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ABSTRACT Although the sparse kernel adaptive filtering algorithms have been proposed to address
the problem of redundant dictionary in non-stationary environments, there is few attempt of analyzing
their stochastic convergence behaviors. In this paper, we briefly review the zero-attracting kernel least-
mean-square (ZA-KLMS) algorithm with `1-norm regularization from the perspective of nonlinear sparse
system. Then, the theoretical transient convergence performance of ZA-KLMS algorithm using Gaussian
kernel function with pre-tuned dictionary is analyzed in the mean and mean-square senses. The simulation
results illustrate the accuracy of derived analytical models by the excellent consistency between the Monte
Carlo simulations and the theoretical predictions, and the ZA-KLMS algorithm has better convergence
performance than the KLMS algorithm for nonlinear sparse systems in stationary environment.

INDEX TERMS Nonlinear sparse system identification, zero-attracting, kernel least-mean-square, transient
performance analysis.

I. INTRODUCTION
There are considerable research interests in the sparse system
identification based on the sparse-aware adaptive filters [1],
[2], which has been applied in a wide range of fields such as
image processing [3], [4], communications [5], [6], acoustic
signal processing [7], etc. The common objective of diverse
scenarios is to find a satisfactory sparse solution that involves
only a small number of nonzero significant coefficients
to enhance the performance and reduce the computational
complexity of algorithm. Conventional linear zero-attracting
least-mean-square (ZA-LMS) with `1-norm regularization
was proposed for the linear sparse systems in [8], and then
due to substantial research interests its stochastic convergence
behaviors were extensively analyzed in [9]–[11]. In fact the
nonlinear sparse systems are frequently encountered in many
practical applications ranging from satellite channel esti-
mation [12], biomedical engineering [13], to adaptive echo
cancellation [14], [15]. Since the schemes of several typical
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linear adaptive filters were reformulated in the high or infi-
nite dimensional reproducing kernel Hilbert spaces (RKHS)
[16]–[18], hence, the sparse-aware kernel adaptive filtering
(KAF) algorithm has become a powerful tool of solving the
nonlinear sparse system identification problem [19].

The surprise criterion was proposed to design the sparse
kernel adaptive filters taking into account the sparsity of
online dictionary [20]. A recurrent kernel algorithm was
developed to accelerate the convergence speed by introducing
sparse updates when the estimated errors do not fall into the
given interval [21]. The sparse quantized kernel least-mean-
square (KLMS) with `1-norm regularization and KLMS
with forward-backward splitting (FOBOS-KLMS) algo-
rithms were independently proposed to attempt to improve
the performance in terms of convergence speed and steady-
state mean-square error (MSE) by automatically eliminat-
ing the obsoleted elements in the dynamic dictionary within
context of time-varying environments [22]–[24]. Mean-
while, in order to alleviate the adverse impact of obsolete
dictionary-elements, the multikernel LMS (MKLMS) algo-
rithm with weighted block `1-norm penalty was proposed to
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dramatically reduce computational complexity and memory
storage requirements [25]–[27]. The kernel online sequential
extreme learning machine (KOS-ELM) with the approximate
linear dependency and the fixed-budget criteria was proposed
to obtain both sparse filters [28]. Recently, a framework based
on an eigenvalue analysis was proposed to study the sparsity
measures and sparsification criteria of KAF algorithms [29].

The KLMS-tpye algorithm as a representative of kernel
adaptive filters has been extensively studied due to its sim-
plicity and robustness. The zero-attracting kernel least-mean-
square (ZA-KLMS) algorithm can be regarded as a particular
case of FOBOS-KLMS algorithm for nonlinear sparse sys-
tem in stationary environment. Before proceeding, it should
be emphasized that the sparse KLMS-type algorithms have
twofold aspects: the negligible weight coefficients and the
obsolete elements of dictionary. When the online dictionary
is assumed to be statistically stable in the stationary environ-
ment, the zero weight coefficients of KLMS-type algorithms
indicate the sparse characteristic of the nonlinear model.
On the contrary, in the non-stationary environment the obso-
lete elements in online dictionary will also lead to the trivial
weight coefficients even for nonlinear systems without sparse
feature. Since the stochastic behavior of FOBOS-KLMS
algorithm with sparsity-promoting of recursive weight vector
was investigated in the latter case, we thus only consider the
former case in the following of analysis. Moreover, there is
few theoretical study of concerning on the transient analysis
for nonlinear ZA-KLMS algorithm relative to the various
theoretical analyzes of conventional linear ZA-LMS.

