS and the pantograph, the drop-
per and the contact line, and the dropper image can appear
in the rectangular area containing the image of the panto-
graph. Therefore, according to the location of the pantograph,
the candidate location of the dropper was determined, and the
dropper location was performed in the area. The backbone
network of the DLN was a dropper image feature extraction
network (DFEN). The DLN used the same end-to-end object
location structure, confidence calculation method and the loss
function as PLN. The DLN is shown in the Fig.8, and the
detailed DFEN parameters are shown in the Table 2.
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FIGURE 8. The dropper location network (DLN).

TABLE 2. Dropper image feature extraction network (DFEN).

Input Operator Out SE NL S
3207 x1 conv2d 3x3 16 0 HS 2
160° %16 bneck block 16 1 RE 2
80° x16 bneck block 24 0 RE 2
40° x24 bneck block 24 0 RE 1
40° x24 bneck block 40 1 HS 2
207 x40 bneck block 40 1 HS 1
20° x40 bneck block 48 1 HS 1
20° x48 bneck block 96 1 HS 1
20° x96 bneck block 96 1 HS 2
107 %96 bneck block 96 1 HS 1
10° x96 bneck block 192 1 HS 1
10° %192 conv2d 1x1 15 0 RE 1

The method adopted two-level feature layer, and extracts
20 x 20 and 10 x 10 layers from DFEN to perform drop-
per location at different scales. The 10 x 10 layer feature
information was mainly for large object location, and the
20 x 20 layer consisted of its own layer plus the result
of 10 x 10 up-sampling, mainly for small object locating.
Finally, the dropper location result was output to the dropper
recognition network for fault recognition. In this paper, two
kinds of anchors with different sizes were set for different
scale prediction layers, one for small object prediction and
another for large object prediction, with a total of six anchors.

The DPLN can detect multiple droppers in the OCS image.
This paper selects the dropper closer to the camera as the
input of the dropper fault recognition network. This makes the
dropper image clearer, saves computational resources, and
can improve the recognition accuracy of the dropper fault.
During the running of the railway, the dropper appears in front
of the camera from far to near, and the dropper is closer to the
upper edge of the image. As shown in Fig.9 and Fig.10. As the
train moves forward, the center point of the dropper image
(yellow box) is closer to the upper edge of the image. When
the next dropper (blue box) appears in the image, this method
filter it out according to the distance (red line). According
to the difference between the single-track railway and the
double-track railway, this method considers the situation in
two cases, as shown by the algorithm: select dropper image.
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FIGURE 10. The location changes of the dropper in the double-track
railway.

Algorithm 1 Select Dropper Image

Input:

(1) All the droppers detected by the DPLN

(2) Type of railway line: T

Output:

Dropper for the dropper fault recognition network

1. If T = single-track;

2. Fori= 0:1:N(number of image frames);
Calculate the distance from the dropper to the
upper edge of the image;

Save the closest dropper and the distance d(i);
End If
d(i)< d(i+1) and d(i)< d(i—1);
Return the closest dropper of the i frame
If T = double-track;
For j = 0:1:N(number of image frames);
0. Calculate the distance from the dropper to the
upper edge of the image;

w

S0 XN LA

11. Save the two closest droppers and the distance
m(j), n(j);

12. End If

13. m(j)+n(j)< m(j+1)+n(+1) and mG)+nG)<
m(j—D+nG—1);

14.  Return the two closest droppers of the j frame

D. K-MEANS ANCHOR CLUSTER

In the conventional object location method, the anchor is
obtained by a multi-scale sliding window traversal method or
a selective search, and then locating is performed. However,
this method runs slower and the effect is not the best. In this
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paper, the k-means clustering algorithm was used to analyze
the image of the pantograph and the dropper, and the IOU was
clustered as the distance to obtain the anchor size that matches
the feature distribution of the pantograph and the dropper. The
k-means clustering steps are as follows:

Step 1: The width and height of the real bounding box
of the image sample were taken as a sample point (wy, hj;),
n € {1, 2, ..., N}, and the center point of the object frame is
(Xn,yn), n € {1,2,..., N}, and the sample points of all the
images were composed into a set of image sample points.

