
Received August 19, 2019, accepted September 13, 2019, date of publication September 18, 2019, date of current version October 2, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2942282

Mobile Crowdsourcing for Intelligent
Transportation Systems: Real-Time
Navigation in Urban Areas
XIANGPENG WAN , (Student Member, IEEE), HAKIM GHAZZAI , (Member, IEEE),
AND YEHIA MASSOUD, (Fellow, IEEE)
School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, NJ 07030, USA

Corresponding author: Hakim Ghazzai (hghazzai@stevens.edu)

ABSTRACT Modern urbanization is demanding smarter technologies to improve a variety of applications
in intelligent transportation systems. Mobile crowdsourcing enabling automatic sensing tasks constitutes an
excellentmean to complement existing technologies. In this paper, we exploit the high amount of data that can
be collected by on-board and infrastructure-based sensors to evaluate traffic network statuses and improve
the navigation of vehicles in urban areas. The objective is to design real-time route planning algorithms
that determine fastest trajectories for both single and multiple destinations, in a real-time manner based
on the frequent data inputs. We first formulate the routing problems as integer linear programs (ILPs) and
then, design iterative approaches levels to iteratively solve the ILPs while considering updated traffic data.
Afterwards, lower complexity sub-optimal graph-based algorithms are designed to solve the real-time routing
problems. Unlike traditional navigation solutions, the proposed approaches update the vehicle trajectory
after a certain period characterized by timely correlated data. Uncertainty and erroneous data inputs are also
considered to determine fastest and least risky trajectory. Our results show that crowdsourcing-based real-
time navigation outperforms outperform traditional navigation solutions by selecting less congested roads
and avoiding blocked streets.

INDEX TERMS Intelligent transportation systems, mobile crowdsourcing, uncertainty, real-time navigation,
delivery vehicle problem.

I. INTRODUCTION
With modern urbanization, the increasing amount of vehic-
ular traffic flowing within cities is perpetually threatening
to increase congestion dramatically. According to the latest
Traffic Index ‘TomTom’, congestion has increased 23% glob-
ally from 2008 to 2016 and now is worse [2]. In New York
city, drivers spend up to 35% extra travel time per day on
average. It is even up to 62% on average during evening rush
hours. Traffic congestion becomes a serious problem in mod-
ern urban cities, which does not only affect people’s commut-
ing time and temper, but it can also cause health-damaging
air pollution and a big waste of energy. To cope with this
problem, a lot of technological solutions have been proposed
under the scope of smart cities. For instance, using vehicle-
infrastructure technology, the city of Columbus, Ohio,

The associate editor coordinating the review of this manuscript and
approving it for publication was Kuo-Ching Ying.

controls the traffic signal time by monitoring the traffic flow
throughout the day. In Atlanta, a 2.3-mile smart corridor was
opened in 2017. The corridor contains tremendous sensors,
cameras, and devices to collect data. It solves the issues
related to mobility and safety. It improves the overall traf-
fic efficiency, e.g. by controlling smart traffic signals [3].
In San Francisco, local authorities installed sensors alongside
the roads to help drivers find on-street parking.

Such solutions effectively contribute to reducing traffic
congestion issues and improving urban mobility, thanks to
the emergence and spread of on-board and infrastructure-
based sensors. With their help, collecting data becomes very
common in urban areas [4], which may ease the access to
traffic information and help determining road statuses in an
instantaneous manner mainly when this data is shared among
road users. This has led researchers to investigate an emerging
concept, the vehicular social networking (VSN) [5], which
effectively exploits the availability of data, especially in urban

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 136995

https://orcid.org/0000-0002-4998-6494
https://orcid.org/0000-0002-8636-4264


X. Wan et al.: Mobile Crowdsourcing for ITSs: Real-Time Navigation in Urban Areas

areas [6], [7]. With VSN, vehicles can establish relationships
with their peers and other devices based on common interests.
This significantly empowers current intelligent transportation
systems (ITS) with extra intelligence and enables new appli-
cations associated with traffic safety and traffic efficiency,
such as accident reporting or slippery roads warnings [8].

Navigation methods which are currently in use, such as
Google maps navigation, Waze navigation, and shortest path
solutions are based on historical data, statistical records, and
human inputs [9]. Those methods work perfectly in rural
areas and highways where traffic is usually smooth and not
disrupted by unexpected events. However, in urban areas,
the road network is far more complex, with a high pedestrian
density and unexpected events such as constructions and
accidents that could frequently block entire roads. Hence,
current navigation methods will not always provide the best
routes. They might unbalance the traffic flow by guiding
drivers to select the same routes, which become progressively
the slower ones [10]. Moreover, they may guide drivers to
blocked roads and indirectly contribute to traffic congestion.
Therefore, based on instantaneous feedback of other vehicles
and sensors, the proposed real-time route planning frame-
work will efficiently deal with the aforementioned issues and
potentially improve the vehicle navigation in urban areas.

A. RELATED WORK
In recent years, a lot of studies investigating the benefits of
data collection for different vehicular and ITS applications
have been presented [11]. For instance, in [12], the authors
proposed to exploit the collected data to detect on-street park-
ing with mobile sensing that has comparable performance
with fixed sensing. The advantage is that mobile sensing is
much cheaper and available everywhere. The flaw is that
mobile sensing works well for standard on-street parking
where vehicles parked alongside streets and detectors need to
be moving on the outside lanes. In [13], the authors extracted
the road lanes information from different source including
the Global Positioning System and taxi data, the accuracy is
around 85%. There are studies related to advanced driving
assistance systems that help detecting lane markings using
deep learning [14], additionally, GPS is also a reliable data
source to help improve the accuracy. In [15], the authors
proposed the last mile navigation method for public vehicles.
They introduced an algorithm to detect the last segment
of drivers from the trajectory and take them as landmarks
for ant optimization. In [16], the authors predicted short-
term traffic conditions with trajectory data using Support
Vector Machine, the authors classified the conditions into
smooth, basically smooth, mild congestion, moderate con-
gestion, and serious congestion. Those categories are used to
predict the future traffic situation, however, the accuracy of
this method is not well validated. Also, in [17], the authors
introduced a new system that collects accident evidence from
vehicular sensors and records it for future investigation to
provide sufficient data source about traffic behavior super-
vision once implemented. Moreover, many crowdsourcing

architectures and recruitment policies have been proposed to
effectively exploit crowdsourced data to solve urban traffic
problems [18], [19].