In this paper, we briefly review the ZA-KLMS algorithm
from the viewpoint of the nonlinear sparse system in sta-
tionary environment. Then, the transient stochastic behaviors
of the ZA-KLMS algorithm using Gaussian kernel function
with pre-tuned dictionary are derived in the mean and mean-
square senses under the necessary assumptions and reason-
able approximations. Finally, we illustrate the accuracy of
derived analytical models of ZA-KLMS algorithm and its
better convergence performance with the simulation results.

The rest of this paper is organized as follows. Section II
presents some basic knowledge of the KAF and briefly
reviews the ZA-KLMS algorithm. In Section III, we intro-
duce the preliminaries and some useful statistical assump-
tions in the following theoretical analysis. The transient
mean and mean-square weight behaviors of the ZA-KLMS
algorithm using Gaussian kernel with fixed dictionary are
studied in Section IV. In Section V, simulations are per-
formed to demonstrate the correctness and the accuracy of the
derived analytical models, as well as the better performance
of ZA-KLMS compared to KLMS for the nonlinear sparse
system. Finally, the paper is concluded in Section VI.
Notation: Normal font letters x denote scalars, boldface

small letters x denote column vectors, and boldface capital
letters X denote matrices. [x]i and [X]ij denote the i-th entry
of x and the (i, j)-th entry of X , respectively. Identity matrix
of size M × M is denoted by IM , and all-zero vector of
lengthN is denoted by 0N . The superscript (·)> represents the

transpose of a matrix and a vector, and tr{·} denotes the trace
of its matrix argument. The operator vec{·} stacks a matrix of
column vectors on top of each other to generate a connected
vector. The notations ⊗ and � denote the Kronecker prod-
uct and the Hadamard product, respectively. The operator
sgn(·) is the sign function. The Gaussian distribution with
mean µ and variance σ 2 is denoted by N (µ, σ 2). In the
multivariate case, the corresponding notation will become
N (µ,6). The cumulative distribution function (CDF) of the
standard Gaussian distribution is denoted by φ(x). The CDF
of the multivariate Gaussian distribution with mean µ and
covariance 6 is denoted by 8(x,µ,6).

II. ZERO-ATTRACTING KERNEL LMS ALGORITHM
Let U be a compact domain in Euclidean space RL and D =
R. Let ρY be a Borel probability measure on Y = U × D
whose regularity properties will be assumed as needed. H
is defined as a reproducing kernel Hilbert space with kernel
κ : U × U → R. Given the input-output sequence y ∈ YN ,
y = {(un, dn)}Nn=1, we aim at estimating a optimum regression
function ψ? that minimizes the regularized least-square error

min
ψ∈H

N∑
n=1

|dn − ψ(un)|2 + γ ‖ψ‖2H (1)

with γ ≥ 0 a regularization constant. By virtue of the
representer theorem [30], the function ψ(·) can be written as

ψ?(·) =
N∑
n=1

wn κ(·,un). (2)

To overcome the problem of linearly increasing amount N
of input candidates as new data is collected, the fixed-order
model with a promoting sparsity criterion is often adopted

ψ(·) =
M∑
m=1

wm κ(·,um). (3)

The data set ω = {uωm}
M
m=1 is the so-called dictionary.

Based on the parametric vector model (3), we consider the
minimization problem with `1-norm regularization

w? = arg min
w∈RN

{
‖d − Kw‖2 + λ‖w‖1

}
(4)

where K is the (M ×M ) Gram matrix with the (i, j)-th entry
κ(ui,uj), d = [d1, . . . , dM ]> is the desired output vector,
and λ is a positive regularization constant compromising
between the convergence speed and the estimation error.
Without manipulating the dictionary separately as in [24], and
using subgradient of (4), the recursive update equation of ZA-
KLMS algorithm is given by

wn+1 = wn + η enκω,n − ρ sgn
{
wn
}

(5)

with the positive step-size η, the kernelized input vector
κω,n =

[
κ(xn, xω,1), . . . , κ(xn, xω,M )

]>, and the shrinkage
parameter ρ = λη. Here, the instantaneous estimation error
en is given by

en = dn − w>n κω,n. (6)
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Note that although the zero-attracting term ρ sgn
{
wn
}
can

effectively promoting zero-valued of weight vector, this
simultaneously resulting in the bias for large entries.