Step 2: This paper randomly selected the K group points
(W, Hy), m € {1, 2, ..., k} in the set as the cluster center.

Step 3: Calculated the distance (d) from all points in the
sample point set to the K cluster centers, and assigned the
sample points to the nearest cluster center to obtain K point
clusters.

d=1—10U [(xp, Y Wis Wi) s (s Y, Win, Hyy) (6)

Step 4: Recalculated the center point of the cluster. The
calculation formula is as follows, N, indicates the number of
object frames in the number m cluster.

1
Wh=—
" % Wm
WZEZM

Step 5: Repeated steps 3 and 4 until the center of the cluster
stopped moving and K parameters of the cluster center were
obtained, which is the width and height of the anchor.

Because k-means algorithm is sensitive to the location of
random initial point K, this paper solved it independently for
three times, and chose its average mean as the final result,
as the anchor value of PLN and DLN. It can be seen that
Table 3 is composed of DLN anchors and PLN anchors. The
length and width units of anchors is pixels, and the image size
is 320 x 320. The DLN contain six anchors, and the PLN
contain three anchors, which correspond to the candidate
anchor for the pantograph location and the dropper location
network. The approximate size distribution of the anchor is
shown in Fig.11.

N

E. DROPPER FAULT RECOGNITION NETWORK
This paper proposed a dropper fault recognition net-
work (DFRN) based on depthwise separable convolution.
According to the China High-speed Railway OCS Opera-
tion and Maintenance Rules [25] and Reference [13], [14],
the typical faults of the dropper include breakage, slack, and
disappearance. DFRN can recognize the normal, breakage,
slack and disappearance of the dropper. Focal Loss [26] was
used as its loss function, and the loss function was optimized
by SGD algorithm. Finally, the result was output through
Softmax layer. The network structure is shown in Fig.12.
Through the analysis of samples, it can be known that
the sample distribution was extremely unbalanced, and the
number of faulty samples was far less than the normal number
of samples.
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TABLE 3. Anchors of dropper progressive location network.

Anchors DLN anchors PLN anchors
Type anchorl anchor2 anchor3 anchor4 anchor5 anchor6 anchor7 anchor8 anchor9
320° x1 yl x2 y2 x3 y3 x4 v4 x5 y5 X6 y6 x7 y7 x8 y8 x9 vy9
One 9 37 10 56 11 66 13 75 15 103 23 133 135 93 131 143 145 53
Two 8 34 11 59 12 64 13 79 16 101 21 132 133 104 130 145 141 50
Three 10 46 12 55 13 75 13 78 17 108 25 142 136 96 134 142 145 55
Mean 9 39 11 57 12 68 13 77 16 104 23 136 135 98 132 143 144 53
Y/pixel PLN anchors Y/pixel DLN anchors
. ° e @ anchor? 1751 A ‘
140 .Q ® ® anchor8 4 A
° ° ® anchor9 150 A
1201 .‘.. ..‘ ° * ah 4 AAAA‘ ‘A“ﬂ at ‘A ‘A A
125 +f f‘“» !
1001 LY i+ +
fogath « ° 100 P eten o
80 ' : 7
1 Q
751 ses .
L]
60 LN ) )
° ° 50 @ anchorl e@anchor4
e @ o ® ° ."‘ 4 oo @ anchor2 + anchorb
40 ° ° ..O e ° 25 @ anchor3 A anchor6
130 135 140 145 150 X/pixel 5 10 15 20 25 30 X/pixel

(a)

(b)

FIGURE 11. Size distribution of DPLN anchors: (a) size distribution of PLN anchors, (b) size distribution of DLN anchors. It is a schematic
diagram of the anchor size distribution of our image. It corresponds to the size of the anchor in Table 3.