Apart from those contributions described earlier, there are
some studies that worked on the real-time route planning
problem in urban cities. In [20], the authors exploited the
feedback system in a distributed-opportunistic way to opti-
mize the route planning for drivers, and they evaluated the
performance of their model using Markovian agents. Their
algorithm outperforms the shortest path algorithm in a case
study. In [21], the authors designed a system to detect anoma-
lies with tested vehicles, and then select the most comfortable
route based on the data collected about three metrics includ-
ing: travel time, road roughness, and road remove, using the
Dijkstra’s algorithm. In [22], the authors refined a route-
planning algorithm to improve the navigation in urban areas
under traffic congestion based on fuel consumption. In [23],
the authors proposed an improved navigation algorithm based
on the Dijkstra’s algorithm and tested it on a simple graph.
In these papers, however, the authors do not take the real-time
road information into consideration, where vehicles might
be blocked by unexpected events, and they do not consider
real-time traffic speed, which potentially guides drivers into
congested roads.

On the other hand, there are other studies investigating
the navigation problems for the multi-destinations scenario.
In [24], the authors applied the k-shortest path method to
find shortest trajectory towards one destination. They also
extended the solution to the multi-destinations case using
k-shortest path trees. They transformed the positions into
nodes from the real map, but they did not take the real-
time traffic data into consideration and their algorithms are
not proven to be optimum. In [25], the authors introduced
a novel layout model for generating multi-destination maps,
they framed each destination with a square block and con-
sidered the distance and angles between each block. They
also assigned different weights to roads, streets, and highways
before selecting the best segregation according to their defini-
tion. However, they only considered the off-line map without
real-time traffic data, and the destinations are not precisely
reached for navigation. Some studies show that the navigation
system can be embedded into autonomous vehicles that routes
the vehicle through known or preprogrammed co-ordinates
autonomously without any human control [26]. In the latter
paper, the authors designed a navigation system that applies
low-cost strap-down inertial measurement unit to navigate
between the two geographical points based on GPS, but in
practice, the breakthrough of both hardware and software are
needed. With the crowdsourcing infrastructure, the system
should become easier to implement.

B. CONTRIBUTIONS
In smart urban area, mobile users and vehicles are capa-
ble of completing various tasks from different locations at
the same time by exploiting VSN and crowdsourcing [27].
For instance, performing location-based query tasks and

136996 VOLUME 7, 2019



X. Wan et al.: Mobile Crowdsourcing for ITSs: Real-Time Navigation in Urban Areas

automatic sensing tasks could provide VSN members with
necessary information about the traffic network in real-time.
In the automatic sensing task vehicles may crowdsense the
pedestrian flow and/or the road status using on-board sensors,
especially with the emergence of autonomous sensing tech-
niques, which makes real-time data collection a practical and
cost-effective method compared to traditional techniques.

In this paper, we propose to exploit the emergence of VSN
and crowdsourcing to design a real-time navigation solution
for vehicles in urban smart cities where automatic sensing
tasks are expected to be more frequent. A central cloud server
is responsible for continuously collecting the data, treating it,
and recommending navigation trajectories to requesters, e.g.,
vehicles. The objective is to instantly guide a vehicle to reach
single or multiple destinations based on real-time feedback
of other road network users such as vehicles, infrastructure-
based sensors, and pedestrians. Furthermore, the proposed
framework is applied to the delivery vehicle problem where
the objective is to find the fastest route to reach several
destinations, e.g., to drop-off goods before returning to the
starting position. In all cases, our framework efficiently deter-
mines the fastest route in real-time for the vehicle after
providing all the scheduled destinations to the system once
without predefining any order preference. The routes and
destinations can be updated meanwhile according to their
geographical locations and the reported traffic status. Finally,
we deal with the case where the input data contains uncertain
and erroneous information to determine route with minimum
congestion risk. The proposed framework combines off-line
and on-line information to devise navigation solutions using
reported crowdsourced data.

The contributions of this paper are summarized as follows:
• Integer linear programs (ILPs) are formulated to opti-
mally determine the fastest route for a vehicle in realistic
off-line maps with single, multiple destinations, and
delivery vehicles, based on the crowdsourced inputs of
diverse ITS sensors such as on-board and infrastructure-
based sensors, and road users. To address uncertainty
and erroneous data issues, robust optimization is also
implemented to avoid risky routes.

• Due to the recurrent updates, the ILPs are regularly
solved according to a certain window size to determine
the best progress according to the recent data. The win-
dow size corresponds to the time period during which
the input crowdsourced data is assumed to be highly cor-
related. Two real-time navigation ILP-based algorithms
are designed: the window-size algorithm (WSA) where
complete routes are updated every window size and the
low complexitywindow size algorithm (LCWSA)where
part of the route is updated every window size.

• Heuristic approaches using the Dijkstra’s algorithm and
solving the navigation problems are also proposed to
achieve reasonable results with lower computational
complexity.

• Comparisons between the performances of all the
proposed approaches are provided in addition to

the ones of the traditional off-line shortest path
algorithm.

The provided results show that joining on-line and off-line
solutions can significantly improve the navigation perfor-
mance in urban areas where sudden events frequently occur.
The performances of proposed real-time navigation algo-
rithms always upper-bound those of the shortest path one and
allow the avoidance of blocked streets beforehand instead of
identifying them in-person. At the same time, the proposed
solution could pave the way towards real-time navigation
for autonomous vehicles by complementing their on-board
sensors with data traffic inputs shared by their peers.

C. OUTLINE
The rest of the paper is organized as follows. The
proposed system and related parameters are presented
in Section II. In Section III, we introduce the decision
variable and formulate the ILPs for the single-destination,
multi-destinations, delivery vehicle, and uncertainty-based
problems. The proposed ILP-based navigation algorithms
and the heuristic approaches are presented in Section IV.
The simulation results are revealed in Section V. Open chal-
lenges are discussed in Section VI and conlcusions are drawn
in Section VII.

II. SYSTEM MODEL
We consider an urban area where a complex traffic network
exists. We assume that the traffic network is composed of
intersections and roads. In the paper’s context, each road i,
where i ∈ {1, . . . ,N } is connecting at most two intersections,
whereN is the number of roads in this region.We denote by I
the set including all intersections in the area of interest. Each
intersection in I is indexed by k where k ∈ {1, · · · , Ī}, where
Ī denotes the cardinality of the set I. Hence, each road starts
at one intersection k and ends at another intersection k ′ where
k, k ′ ∈ I. We denote the length of a road i by li.