The FOBOS-KLMS algorithm was proposed to reduce the
convergence performance degradation cased by the redundant
dictionary in non-stationary environments, which is implic-
itly to achieve the sparsity of nonlinear system by discard-
ing the obsolete elements out of online dictionary. It should
be pointed out that the ZA-KLMS algorithm removing the
redundant elements corresponding with zero weight coeffi-
cients from the fixed dimensional dictionary at each time
instant, is equivalent to the so-called FOBOS-KLMS algo-
rithm with the adaptively compressing online dictionary.

Consider themean-square error criterion, which is given by

E
{
e2n
}
=

∫
�

∫
U×D

e2n dϕY (u, d|ω) dϕ� (7)

with ϕ� a Borel probability measure on the dictionary space
�. Except of the simplified assumptions applied in [31],
we consider the dictionary as a part of the filter parameters
to be set. The objective is to characterize the transient of the
mean-square criterion condition on dictionary ω, that is

EY
{
e2n|ω

}
=

∫
U×D

e2n dϕ(u, d|ω). (8)

Note that we shall use the subscript ω for quantities condi-
tioned on the dictionaryω, andY for expectation with respect
to input data distribution in the following.

III. PRELIMINARIES AND STATISTICAL ASSUMPTIONS
Studying the statistical behavior analysis of ZA-KLMS algo-
rithm is a challenging task, which requires some preliminaries
and necessary statistical assumptions for the mathematical
derivations.

A. PRELIMINARIES
Given the fixed dictionary ω with length M , the estimation
error at instant n is given by

eω,n = dn − φω(un)

= dn − w>n κω,n (9)

with φω(un) = φ(un)|ω. Note that the theoretical conver-
gence performance of ZA-KLMS depends on the dictionary
setting which can be regarded as a part of the filter parameters
to be set. Squaring both sides of (9), and taking the expected
value, leads to the MSE criterion

JMSE,ω = E
{
e2ω,n

}
= E

{
d2n
}
− 2 pκd,ωwn + w

>
n Rκκ,ωwn (10)

where
Rκκ,ω = E

{
κω,n κ

>
ω,n|ω

}
(11)

is the correlation matrix of the kernelized input, and

pκd,ω = E
{
dn κω,n|ω

}
(12)

is the cross-correlation vector between dn and κω,n.

In next section, we will derive the mean and mean-square
weight behaviors of ZA-KLMS algorithm with Gaussian ker-
nel defined as

κ(u,u′) = exp
(
−
‖u− u′‖2

2ξ2

)
(13)

where ξ > 0 is the kernel bandwidth. Inputs un are assumed
to be statistically independent zero-mean Gaussian random
vectors with the autocorrelation matrix Ruu = E

{
un u>n

}
.

Let vω,n be the weight error vector as the difference
between the estimated weight vector wn and the optimum
weight vector w?, namely

vω,n = wn − w?. (14)

The stochastic convergence analysis of ZA-KLMS is to study
the evolution of the first- and second-order moments of vω,n
over time.

Let x = [x1, x2, . . . , xL]> ∈ RL be a random vector
following Gaussian distribution with the zero-mean vector

E
{
x
}
= 0L (15)

and the covariance matrix defined by

Rxx = E
{
xx>

}
. (16)

The random variable y is defined as the quadratic form of

y = x>Hx+ b>x. (17)

The moment generating function of y is given by [32]

9y(s) =|I − 2sHRxx|−
1
2

× exp
( s2
2
b>Rxx

(
I − 2sHRxx

)−1b). (18)

The above result is very useful in the following derivation of
theoretical transient performance analysis.

B. STATISTICAL ASSUMPTIONS
Three simplified assumptions are required tomake the deriva-
tion of stochastic behavior of vω,n mathematically tractable.
The statistical assumptions in the analysis are listed as fol-
lows:

(A.1) The weight error vector vω,n is statistically indepen-
dent of the kernelized input vector κω,n.

(A.2) κω,n κ>ω,n is independent of vω,n.
(A.3) Any pair of entries [vω,n]i and [vω,n]j with i 6= j is

jointly Gaussian.
Assumption (A.1), called conditioned independence

assumption (CIA), is originated from the well known inde-
pendence assumption (IA) widely used in the analysis of
adaptive filters [33], [34]. Assumption (A.2), called modi-
fied independence assumption (MIA), is justified in detail
in [35], which has been shown to be less restrictive than the
well known independence assumption IA (A.1). For further
reference we namedMIA as conditionedMIA (CMIA) which
has been successfully employed in Gaussian kernel LMS
analyses [36], [37]. Assumption (A.3) is consistent with the
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Gaussian assumptions in [8], [10], [36]. The effectiveness
of (A.3) has been verified by the histograms of bivariate
vector

[
[vω,n]i, [vω,n]j

]> in [11]. Accordingly, a more accu-
rate model can be provided by making the calculation of the
nonlinear terms tractable without further approximations.