DWC
MaxPool

of dropper sample distribution. Focal loss was proposed as
the loss function of the network. The Focal loss function is as
follows:

DWC Sof
axD, Softmax
MaxPool DEC

' V 1' ) MaxPool ;
— ]
— =, At —_— (—
|| 2 0 sxaxe
0 m < 16 X4X64
32X8X32 256

64X16X1
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—B x yy x logy,
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L
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FIGURE 12. The dropper fault recognition network.

Yi+Yy2+y3+ya (8)

Ly: Represents the loss function of network

Y1, Y2, ¥3, y4: Represent the output values of the four states

This paper introduced «, 8, x, 6 as loss weight coefficients
of normal, breakage, slack and disappearance of dropper. This
paper introduced the gamma coefficient to reduce the mining
strength of difficult samples by reducing the balance network
of normal sample loss weight coefficients. This paper made
the network pay more attention to the characteristics of diffi-
cult samples and made the model more popular.

This paper used the depthwise separable convolution mod-
ule to extract the dropper image features. After obtaining
the dropper image from the DPLN, this paper used bilinear
interpolation to modify the image size to 64 x 16, which
met to the sample shape of the dropper image. In this paper,
a momentum-driven optimizer SGD was used to optimize the

In order to solve the problem of data imbalance, in the
data aspect, dropper fault samples were generated by data
enhancement and DCGAN [27], [28]. The fault samples
were enhanced by image mirroring, rotating, stretching and
contrast changing. The faulty samples were generated by
the DCGAN to make the distribution of the samples more
balanced. In the algorithm level, the cross-entropy function
was usually used as the loss function of the recognition net-
work, and the minimization of the cross-entropy function was
taken as the optimization objective of the model. However,
the direction of network optimization for minimizing cross-
entropy function was to minimize the loss of all types of
samples. In this process, the loss of normal samples and fault
samples was equal, which was not suitable for the imbalance
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FIGURE 13. DPLN training curve: (a) the region AVG-10U curves, (b) the loss curves.

TABLE 4. The experimental data.

TABLE 5. The results in the normal background.

Data set OCS images Dropper images Method HOG YoloV3 F-R DPLN
Type of images Normal Extreme Normal Faulty Number of images 66000 66000 66000 66000
Number of images 69240 6211 89500  951+4755 mAP(%)with [OU>0.6 79.42 93.20 95.40 95.32
Size of images 1536 X2048 64X16 mAP(%)with IOU>0.7 67.20 88.74 92.13 93.15
mAP(%)with IOU>0.8 58.80 83.42 88.63 90.48
Time(ms) 107.6 112.8 632.7 50.4
loss function Focal loss, so that the loss function approached
the global minimum.
. TP
Precision = —— (10)
IV. EXPERIMENTAL RESULTS AND ANALYSIS TP + FP
This paper used OOM equipment to acquire 75451 OCS AP lP RVR 1
images with a size of 1536 x 2048, then guided by a pro- mar = 0 (R) an

fessional railway maintenance worker, and used the Labe-
IImg tool for data labeling. It included 69240 images of
normal background and 6211 images of extremely complex
background. It contained more than 90000 droppers, about
89500 normal droppers, and 951 fault droppers. This paper
used data enhancement and DCGAN to generate 4755 fault
droppers, a total of 95206 pieces of experimental images.
As shown in the Table 4. Detailed data on location and
recognition experiments were described below.

The experimental environment was described as follows:
Deep learning open source framework TensorFlow, Ubuntu
16.04, the embedded artificial intelligence platform NVIDIA
JetsonTX2 was used as the platform for experiment to ensure
that the method can still guarantee good real-time perfor-
mance on embedded devices.

A. DROPPER LOCATION EXPERIMENT RESULTS

This paper used 70451 OCS images as a testing dataset
and 5000 images as a training dataset to perform dropper
progressive location network training. This paper used the
mAP to evaluate the accuracy of the method. The formula
is as follows:

TP
Recall = ——— 9
TP + FN
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Among them, Recall is the recall rate (R), Precision is
the accuracy rate (P), TP is the number of droppers that
are correctly located by the network. FN is the number of
droppers that are not correctly located by the network, FP is
the number of incorrectly located droppers, TP+FN is the
total number of actual droppers, TP+FP is the total number
of droppers that the network has located.