We also assume that each road i is divided into Mi seg-
ments. Their lengths are determined according to a certain
distance threshold defined by the operator and denoted by dth.
The number of segments of road i could be calculated as
Mi = dli/dthe, where d.e denotes the ceiling function. Thus,
we compute the length of each segment j of road i as li,j =

li
Mi
.

Note that the length of the segment cannot exceed dth, and
that the lower dth, the better accuracy for the navigator, but
the higher computational complexity.We define the segments
of road i by (i, j), j ∈ {1, · · · ,Mi}. Also, we define the
geographical values for the middle of the segment (i, j) as
φi,j and ψi,j, representing the longitude and latitude values,
respectively.

We define the set of connections linking two successive
segments by C. A connection in C is indexed by q where q ∈
{1, · · · , C̄}. Consequently, for each connection q, we denote
its input set by CInq and its output set by COutq . In the example
shown in Fig. 1, CInq and COutq are given as follows:

CInq = {(1, 1), (2, 2)}, (1a)
COutq = {(1, 2), (2, 1)}. (1b)

VOLUME 7, 2019 136997



X. Wan et al.: Mobile Crowdsourcing for ITSs: Real-Time Navigation in Urban Areas

FIGURE 1. An example of intersection and segment connection. Seven
roads are considered in this example. The connection q has two inputs
and two outputs where a U-turn is possible. The intersection k has
3 inputs and 4 outputs.

Note that a U-turn is possible in this connection, which
means that the vehicle can move in both directions. This is
essentially useful when one of the segments corresponds to
the starting point of the segment. It is also possible to force a
vehicle to move into one direction. In this case, CInq = {(1, 1)}
and COutq = {(1, 2)}.
Similarly, for each intersection k , we denote its input set

by IIn
k and its output set by IOut

k . In the example shown
in Fig. 1, IIn

k and IOut
k are given as follows:

IIn
k = {(1, 2), (4, 2), (5, 2)}, (2a)

IOut
k = {(2, 1), (3, 1), (6, 1), (7, 1)}. (2b)

We denote the probability that a vehicle will be stopped,
e.g., by a traffic light or a stop sign, in a segment (i, j) by psi,j.
If the vehicle moves from one segment to another while
crossing a connection q, then psi,j = 0. However, if the vehicle

is crossing an intersection k , psi,j ≥ 0. For instance, if there
is a stop sign in k , then psi,j = 1. If there is a traffic light
in k , like in Fig. 1, then psi,j = 0.75. We also associate to
each probability psi,j the corresponding expected waiting time
as T si,j. Finally, we define the starting position of a vehicle
as (S, Sg). For the one-destination problem, we define the
destination of vehicle as (D,Dg), where (S, Sg) 6= (D,Dg).
However, for the multi-destinations problem, we define the
destinations of vehicle as (Dn,Dgn), n ∈ {1, · · · , D̄} where
D̄ denotes the cardinality of the set containing the destination
coordinates (Dn,Dgn).
In our framework, we assume that the area of interest is

managed by a central cloud server which is in charge of multi-
ple functionalities in order to propose trajectories for vehicles
based on collected real-time feedback, as shown in Fig. 2.

FIGURE 2. System architecture for the real-time navigation framework: an
example of location-based query tasks in automated crowdsourcing. The
cloud server will respond to the request of the vehicle (‘‘requester’’) to
provide it real-time routing based on the inputs of the different data
sources.

The cloud server continuously collects data from different
sources and accordingly, guides vehicles toward their destina-
tions. We assume that the real-time data arrives periodically
after t seconds. The cloud server uses both static information,
which corresponds to the complex traffic network map, and
the dynamic real-time inputs provided by different traffic
network sources to guide the requesters.

The real-time data include traffic speed vi,j, accounted
during the motion of the reporting vehicles, the expected
waiting time at each segment T si,j, accounted when the report-
ing vehicles are stopped, and the road segment statuses ei,j
reported by other vehicles/devices crossing that segment (i, j).
The road status ei,j is a binary variable indicating whether a
road segment is blocked or not. It is equal to 1 if it is the case.
In the sequel, we add the index t to the previous variables as
they are updated with time according to the feedback of road
users and other sensors.1

In a real-world scenario, since the data received by the
server are from multiple vehicles, it might come at different
time instants. Also, the server might receive multiple reports
about the same segment from different sources. Hence, it is
necessary for the server to have a data processing module,
which treats and filters the data before making any decision.
Due to the fact that traffic profiles in practice are usually static
for short periods of time, we assume that the data is correlated
over time. Therefore, we introduce the time period window
size, WS , where we assume that the recently received data
is valid during the whole window size. The summary of the
parameters is given in Table 1:

III. PROBLEM FORMULATION
The objective of this framework is to minimize the time that
the vehicle spends on roads to go from a starting position to
a destination, or to go from a starting position to multiple
destinations. In other words, the selected route should be

1More categories of data can be taken into account by the server. In this
paper, for simplicity, we limit our analysis to these three categories: speed,
road status, and waiting time.

136998 VOLUME 7, 2019



X. Wan et al.: Mobile Crowdsourcing for ITSs: Real-Time Navigation in Urban Areas

TABLE 1. List of parameters.

FIGURE 3. Traffic data reception at the cloud server level. The figure
clearly distinguishes between the time slots at which the data is received
from crowdsources (red line) and the vehicle steps computed based on
the motion of the vehicle of interest (blue line).

preferably the least congested one with minimum stopping
times and no blocked streets.

Before introducing the decision variable and formulating
the problem, we need to distinguish between the following
twomeasures: first, the fixed data collection time slot of cloud
server, t , introduced earlier, that corresponds to the instant
at which the cloud server receives updates from reporting
devices and vehicles, and second, the steps taken by the
vehicle of interest, indexed by the parameter s and that corre-
spond to the time needed by the vehicle to cross a segment
of road. The duration of each step varies according to the
vehicle moves across the segment. Fig. 3 shows the differ-
ence between the time slots and vehicle steps. The vehicle
is guided based on the last updates received by the central
server.