IV. TRANSIENT CONVERGENCE ANALYSIS OF ZA-KLMS
ALGORITHM
We shall now analyze the transient stochastic behaviors of
ZA-KLMS algorithm consisting of the weight error vector in
both the mean and the mean-square error senses.

A. MEAN WEIGHT BEHAVIOR MODEL
The instantaneous estimation error in (9) can be expressed
using the definition of vω,n as

eω,n = zn − v>ω,n κω,n (19)

where zn is the stationary, independent and identically dis-
tributed (i.i.d.) additive Gaussian noise with zero-mean and
variance σ 2

z .
Subtracting w? from both sides of (5), and using (14)

and (19), yields the recursive update equation of vω,n

vω,n+1 = vω,n − ηκω,nκ>ω,nvω,n + ηznκω,n
−ρsgn

{
w? + vω,n

}
. (20)

Taking the expected values of both sides of (20) and using
assumption (A.2) CMIA, we have

E
{
vω,n+1

}
=
(
I − ηRκκ,ω

)
E
{
vω,n

}
−ρ E

{
sgn{w? + vω,n}

}
. (21)

The last term on the right hand side (RHS) of (21) introduced
by the zero-attracting term is the remarkable difference from
the mean weight behavior model of KLMS [36]. With the
Gaussian kernel function, the (i, j)-th entry of matrix Rκκ,ω
is given by

[Rκκ,ω]ij

= EU

{
exp

(
−

1
2ξ2

[
‖un − uω,i‖2 + ‖un − uω,j‖2

])}
= exp

(
−

1
2ξ2

[
‖uω,i‖2 + ‖uω,j‖2

])
×EU

{
exp

(
−

1
ξ2

[
‖un‖2 − (uω,i + uω,j)>un

])}
.

(22)

Comparing the second term of the RHS of (22) with (17),
using the substitutions H = I , b = −(uω,i + uω,j) and s =
−

1
ξ2
, then we have (23), as shown at the top of the next page.

By using the identity property (I + A−1)−1 = A(A + I)−1

for the component Ruu
(
I + 2

ξ2
Ruu

)−1, yields (24), as shown
at the top of the next page. Note that Rκκ,ω is the symmetric
matrix. In order to characterize the evolution of E

{
vω,n+1

}
,

it is necessary to evaluate the last term of the RHS of (21)
according to the following lemma .

Lemma 1. Consider a random variable x ∼ N (µ, σ 2). The
expectation of its sign value is given by [11]

E
{
sgn{x}

}
= 1− 2φ(−µ/σ ). (25)

Consequently, the entries of E
{
sgn{w? + vω,n}

}
can be

obtained by making the following identification:

x , [w? + vω,n]i (26)

with

[w?]i + E
{
[vω,n]i

}
→ µ (27)

E
{
[vω,n]2i

}
− E

{
[vω,n]i

}2
→ σ (28)

where E
{
[vω,n]2i

}
can be extracted from the diagonal of

the correlation matrix of the weight error, i.e., Cω,n =
E
{
vω,nv>ω,n

}
that will be calculated in the next subsection.

Hence, the last term of the RHS of (21) can be calculated
based on (25) and the above relations. Therefore, the analyti-
cal model (21) with (24)–(28) can be used to characterize the
first-order mean weight behavior of the ZA-KLMS algorithm
using Gaussian kernel with pre-tuned dictionary.

B. MEAN-SQUARE ERROR BEHAVIOR MODEL
The objective of this subsection is to derive the analytical
model of the transient MSE for ZA-KLMS. Using (19) and
the assumption (A.1), the MSE can be expressed in terms of
the second-order moments of the weight error vector [34]

JMSE,ω ≈ σ
2
z + tr

{
Rκκ,ω Cω,n

}
= σ 2

z + JEMSE,ω (29)

where JEMSE,ω is the excess mean-square error (EMSE).
Hence, the evaluation of the MSE (or EMSE) requires the
calculation model of the recursive update equation for Cω,n.
Post-multiplying (20) by its transpose, taking the expected

value, and using assumption (A.1), leads to

Cω,n+1 ≈ Cω,n − η
(
Rκκ,ωCω,n + Cω,nRκκ,ω

)
+η2σ 2

z Rκκ,ω + η
2 Qω,1 + ρ

2 Qω,2
−ρ

(
Qω,3 + Q

>

ω,3
)
+ ηρ

(
Qω,4 + Q

>

ω,4
)
(30)

where
Qω,1 = E

{
κω,nκ

>
ω,nvω,nv

>
ω,nκω,nκ

>
ω,n
}

(31)