In the dropper location experiment, 5,000 images were
used for training. The number of batches is 32 and a total
of 20000 batches were trained. During the training process,
the IOU and the loss had been constantly changing. The
parameters of the training process are shown in Fig.13.

70000 OCS images of the testing dataset were divided
into 66000 normal backgrounds and 4000 extremely com-
plex backgrounds. DPLN and YoloV3, Faster-RCNN (F-R)
and HOG [28] were compared under the same conditions.
The results in the normal background are shown in Table 5.
This paper used PLN to find the candidate region for the
dropper location and perform the DLN in this region, which
filtered out the other interference outside the region. DPLN’s
location accuracy is slightly better than F-R, and HOG has
the worst performance. For practical applications, real-time
performance is very important in the dropper fault detection
task. DPLN takes an average of 50.4ms for each image, and
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FIGURE 14. Failure in the extreme background.

TABLE 6. The results in the extreme background.

Method HOG YoloV3 F-R DPLN
Number of images 4000 4000 4000 4000
mAP(%)with I0U>0.6 61.12 82.40 87.84 89.10
mAP(%)with IOU>0.7 47.20 75.80 79.13 80.64
mAP(%)with I0U>0.8 28.80 61.28 69.90 72.40
Time(ms) 112.5 112.5 633.2 51.0

TABLE 7. Comparison of dropper fault location.

Type of fault Slack Breakage Disappearance
Number of images 210 145 96
mAP(%) DPLN 85.58 84.80 81.79
with F-R 84.10 83.72 81.90
10U>0.7 YoloV3 79.90 79.49 77.10
HOG 52.30 44.50 35.00

DPLN takes the least amount of time, while F-R takes about
12 times. The results in the extremely complex background
are shown in Table 6. Due to the influence of tunnel environ-
ment, bridge background and architectural background, and
multiple complex backgrounds, the accuracy of the network
had been significantly reduced. There was even a situation
where it could not be located, as shown in Fig.14. This paper
conducted a dropper location comparison experiment on the
faulty dropper. The results are shown in Table 7. Due to the
scarcity of the faulty sample, and the dropper characteristics
under the type of disappearance are not obvious enough, and
the network mainly relies on the feature of the dropper clip
for location, it can be seen that the mAP of the disappearance
is lower than the others.

In the case where the IOU is greater than 0.7, the AP curve
of all image backgrounds is shown in Fig.15. The comparison
of location results is shown in Fig.16, the red box is the result
of the location, and the blue box is the candidate region for the
dropper. Experiments showed that DPLN performed better
than other methods.

After the DLN obtained the dropper from the OCS image,
this paper used the algorithm (Select Dropper Image) to select
the dropper and used 10,000 images for testing, including
6240 single-track images and 3760 double-track images.
The experimental results showed that the accuracy of the
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FIGURE 15. The AP curve of all image backgrounds (10U>0.7).

FIGURE 16. A comparison of the DPLN and YoloV3, Faster-RCNN, HOG
locating results.

algorithm is 99.21%. As shown in Fig.16, the yellow areas
are the selected dropper images, which are used as input to
the dropper fault recognition network.

B. FAULT RECOGNITION EXPERIMENT RESULTS

This paper used 91000 images as the testing dataset to verify
the accuracy of the algorithm, and used 4206 images as the
training dataset. The training dataset contained 1500 normal,
1306 slack, 818 breakage, and 582 disappearance images.
Accuracy of DFRN is equal to the number of correctly rec-
ognized dropper fault (Correct Numbers) divided by the total
number of droppers (Total Numbers).

Correct Numbers
Accuracy = ———— (12)
Total Numbers

In the original data, there were only 951 dropper fault
samples, and 4755 fault samples were generated by data
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TABLE 8. Results of dropper fault recognition.