We introduce the decision variable xi,j,s to represent the
process of selecting a route. We define it as follows:

xi,j,s =

{
1, if the vehicle crosses segment (i, j) at step s,
0, otherwise.

(3)

Let us assume that the vehicle takes at most T steps to
reach destination, then the set {xi,j,s} where xi,j,s = 1, for
s ∈ {1, · · · ,T }} indicates the entire route. In the following,
we introduce the problem formulations of different routings.

A. SINGLE-DESTINATION ROUTING
The first problem we tackled is the navigation from one
starting position to one destination, in order to ensure that the
selected route is reasonable, the following constraints must
be considered:

Step by step constraints: First, we need to ensure that the
vehicle is moving such that it is located in one segment during
each step as long as it did not reach the destination. That is,
the following conditions are added:

if
s−1∑
τ=1

xD,Dg,τ = 0, then,
∑
i,j

xi,j,s = 1,

else
∑
i,j

xi,j,s = 0, ∀s. (4)

In order to convert those conditions to linear constraints,
we use the big-M method as follows:

∑
i,j

xi,j,s ≤ 1+M
s−1∑
τ=1

xD,Dg,τ , ∀s,

∑
i,j

xi,j,s ≥ 1−M
s−1∑
τ=1

xD,Dg,τ , ∀s, (5)

whereM is a sufficiently large positive number.
Intersection constraints: Second, we need to ensure that

the vehicle moves in a sequential manner when crossing an
intersection. For example, if the vehicle chooses to enter an
intersection in the region, then in the next step, it must leave
from that intersection. This is assured using the following
if-else statements, which can be linearized using the big-M
method too:

if
s−1∑
τ=1

xD,Dg,τ = 0, then,∑
(i,j)∈IIn

k

xi,j,s =
∑

(i,j)∈IOut
k

xi,j,s+1, ∀s,∀k. (6)

For instance, the RHS and LHS of (6) can be written as
follows for the intersection shown in Fig. 1:∑

(i,j)∈IIn
k

xi,j,s = x1,2,s + x4,2,s + x5,2,s, ∀s,

∑
(i,j)∈IOut

k

xi,j,s′ = x2,1,s′ + x3,1,s′ + x6,1,s′ + x7,1,s′ , (7)

where s′ = s+ 1.
Connection constraints: Third, for each segment con-

nection, the vehicle moves in a sequential manner in a way

VOLUME 7, 2019 136999



X. Wan et al.: Mobile Crowdsourcing for ITSs: Real-Time Navigation in Urban Areas

similar to one of the intersections. We then have:

if
s−1∑
τ=1

xD,Dg,τ = 0, then,∑
(i,j)∈CIn

q

xi,j,s =
∑

(i,j)∈COut
q

xi,j,s+1, ∀s,∀q. (8)

According to Fig. 1, we obtain the following constraint for
the given connection:∑

(i,j)∈CIn
q

xi,j,s = x1,1,s + x2,2,s, ∀s,

∑
(i,j)∈COut

q

xi,j,s′ = x2,1,s′ + x1,2,s′ , s′ = s+ 1. (9)

Initialization constraint: Last, we initialize the position of
the vehicle as follows:

xS,Sg,1 = 1. (10)

Utility Function and Optimization Problem: We define
a metric corresponding to the expected time spent on each
segment at time slot t , as shown in the follows:

fi,j,t =
li,j
vi,j,t
+ T si,j,tp

s
i,j + E0ei,j,t , (11)

where the first term in (11) is the time spent by a vehicle
in motion while crossing the segment (i,j). The second term
in (11) represents the delay due to a stop sign or a traffic light,
and the third term is the time due to an unexpected event
blocking the street during the time period t . The parameter
E0 is a penalty factor that is imposed when segment (i, j) is
blocked (E0 → +∞). Based on the metric (11), we define
the fitness function at each step s as follows:

fs(xi,j,s) =
∑
i,j

f ′i,j,t ′xi,j,s, (12)

where t ′ represents the last measure of the metric before
the execution of step s as illustrated in Fig. 3 and f ′ is the
output of the data process made by the server, that we denote
by the function F where f ′i,j,t ′ = F(fi,j,t ). The function F
incorporates the filtering and the treatment of the reported
data. We assume that the fitness metric f ′i,j,t ′ remains valid
for a certain number of time slots that is denoted by WS .
The choice of WS is decided by the cloud server according
to the data correlation level. The impact ofWS is investigated
in Section V.

On the other hand, we define the geographical distance
as gi,j, to represent the distance from the segment (i, j) to the
destination (D,Dg), calculated by the longitude and latitude
values φi,j and ψi,j defined earlier. Then, we define the dis-
tance function at each step s as follows:

gs(xi,j,s) =
∑
i,j

gi,j.xi,j,s. (13)

By minimizing the fitness function fs, the cloud server will
find the fastest segment at each time slot, but the direction

selected for the vehicle could be erroneous. By minimizing
the distance function gs, the cloud server will find the right
direction, but the selected route will be slow. In order to select
the fastest route for the vehicle with the correct direction,
we define the utility function at each step s as a weighted sum
of both functions as follows:

Us(xi,j,s) = ωfs + (1− ω)gs. (14)

These functions are weighted by a Pareto parameter ω
(0 < ω < 1). When ω → 1, we are dealing with the
fitness function given in (12). This corresponds to an on-
line navigation strategy that selects the fastest route given the
traffic status. When ω→ 0, we deal with the fitness function
given in (13), which corresponds to an off-line navigation
strategy finding the shortest path regardless of the traffic
status. Other values of ω constitute a trade-off between these
two extremes. Finally, the optimization problem is formulated
as follows:

(P0):minimize
xi,j,s∈{0,1}

T∑
s=1

Us(xi,j,s)

subject to: (4), (6), (8), and (10). (15)

In practice, the Pareto parameter ω could be tricky to choose
for best results, some ω returns high performance for one
scenario and low performance for another scenario. In this
case, we formulate a new problem that does not need to
consider the distance function gs. To this end, we add the
following extra constraint:

Arrival condition constraint: This constraint forces the
vehicle to reach the destination as follows:

T∑
τ=1

xD,Dg,τ = 1. (16)

Then we formulate the problem as:

(P1):minimize
xi,j,s∈{0,1}

T∑
s=1

fs(xi,j,s)

subject to: (4), (6), (8), (10), and (16). (17)

B. MULTI-DESTINATIONS ROUTING
We also investigate the problem with multiple destinations
where the vehicle leaves from one starting position and
sequentially visits several destinations. The constraints are
slightly different from what is given earlier.