Qω,2 = E
{
sgn{w? + vω,n}sgn>{w? + vω,n}

}
(32)

Qω,3 = E
{
vω,n sgn>{w? + vω,n}

}
(33)

Qω,4 = E
{
κω,nκ

>
ω,nvω,n sgn

>
{w? + vω,n}

}
. (34)

Note that the three matrices defined in (32)–(34) are intro-
duced by the zero-attracting term. We shall sequentially cal-
culate the four termsQω,1 toQω,4. To determine the expected
value of (31), assuming the assumption (A.2) holds, the
(i, j)-th entry of (31) can be approximated as:

[Qω,1]ij ≈
M∑
p=1

M∑
q=1

EU
{
κω,i(n)κω,j(n)κω,p(n)κω,q(n)

}
×[Cω,n]pq (35)
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[Rκκ,ω]ij = exp
(
−

1
2ξ2

[
‖uω,i‖2 + ‖uω,j‖2

])
|I +

2
ξ2
Ruu|−

1
2 · exp

(
1
2ξ4

(
uω,i + uω,j

)>Ruu(I + 2
ξ2
Ruu

)−1(uω,i + uω,j))
(23)

[Rκκ,ω]ij = |I +
2
ξ2
Ruu|−

1
2 · exp

(
−

1
4ξ2

[
2
(
‖uω,i‖2 + ‖uω,j‖2

)
− ‖uω,i + uω,j‖2(I+ξ2R−1uu /2)−1

])
(24)

with κω,i(n) = κ(un,uω,i). In addition, let us define the
matrix T (i,j)

ω,n with its (p, q)-th entry given by[
T (i,j)
ω,n
]
pq = EU

{
κω,i(n)κω,j(n)κω,p(n)κω,q(n)

}
. (36)

Based on (36), thus (35) can be rewritten as

[Qω,1]ij ≈ tr
{
T (i,j)
ω,n Cω,n

}
. (37)

In order to determine the value of [Qω,1]ij in (37), we need
to evaluate the expectation of matrix T (i,j)

ω,n. Then, (36) can be
rewritten as[
T (i,j)
ω,n
]
pq

= EU

{
κω,i(n)κω,j(n)κω,p(n)κω,q(n)

}
= EU

{
exp

(
−

1
2ξ2

∑
k={i,j,p,q}

‖un − uω,k‖2
)}

= exp
(
−

1
2ξ2

∑
k={i,j,p,q}

‖uω,k‖2
)

×EU

{
exp

(
−

1
ξ2

[
2‖un‖2 −

( ∑
k={i,j,p,q}

uω,k

)>
un
])}

.

(38)

Likewise, by setting H = 2I , b = −
∑

k={i,j,p,q} uω,k and
s = − 1

ξ2
in (17), we can obtain (39), as shown at the top of

the next page.
The rest of analysis involving the calculation of the three

terms Qω,2 to Qω,4 in (32)–(34) remains valid even if the
kernelized input vector κω,n is not Gaussian distribution.
To evaluate the termQω,2, we introduce the following lemma.
Lemma 2. Consider two random variables x and y which

are jointly Gaussian, namely[
x
y

]
∼ N

(
µ :=

[
µx
µy

]
,6xy :=

[
σ 2
x ρxy
ρxy σ

2
y

])
(40)

whereµ and6xy are their mean vector and covariance matrix
respectively, defined as the previous descriptions. The expec-
tation E

{
sgn{x}sgn{y}

}
can be given by [11]

E
{
sgn{x}sgn{y}

}
= 8

(
02, [µx , µy]>,6xy

)
+8

(
02,−[µx , µy]>,6xy

)
−8

(
02, [µx ,−µy]>,6xy

)
−8

(
02, [−µx , µy]>,6xy

)
(41)

with

6xy = 6xy �

[
1 −1
−1 1

]
. (42)

Note that the diagonal entries of Qω,2 are simply to be one,
i.e., [Qω,2]ii = 1. Then, the off-diagonal entries [Qω,2]ij with
i 6= j are obtained by making the following identifications:

x ,
[
w? + vω,n

]
i (43)

y ,
[
w? + vω,n

]
j (44)

with
E
{
[w? + vω,n]i

}
→ µx (45)

E
{
[w? + vω,n]j

}
→ µy (46)