Background of image Simple background Complex background
Type of fault Normal Slack Breakage  Disappearance Normal Slack Breakage  Disappearance
Number of images 40000 822 420 368 48000 578 580 232
DFRN 96.32 93.92 93.33 94.30 93.92 90.66 89.66 92.67
Accuracy (%) VGG 97.10 94.53 95.23 94.57 94.62 91.18 91.03 91.81
ResNet 95.88 93.31 92.38 93.21 93.50 89.79 88.45 90.95

FIGURE 17. The process of generating samples through DCGAN.

enhancement and DCGAN, which can effectively improve
the generalization ability of the DFRN and prevent model
over-fitting. The process of generating samples through
DCGAN is shown in Fig.17.

During the training process, the number of batches is 64,
and the initial learning rate (LR) was set to 0.005. As the num-
ber of training steps increased, the learning rate was dynami-
cally attenuated, the attenuation coefficient (DecayRate) was
0.9, and the dynamic learning rate was (UpdateLR), the atten-
uation expression is as follow:

UpdateLR = LR x DecayRate>'P (13)

In the training process, this paper used 20% of the 4206
samples as the validation set in the network training pro-
cess. After 1400 trainings had been carried out, the accuracy
rate of validation set was about 96%. This paper compared
with the classical image recognition network VGG [30] and
ResNet [31] algorithms, and recognized the dropper fault
under simple background and complex background. Results
of dropper fault recognition are shown in Table 8. Since the
dropper fault recognition task is relatively easy, it can be seen
that the classification accuracy of the three methods is almost
the same. The recognition accuracy of the three types of faults
is lower than the normal type. Since the faulty samples are
less than the normal samples, it is easier to classify the normal
type.

This paper used data collected from real-running trains for
algorithm testing, and compared the average accuracy and
real-time performance with the classical algorithms of deep
learning image recognition VGG and ResNet. The results are
shown in Table 9. The average accuracy of VGG is 95.66%,
which is slightly higher than DFRN, the average accuracy
of DPRN is 94.92%, and the ResNet accuracy is 94.47%.
DFRN takes 12.27ms to process each image. Because this
method used a more efficient network, although the accuracy
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TABLE 9. Comparison of fault recognition methods.

Method Accuracy (%) Time (ms)
VGG 95.66 122.80

ResNet 94.47 34.54
DFRN 94.92 12.27

is not the highest, the real-time performance has been greatly
improved.

C. LIMITATIONS

There are some limitations of this study and further research
is still needed. The first is that the complex background image
results in a lower accuracy of the dropper progressive location
network, and the accuracy of dropper fault recognition in
complex backgrounds is lower than in a simple background.
In extreme cases, such as tunnels and bridges, this method is
completely unable to locate the dropper, as shown in Fig.14.
The second is the scarcity of the dropper fault images, which
makes it difficult to further improve the accuracy of fault
detection. Due to the scarcity of fault data, it is difficult to
unify location and classification tasks into one network, and
the accuracy of location and recognition is low. Our method
needs more fault data to train and enhance the generalization
performance of the model.

V. CONCLUSION

This paper proposed a dropper progressive location net-
work (DPLN) to locate the dropper. First, the pantograph
location network was used to locate the pantograph, and the
candidate region of the dropper was determined. Then, this
paper used the dropper location network to obtain the dropper
image. The dropper fault recognition network (DFRN) was
used to recognize four types of droppers: normal, slack,
breakage, and disappearance. In this paper, the depthwise
separable convolution and end-to-end object location struc-
ture were used to construct the DPLN and DFRN. The data
enhancement, DCGAN and Focal loss were used to effec-
tively solve the problem of unbalanced sample types during
training. The experimental results proved that the proposed
method can effectively solve the problem of dropper fault
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detection in the actual scene. Further research will be required
to improve the accuracy of dropper fault detection in complex
backgrounds. When there is a large amount of fault data in the
future, further research is needed to unify the location and
classification tasks into one network.
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