In the multiple-destinations problem, minimizing the dis-
tance function gs is no longer convenient because there
are many distances between the vehicle and destinations to
minimize which is infeasible in the multi-destinations case,
especially that we are not providing a specific ranking for the
destinations. Based on the traffic status, the cloud server will
determine which destination to be visited first.

Arrival condition constraint: Hence, we introduce the
following constraints of arrival conditions which guarantee

137000 VOLUME 7, 2019



X. Wan et al.: Mobile Crowdsourcing for ITSs: Real-Time Navigation in Urban Areas

that the vehicle reaches all the destinations:

D̄∑
n=1

T∑
τ=1

xDn,Dgn,τ = D̄. (18)

Step by step constraints: Then, we need to ensure that the
vehicle is moving such that it is located in one segment during
each step as long as it did not reach all the destinations. The
following constraints are added:

if
D̄∑
n=1

s−1∑
τ=1

xDn,Dgn,τ < D̄, then,
∑
i,j

xi,j,s = 1,

else
∑
i,j

xi,j,s = 0, ∀s. (19)

The rest constraints, namely Intersection constraints,
Connection constraints and Initialization constraints
remain the same as (6), (8), and (10).

Optimization Problem: Hence, the multi-destination
routing problem is formulated as follows:

(P2):minimize
xi,j,s∈{0,1}

T∑
s=1

fs(xi,j,s)

subject to: (6), (8), (10), (18), and (19). (20)

C. DELIVERY VEHICLE PROBLEM
Moreover, we formulate another problem to solve the puzzle
of the delivery vehicle problem where the objective is to find
the optimum route for vehicle visiting several locations and
then going back given the crowdsourced data. For example,
this can correspond to the case of a truck delivering goods
to many stores around the city. The constraints are slightly
different from the ones of the previous multi-destinations
problem as follows:

Return constraints: The vehicle must return to its start
position after reaching all the destinations, hence, the follow-
ing constraints are added:

if
D̄∑
n=1

s∑
τ=1

xDn,Dgn,τ = D̄,

then,
T∑

τ=s+1

xS,Sg,τ = 1, ∀s. (21)

Step by step constraints: Then, we need to ensure that
the vehicle is moving before it reaches back to the starting
position. That is, the following constraints are added:

if
s−1∑
τ=2

xS,Sg,τ = 0, then,
∑
i,j

xi,j,s = 1,

else
∑
i,j

xi,j,s = 0, ∀s. (22)

rest of the constrains remain the same as (6), (8), and (10)
Optimization Problem: We formulate the delivery vehicle

routing problem as follows:

(P3):minimize
xi,j,s∈{0,1}

T∑
s=1

fs(xi,j,s)

subject to: (6), (8), (10), (21), and (22). (23)

The problems (P0), (P1), (P2), and (P3) are ILPs that can
be solved optimally using off-the-shelf software which imple-
ments algorithms such as the branch and bound technique
to determine optimal routes for the vehicles. This assumes
the perfect knowledge of the road network status from the
departure of the vehicle until its arrival to destination, which
is not true in practice. Therefore, in the Section IV, we pro-
ceed with iterative ILP-based approaches where routes are
modified (if needed) whenever the server receives new traffic
status updates. Moreover, we propose in the following to opti-
mize the navigation of vehicles while considering uncertain
crowdsourced feedback.

D. ROUTING UNDER UNCERTAINTY CONSIDERATION
In practice, accurate knowledge about the traffic status cannot
be perfectly measured especially when it is crowdsourced
in real-time from different sources. Indeed, data received by
cloud server might be erroneous, missed, or contaminated.
For instance, there is difference between the actual speed and
the one reported to the server. In order to take this uncertainty
effect into consideration, we model the input data that will be
treated by the cloud server through introducing an uncertainty
parameter σi,j,t modeled as a zero-mean distribution and
standard-deviation denoted by θ . We obtain:

f̃ ′i,j,t ′︸︷︷︸
Estimated value

= f ′i,j,t ′︸︷︷︸
Submitted value

+ σi,j,t︸︷︷︸
Uncertainty

. (24a)

In order to linearize the uncertainty property [28], we add the
following constraints:

f̃ ′i,j,t ′ = f ′i,j,t ′ + f1 − f2, i, j ∈ ST

f1 + f2 = σi,j,t
0 ≤ f1, f2 ≤ σi,j,t (24b)

where f1 and f2 are lag inputs of the model, representing the
uncertainty, and ST represents the group of streets that have
variation between their estimated values and the submitted
values. In this case, the utility function becomes:

f̃s(xi,j,s) =
∑
i,j

f̃ ′i,j,t ′xi,j,s, (25)

Us(xi,j,s) = f̃s. (26)

Optimization Problem: Then, the optimization problem for
single destination under uncertainty is given as follows:

(P4):minimize
xi,j,s∈{0,1}

T∑
s=1

Us(xi,j,s)

subject to: (4), (6), (8), (10), (16), and (24b). (27)

VOLUME 7, 2019 137001



X. Wan et al.: Mobile Crowdsourcing for ITSs: Real-Time Navigation in Urban Areas

We apply a robust optimization approach to sought against
uncertainty. Hence, the obtained route is expected to be the
fastest and the least risky one with minimum uncertainty
level. Similar approach can be applied to deal with the
uncertainty in the multi-destinations and the delivery-vehicle
problems.

IV. PROPOSED REAL-TIME NAVIGATION ALGORITHMS
In this section, we first introduce two algorithms solving
the ILP problems formulated earlier while taking the real-
time aspect of the framework. The first algorithm, defined as
the Window Size Algorithm (WSA), finds, for each window
size, a full route for the vehicle from the starting point to
the destination. The route is updated after the expiration of
WS according to the recent data reported by the different
sources. To reduce complexity, we propose a second algo-
rithm that we call the Low Complexity Window Size Algo-
rithm (LCWSA) where the ILP is solved in a much smaller
region defined by the window size. Then, we propose two
heuristic approaches for the Window Size Algorithm (WSA)
which run much faster while providing reasonable results
compared to the ILP-based solutions as it will be shown
in Section V.