E
{
[vω,n]2i

}
− E

{
[vω,n]i

}2
→ σ 2

x (47)

E
{
[vω,n]2j

}
− E

{
[vω,n]j

}2
→ σ 2

y (48)

E
{
[vω,n]i[vω,n]j

}
− E

{
[vω,n]i

}
E
{
[vω,n]j

}
→ ρxy (49)

where E
{
[vω,n]i[vω,n]j

}
can be extracted from [Cω,n]ij. Con-

sequently, the term Qω,2 can be computed using (41) and the
corresponding relations.
In order to calculate the term Qω,3, we need to introduce

the following lemma.
Lemma 3. Consider two random variables x and y, which

are jointly Gaussian, namely[
x
y

]
∼ N

(
µ :=

[
µx
µy

]
,6xy :=

[
σ 2
x ρxy
ρxy σ

2
y

])
(50)

with µ and 6xy their mean vector and covariance matrix
respectively, as the previous definitions. The expression
E
{
x sgn{y}

}
is given by

E
{
x sgn{y}

}
=

∫
+∞

−∞

sgn{y}
(∫
+∞

−∞

xN
(
[x, y]>,6xy

)
dx
)
dy

=
1

2π
√
|6xy|

∫
+∞

−∞

{
sgn{y} exp

(
−
1
2

(
b−

c2

a

)
(y− µy)2

)
×

(
2π
a

∫
+∞

−∞

xN
(
µx −

c
a
(y− µy),

1
a

)
dx
)}

dy

=
1√

2πa|6xy|

{√
2π
δ

(
µx +

c
a
µy
)[
1− 2φ(−µy

√
δ)
]

−
c
a

√
2π
δ

[√ 2
πδ

exp
(
−

1
2
µ2
yδ
)
+µy

(
1− 2φ(−µy

√
δ)
)]}
(51)
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[
T (i,j)
ω,n
]
pq = |I +

4
ξ2
Ruu|−

1
2 · exp

(
−

1
8ξ2

[
4

∑
k={i,j,p,q}

‖uω,k‖2 −
∥∥ ∑
k={i,j,p,q}

uω,k
∥∥2
(I+ξ2R−1uu /4)−1

])
(39)

with the positive definite matrix 6xy of which inverse is
defined as

6−1xy =

[
a c
c b

]
(52)

and δ = b− c2/a > 0. The proof is referred to [11]. It should
be noted that, in Lemmas 2 and 3, the random variables
x and y are not necessarily zero-mean. Consequently, both
of expectations E

{
sgn{x}sgn{y}

}
and E

{
x sgn{y}

}
are not

able to be calculated via Price’s theorem as in [34], [38].
Likewise, we should compute Qω,3 by making the following
identifications:

x , [vω,n]i (53)

y , [w? + vω,n]j (54)

with

E
{
[vω,n]i

}
→ µx (55)

E
{
[w? + vω,n]j

}
→ µy. (56)

The variances σ 2
x , σ

2
y and covariance ρxy have the same

expressions as in (47)–(49) because they are invariant to a
constant shift. Similarly toQω,2, the termQω,3 is available to
be calculated using (51).

Finally, the term Qω,4 can be expressed as

Qω,4 = Rκκ,ω Qω,3. (57)

With these expressions of expectation matrices Qω,1 to
Qω,4, in the lexicographic form, i.e., the column vectors of
a matrix are stacked on top of each other into a vector,
the recursive update equation of (30) can be reformulated in
the vector form as

cω,n+1 = (Gω,0 + Gω,1)cω,n + η2σ 2
z rκκ,ω

+ρ2qω,2 + ρ Gω,2qω,3 + ρ Gω,2q̄ω,3 (58)

with the definitions of variables

cω,n = vec
{
Cω,n

}
(59)

rκκ,ω = vec
{
Rκκ,ω

}
(60)

qω,2 = vec
{
Qω,2

}
(61)

qω,3 = vec
{
Qω,3

}
(62)

q̄ω,3 = vec
{
Q>ω,3

}
(63)

and the expectations of matrices

Gω,0 = IM2 − η
(
IM ⊗ Rκκ,ω + Rκκ,ω ⊗ IM

)
(64)

Gω,1 = η2 Qω,1 (65)

Gω,2 = η IM ⊗ Rκκ,ω − IM2 (66)

Gω,2 = ηRκκ,ω ⊗ IM − IM2 . (67)

Here, the matrix Gω,0 can be obtained referring to the results
in [36], [37]. On account of the trace of product of two
matrices in (37) and using (39), the any entry of matrix Qω,1
in (65) can be given by[