A. WINDOW-SIZE ALGORITHM (WSA)
The proposed approach aims to find the fastest route towards
the destination based on the latest data received by the
server. The latter is assumed to remain valid for a certain
duration of time that we defined earlier as the window size
WS . Hence, the algorithm will find a route based on the
metric f ′i,j,t ′ . In other words, for every WS , the cloud server
selects the entire route for the vehicle. After WS , a new
route is selected based on the updated metrics. The start-
ing point is then updated to the latest location of the
vehicle.

In the WSA algorithm, we do not need to consider the
distance function gs since every WS , a full route will be
selected for the vehicle. Hence, in the proposed WSA for
single destination, the vehicle sends its initial location and
destination to the cloud server at first, then at every WS ,
the cloud server obtains the last updated metric f ′i,j,t ′ , and
initializes the decision variable X = {xi,j,s}. Afterwards,
the cloud server solves the optimization problem (P0) for
the X and selects the best route for the vehicle at this iter-
ation. After WS unit of time, the new iteration begins and
a new route for the vehicle is determined. The algorithm
converges when the vehicle arrives at destination, or it stops
when the total steps T is reached. The proposed WSA nav-
igation algorithm for the one-destination problem is given
in Algorithm 1.

For multiple-destinations and delivery vehicle problems,
the algorithms are similar, except the fact that the cloud server
solves the optimization problem (P1) and (P2) instead. For the
routing with uncertainty consideration the fi,j,t are replaced
by f̃i,j,t ones.

Algorithm 1Window Size Algorithm
1: Inputs = {(S, Sg), (D,Dg)}.
2: t = 0; s = 0; xloc = (S, Sg).
3: while vehicle does not reach the destination do
4: Obtain the last update f ′i,j,t ′ .
5: Initialize the decision variable X = {xi,j,s} where

(i, j) ∈ {1, · · · ,N } × {1, · · · ,Mi}, s ∈ {1, · · · ,T }.

6: Solve the optimization problem (P0) for X.
7: Determine the new location of the vehicle xloc within

WS .
8: end while

FIGURE 4. LCWSA strategy: The cloud server will provide a part of the
route within a circle every WS period.

B. LOW COMPLEXITY WINDOW SIZE
ALGORITHM (LCWSA)
Route selection in a large city, that contains thousands of
roads with a large number of segments, could be very
computationally hungry. In the previous proposed approach,
WSA runs the optimization problem over the entire region,
which leads to high computational complexity. Hence,
we propose LCWSA to reduce the problem complexity while
maintaining the real-time navigation property. This is done
by shrinking the entire region into multiple circular areas
where, at each iteration, the problem (P) is solved. The cir-
cles C(xloc,RE ) are centered at xloc, i.e., the location of the
vehicle at the end of each iteration, and have a radius RE ,
which corresponds to the maximum distance that can be
traveled by a vehicle during WS . Recall that, for every WS ,
the vehicle moves several steps according to the cloud server
instructions. We define the maximum number of expected
steps taken by the vehicle during WS as the batch step of the
algorithm, BS . Thus, T in (P) is replaced by a lower value,
i.e. BS . A simple example is shown in Fig. 4.
In the proposed LCWSA, the vehicle sends its location and

destination to the cloud server. At each iteration, it moves
forward by BS steps based on the latest feedback f ′i,j,t ′ . Note
it may take more than WS unit of time for a vehicle to cross
the selected route; in this case, the cloud server starts a new
iteration after WS to update the route. In order to select the
next BS segments for the vehicle, the cloud server determines
the new circular region defined xloc and RE . Then, it solves

137002 VOLUME 7, 2019



X. Wan et al.: Mobile Crowdsourcing for ITSs: Real-Time Navigation in Urban Areas

Algorithm 2 Low Complexity Window Size Algorithm
1: Inputs = {(S, Sg), (D,Dg)}.
2: t = 0; s = 0; xloc = (S, Sg).
3: while vehicle does not reach the destination do
4: Obtain the last update f ′i,j,t ′ .
5: Set BS based onWS .
6: Obtain the shrinking region (RE , xloc).
7: Initialize the decision variable X = {xi,j,s} where

(i, j) ∈ C(xloc,RE ), s ∈ {1, · · · ,BS}.
8: Solve the optimization problem (P) for X.
9: Determine the new location of the vehicle xloc within

WS .
10: end while

the optimization problem (P) for that region. The proposed
algorithm is given in Algorithm 2. Note that LCWSA is not
suitable for multiple destinations problem.

C. GRAPH-BASED HEURISTIC APPROACHES
In the previous section, the problems are solved using ILP,
which returns the optimum solution but still requires com-
putational complexity. When the map is large and there are
multiple destinations, it takes a long time for the ILP-based
approaches to converge. Therefore, in this section, we intro-
duce a heuristic approach that solving solves the navigation
problems for the different scenarios with closely good results
and fast convergence time using the Recurrent Dijkstra’s
algorithm [29]. Other graph-based shortest path algorithms
such as Bellman-Ford algorithm and Johnson’s algorithm can
be adapted too [30].

One-destination Problem:
In the off-line map, we convert the intersections I and con-

nections C to the vertices of a graph while the segments are
modeled as the edges connecting the vertices. The expected
time that the vehicle spends on one segment represents the
weight of the associated edge. The weights of all edges are
continuously updated, i.e., every WS . Hence, we employ the
Dijkstra’s algorithm to determine the fastest route from a
starting node to the destination one given the current values
of the edges’ weights. After WS , the Dijkstra’s algorithm is
re-executed given the new location of the vehicle and a new
route is obtained. The algorithm is given in Algorithm 3.

Multi-destination problem:
For the multi-destinations problem, an order must be cho-

sen. For example, the vehicle could go to the closest destina-
tion first, then go to the next closest one, and so on. Based
on this rule, and hence, the one-destination algorithm can be
applied to each destination following the chosen order. The
algorithm providing real-time navigation while following a
pre-chosen order of destinations is called as Ordered Desti-
nations Navigation Algorithm (ODNA) and is summarized
in Algorithm 4.

On the other hand, setting the order of destinations based
on the shortest distance does not necessary lead to the

Algorithm 3 Modified Dijkstra’s Algorithm based on
Crowdsourced Data
1: Inputs = {(S, Sg), (D,Dg)}.
2: t = 0; s = 0; xloc = (S, Sg).
3: while vehicle does not reach the destination do
4: Obtain the last update f ′i,j,t ′ , updated as the weights of

edges in the graph.
5: Run Dijkstra’s algorithm to find the fastest route from

xloc to (D,Dg).
6: Determine the new location of the vehicle xloc within

WS .
7: Update actual time spent t .
8: end while

Algorithm 4 Ordered Destinations Navigation Algorithm
1: Inputs = {(S, Sg), {Dn,Dgn}}.
2: Order {Dn,Dgn} based on distance.
3: t = 0; s = 0; xloc = (S, Sg).
4: while vehicle does not reach all destinations do
5: Update the destinations (remove destinations that been

reached already).
6: Obtain the last update f ′i,j,t ′ , updated edges of the

graph.
7: Compute the cloest route from xloc to the first order

destination with Dijkstra’s algorithm.
8: Determine the new location of the vehicle xloc within

WS .
9: Update t .
10: end while

Algorithm 5 Updated Destinations Navigation Algorithm
1: Inputs = {(S, Sg), {Dn,Dgn}}.
2: Obtain the last update f ′i,j,t ′ .
3: t = 0; s = 0; xloc = (S, Sg).
4: while vehicle does not reach all destinations do
5: Update the destinations (remove destinations that have

been reached already).
6: Obtain the last update f ′i,j,t ′ , updated edges of the

graph.
7: Compute the expected time spent on remaining des-

tinations based on f ′i,j,t ′ ; find the fastest destination
(Dj,Dgj).

8: Get the fastest route from xloc to that destination
(Dj,Dgj) with modified Dijkstra’s algorithm.

9: Determine the new location of the vehicle xloc within
WS .

10: Update t .
11: end while

minimum expected time spent due to the traffic sta-
tus variation. Therefore, we design the another algorithm
where the order of the destinations is updated in real-time
according to the expected navigation time measured using
the crowdsourced data. Hence, the order of destinations

VOLUME 7, 2019 137003



X. Wan et al.: Mobile Crowdsourcing for ITSs: Real-Time Navigation in Urban Areas

FIGURE 5. Route Selection with the proposed algorithms and SPA for the single-destination problem. Square: (S, Sg) and circle: (D, Dg). In the legend, ‘r’,
‘y’, ‘b’, and ‘g’ represent red, yellow, blue, and green, respectively. The gray crosses represent blocked roads. The proposed algorithms effectively avoid the
blocked roads and select the less congestion routes towards the destination.

can be updated every WS according to the traffic status
and the vehicle progress. This algorithm is summarized
in Algorithm 5 and named as Updated Destinations Naviga-
tion Algorithm (UDNA).

Delivery-vehicle problem: For the delivery-vehicle prob-
lem, the heuristic approaches are similar. After reaching all
the destinations, the vehicle heads to the start position (S, Sg).
Uncertainty: In order to take the uncertainty into con-

sideration for our heuristic algorithms, we assign an esti-
mated weight for each road. This weight is calculated based
on the received data from the cloud server while consider-
ing its uncertainty level. The worst-case scenario is taken
into account when running the Dijsktra’s algorithm to find
the fastest route. Hence, the roads that are highly expected
to be congested will be avoided. The graph-based algo-
rithms developed earlier for the single-destination, multi-
destinations, and delivery-vehicle problems can be applied.

V. SIMULATION AND RESULTS
In this section, we start by presenting the simulation envi-
ronment and thenn evaluate the performance of the pro-
posed WSA, LCWSA, and graph-based heuristic algorithms
for the different problems. The case with uncertainty is also
investigated.

A. SIMULATION PARAMETERS
We assign the Pareto parameter ω as 0.5 for LCWSA.
We compare their performances with the ones of the standard

Shortest Path Algorithm (SPA). In our simulations, we con-
sider the area of Manhattan, New York. The parameters of
the off-line map are obtained from Open Street Map [31].
In total, there are 9683 roads and 4469 intersections in the
area of interest. We choose the threshold of segments’ length
dth = 100 meters.
Apart from off-line map information, the proposed naviga-

tion algorithms require the real-time traffic information data,
which include vi,j,t , ei,j,t , and T si,j,t provided by road users
and infrastructure-based sensors. We assume that the cloud
server is updated every 10 seconds (t = 10 s) and the average
expected stop time per intersection is 10 seconds T si,j,t = 10 s
for simplicity. Due to the non-availability of realistic data and
in order to model a comprehensive traffic situation happening
in urban cities, we consider that the traffic speed data vi,j,t
reported over the segments follow a normal distribution with
a mean 2

3Sli,j and a standard deviation = 2, where Sli,j is the
maximum regulated speed of segment (i, j).

B. SINGLE-DESTINATION PROBLEM
Under this scenario, we select two different possibilities of
(S, Sg) and (D,Dg) and compare the routes obtained by
WSA, LCWSA, SPA, and the graph-based Dijkstra’s algo-
rithm (GDA). The selected routes are shown in Fig. 5.

In Fig. 5(a), the four algorithms gives exactly the same
route. This is due to the fact that the real-time route exactly
correspond to the shortest route. Indeed, since the distance
to the destination is considered in the real-time navigation

137004 VOLUME 7, 2019



X. Wan et al.: Mobile Crowdsourcing for ITSs: Real-Time Navigation in Urban Areas

FIGURE 6. Average travel time versus the window size WS for randomly chosen starting points. (a) Random traffic pattern,
(b) stable traffic pattern, (c) decreasing traffic trend, and (d) cyclic traffic pattern.

algorithms, similar routes can be obtained. However,
in Fig. 5(b), we intentionally blocked road 8359. In other
words, we set e8359,1,t = 1 ∀t . This road corresponds to an
important intersection between the starting point and the des-
tination (see the blue cross in Fig. 5(b)). In that case, WSA,
LCWSA, and GDA avoid the blocked road in advance thanks
to the real-time updates and hence, save more than 30% of
the time compared to SPA. Indeed, the SPA, as in practice
for not reported blocked roads, will choose the fastest route
assuming normal road operation till it reaches the blocked
road. A re-computation is then made to adjust the route. This
usually leads to a high delay. In Fig. 5(c) and Fig. 5(d),
we show the selected routes with another choice of (S, Sg)
and (D,Dg). A new blocked road, (i, j) = (3110, 1) is also
made in Fig. 5(d). The performance ofWSA is always the best
among the four algorithms, it savesmore than 20% travel time
with the blocked road and approximately 14% travel time
without the blocked road compared to SPA. Indeed, WSA
efficiently exploits the real-time feedback to find the fastest
route unlike the LCWSA, which performs a higher number
of route direction changes (oscillation) as shown in Fig. 5(d)
since it looks for the solution with the region defined by
the window size. Nevertheless, the simulations show that
the performance of WSA and LCWSA are always upper-
bounding those of the SPA. The GDA has fairly good results
in Fig. 5(a), (b), (d). But lower performance in Fig. 5(c) since
the Dijkstra’s algorithm is stuck at local optimum results.
Another reason is thatWS value is not appropriately selected

for this scenario. Nevertheless, in most case, it achieves close
performance to WSA. The following results will show this
fact.