Qω,1
]
i+(j−1)M ,p+(q−1)M =

[
T (i,j)
ω,n
]
pq (68)

with 1 ≤ i, j, p, q ≤ M . Since the relation between Qω,3 and
Qω,4 is given by (57), using the product of two matrices in the
lexicographic form, the last four terms of the RHS of (30) can
be reformulated as (66) and (67). It should be pointed out that
the first terms of the RHS of (66) and (67) are corresponding
to the terms Qω,4 and Q>ω,4, respectively. Hence, the second
terms of the RHS of (66) and (67) are corresponding to the
terms Qω,3 and Q

>

ω,3, respectively.
Substituting (64)–(68) into (58) and using the expectations

of Qω,1 to Qω,4, we can obtain the update equation of cω,n.
Based on (58), then we can readily obtain the recursive ana-
lytical model (30) for the behavior of Cω,n by arranging cω,n
into the matrix form. Replacing (30) into (29), we finally can
study the transient convergence behavior of the ZA-KLMS
algorithm using Gaussian kernel with pre-tuned dictio-
nary. The next section illustrates the derived models accu-
racy of predicting the transient performance of ZA-KLMS
algorithm.

Note that Rκκ,ω and Qω,1 are symmetric matrices, which
imply that the matrices Gω,0 and Gω,1 are also symmetric.
Assume that the assumption A.2 holds. For any initial con-
dition, given a dictionary ω, the ZA-KLMS algorithm using
Gaussian kernel (5) is mean-square stable if and only if the
matrices Gω,0 and Gω,1 are stable following from (58), (64)
and (65).

V. SIMULATION RESULTS
In this section, we present the simulation results of two
examples to confirm the usefulness and accuracy of our
derived analytical models. In order to show the superior-
ity of ZA-KLMS algorithm for the nonlinear sparse sys-
tem in stationary environment, the corresponding simulation
results of the classical KLMS algorithm are also provided
for performance comparison. It should be pointed out that
the optimal weight vectors for most KLMS-type algorithms
are unknown in advance and depend on the specific elements
of dynamic dictionary in online manner. In order to reli-
ably investigate the transient analysis of stochastic behavior
of ZA-KLMS algorithms, we design the nonlinear system
characterized by an optimum weight coefficients vector and
the pre-tuned dictionary a priori. All the learning curves are
obtained by averaging over 200 independent Monte Carlo
trials.
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FIGURE 1. Simulation results of Example I for theoretical predictions and
Monte Carlo simulation of ZA-KLMS.

A. EXAMPLE I
Consider an unknown nonlinear sparse system with the opti-
mum weight coefficients vector defined by

w? =
[
1.65, 0.8, 0, 0, 0, 0, 0, −0.75, −1.5

]> (69)

and the fixed dictionary with 9-elements given by

ω =
{
uω,1, uω,2, . . . , uω,9

}
=
{
0.85, 0.2,−1.1,−1,−0.9,−0.8,−0.7,−0.5,−0.25

}
where the dictionary elements uω,m ∈ RL with L = 1.
As a consequence, the desired response of nonlinear system
is defined as follow:

dn =
M∑
m=1

w?m exp
(
−
(un − uω,m)2

2ξ2

)
+ zn

where the input signal un is a zero-mean i.i.d. Gaussian
random process with standard deviation σu = 0.25, and the
additive noise zn is a zero-mean i.i.d. Gaussian distribution
with SNR = −5dB. The Gaussian kernel bandwidth ξ and
the step-size η were set to 0.35 and 0.1, respectively. The
regularization parameter λ was set to 1× 10−3.

FIGURE 2. Simulation results of Example I for theoretical predictions and
Monte Carlo simulation of KLMS.

Fig. 1(a) illustrates the mean convergence behavior of the
estimated weight coefficient vector of ZA-KLMS algorithm.
One can observe that the averaged curves of five negligible
coefficients are rapidly attracted to zero due to the promoting-
sparsity. As shown in Fig. 1(a), we can also see that the theo-
retical curves calculated by the analytical model consistently
match with all the simulated curves of coefficients wn,m.
Fig. 1(b) shows that the theoretical MSE and EMSE curves
coincide with their respective Mont Carlo simulated curves
very well during the transient phase. Therefore, the simula-
tion results of Example I demonstrate the effectiveness and
accuracy of our derived analytical models for ZA-KLMS
under the necessary assumptions and approximations.

One can obviously see from Fig. 2(a) that the five negligi-
ble weight coefficients of KLMS algorithm did not converge
towards the optimal value zero resulting in the performance
degradation. Fig. 2(b) shows that the simulated and theoret-
ical learning curves of MSE and EMSE of KLMS are all
much higher than those of ZA-KLMS shown in Fig. 1(b).
Therefore, the ZA-KLMS algorithm exhibits better transient
performance than the KLMS algorithm for the nonlinear
sparse system verified by both of the simulated and theoreti-
cal results.
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B. EXAMPLE II
For the second example, consider another unknown nonlinear
sparse system whose the optimum weight coefficients vector
is given by

w? =
[
1.5, 1, 0.5, 0, 0, 0, 0, 0, −0.7, −1, −1.5

]>
(70)

and the fixed dictionary with 11-elements given by

ω =
{
uω,1,uω,2, . . . ,uω,11

}
=

{[
0.72
1.44

]
,

[
2.31
1.28

]
,

[
−1.54
−0.29

]
,

[
3.43
1.81

]
,

[
1.81
−2.43

]
,

[
2.01
2.69

]
,[

−0.1
−2.2

]
,

[
2.13
−1.16

]
,

[
1.48
−1.06

]
,

[
−1.28
−0.92

]
,

[
0.32
0.15

]}
.

Subsequently, the measured outputs of nonlinear system can
be defined as follow:

dn =
M∑
m=1

w?m exp
(
−
‖un − uω,m‖2

2ξ2

)
+ zn

where the additive noise zn follows zero-mean i.i.d. Gaussian
distribution with SNR = 10dB. Furthermore, the input signal

FIGURE 3. Simulation results of Example II for theoretical predictions and
Monte Carlo simulation of ZA-KLMS.

un was assumed to be a sequence of statistically independent
vectors un = [u1,n, u2,n]> with correlated samples satisfying
u1,n = 0.5 u2,n+vu,n, where u2,n is a white Gaussian random
sequence with variance σ 2

u2 = 1 and vu,n is also a white
Gaussian random sequence with σ 2

v = 0.75 so that u1,n has
variance σ 2

u1 = 1. The Gaussian kernel bandwidth ξ and
the step-size η were set to 0.95 and 0.1, respectively. The
regularization parameter λ was set to 2× 10−3.

Fig. 3(a) shows the mean convergence behavior of weight
coefficients vector of ZA-KLMS, where five curves of neg-
ligible coefficients are enforced to rapidly approach to zero.
In addition, it can be observed from Fig. 3(a) that the analyti-
cal model predictions and the Monte Carlo simulation curves
of all coefficients wn,m are consistently superimposed. Like-
wise, Fig. 3(b) shows that the theoretical MSE and EMSE
curves predicted by analytical models perfectly match with
their respective simulated learning curves during the entire
transient period. Simulation results of Example II illustrate
the accuracy of the second order stochastic convergence
model of ZA-KLMS with promoting-sparsity, and also val-
idate the reasonableness of assumptions and approximations
again. Our derived analytical models can allow to investigate

FIGURE 4. Simulation results of Example II for theoretical predictions and
Monte Carlo simulation of KLMS.
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the transient convergence behaviors of ZA-KLMS algorithm
with different parameters setting and compare the conver-
gence performances among the distinct types of ZA-KLMS
algorithms.

Fig 4(a) clearly shows that the five trivial weight coeffi-
cients of KLMS rapidly decrease but not to zero, which are
different with ZA-KLMS as shown in Fig. 3(a). As com-
parison of Fig. 3(b) and Fig 4(b), we can obviously see
that as a consequence of the nonzero weight coefficients the
KLMS suffers from the severe performance degradation for
the nonlinear sparse system. Consequently, both of simulated
and theoretical transient simulation results demonstrate that
ZA-KLMS algorithm significantly outperforms KLMS algo-
rithm in terms of convergence speed and steady-state EMSE
when applied to the nonlinear systems with sparse features.

VI. CONCLUSION
In this paper, we briefly reviewed the ZA-KLMS algorithm
with `1-norm regularization for the nonlinear sparse system
in stationary environment. Then, we studied the transient
performance analysis of ZA-KLMS using Gaussian kernel
function with fixed dictionary in the mean and mean-square
senses. The accuracy of the derived analytical models was
validated by the excellent agreement between the Monte
Carlo simulations and the theoretical predictions. The simu-
lations results also demonstrated that the ZA-KLMS outper-
forms the KLMS for nonlinear sparse system. In the future
work, we will investigate the stochastic convergence behavior
of sparse-ware KLMS-type algorithm in the presence of non-
Gaussian impulsive noise.
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