To prove the advantages of the proposed algorithms in gen-
eral cases, and better evaluating the performance of the GDA,
we depict, in Fig. 6, the average travel time versus the win-
dow size (WS ), for 100 routes obtained by four different
algorithms: i) WSA, GDA, SPA, and advanced-SPA. The
latter is similar to the SPA except that the blocked roads are
assumed to be known (i.e., reported by human inputs like in
WAZE). In this Monte Carlo analysis, we fix the destination
and randomly change the starting position (100 times) then,
we compute the average travel time for these 100 trips using
four different scenarios.

The first scenario plotted in Fig. 6(a), corresponds to the
case described earlier and used in Fig. 5 (random speed
pattern). The second scenario plotted in Fig. 6(b), considers
stable traffic pattern where the traffic speed vi,j,t remains
stable around 2

3Sli,j through the whole period and in all roads
with minor white noise variation. The third scenario, depicted
in Fig. 6(c), represents the decreasing traffic trend, where
the speed remains stable in the first period of time then,
decreases slowly in the second period of time, and finally,
remains stable again at the end. The fourth scenario represents
a cyclic traffic pattern where the speed per road is reattained
after 20 minutes. Except for scenario 1, there is a time cor-
relation of the speed. The results, shown in Fig. 6, indicate
that the proposed WSA and GDA outperforms traditional

VOLUME 7, 2019 137005



X. Wan et al.: Mobile Crowdsourcing for ITSs: Real-Time Navigation in Urban Areas

FIGURE 7. An example of real-time navigation usingGreg ODNA and UDNA algorithms with three destinations. (a) ODNA. (b) UDNA.

state-of-the-art algorithms except for the first scenario
(Fig. 6(a)) where the proposed algorithm performance is
worse than Advanced-SPA for some selected window sizes.
The reason is that, in the first scenario, we assume there
is no time correlation of the speed, which contradicts the
assumption on which WSA and GDA are based. In WSA
and GDA, we assume that the latest updated values pro-
vided by road users remain valid for WS time. However,
the data is varying unexpectedly. Hence, the choice of WS is
primordial in designing real-time navigation algorithms to
balance between complexity and efficiency. On one hand,
for high WS values, fewer iterations are needed to find a
full route however, the obtained results are not adapted to
rapid traffic fluctuations. On the other hand, for low WS val-
ues, the frequency of updating route is high and may cause
unsatisfied user experience and may lead to poor perfor-
mance. Therefore, a good choice ofWS is important to find a
tradeoff between complexity, efficiency, and user experience.
From our empirical results, setting WS around 120 seconds
returns the best results. Similar remarks can be noticed with
the cyclic pattern (Fig. 6(d)). When strong time correlation
exists, the proposed real-time algorithms always outperform
the offline algorithms. We also notice that the performances
of GDA are near the ones of WSA, sometimes it even out-
performs WSA. The reason is that both algorithms are based
on the WS predicting assumptions and this assumption does
not reflect the traffic speed change precisely, which make the
performance of WSA inappropriate for some WS . Note that,
the optimum solution from WSA is better than the GDA.

C. MULTIPLE-DESTINATIONS PROBLEM
In this section, we depict the route updating process when
the vehicle is heading to multiple destinations with both
ODNA (presented in Algorithm 4) and UDNA (presented in
Algorithm 5). We then compare the performance of ODNA
and UDNA with the optimum WSA solution.

The example of route updating of ODNA at every iteration
is shown in Fig. 7(a). The ‘square’ represents starting position
and ‘circles’ represent destinations. Different colored solid
lines represent the route selection per iteration of the vehi-
cle at each WS , and the dashed lines represent the previous
selected route at certain iteration and that being updated
afterwards. For example, we notice that the selected route at

FIGURE 8. Average travel time for the WSA, ODNA, and UDNA with
different number of destinations.

the first iteration (black line) changes at the second iteration
(blue line), due to the changes of traffic situation. The remain-
ing route is kept the same. Note that, the destinations that
are visited by the vehicle maintain the same order initially
defined based on their distances from the starting position,
while, in the UDNA, the order of the destinations may change
according to current location of the vehicle and the traffic
situation, which is shown in Fig. 7(b).

In Fig. 8, we compare the performance of both ODNA and
UDNA to the one of the WSA.

Note that, we execute a Monte Carlo simulation with
50 different groups of destinations and record their average
travel time. We notice that when the number of destina-
tions increases, the average travel time between WSA and
UDNA, ODNA increases. The reason is that, for a high
number of destinations, the destinations order affects more
the performance of the navigation algorithms ODNA and
UDNA. Indeed, unlike WSA for multi-destinations, ODNA
and UDNA determine the destinations order using greedy
solutions(based on the shortest path for ODNA and iteratively
while navigating for UDNA). On the other hand, we notice
that the performances of ODNA and UDNA are very close to
each other while ODNA is slightly better than UDNA in our
simulations.

D. DELIVERY-VEHICLE PROBLEM
In Fig. 9, we show an example of the delivery vehicle route
selection with WSA, ODNA, and UDNA algorithms. In the
WSA (red path), the vehicle reaches left destination first, then

137006 VOLUME 7, 2019



X. Wan et al.: Mobile Crowdsourcing for ITSs: Real-Time Navigation in Urban Areas

FIGURE 9. Different routes selected for delivery-vehicle problem with
WSA, ODNA, and UDNA for two stops. ‘Red’, ‘green’ and ‘black’ lines
represent the routes selected by WSA, ODNA, and UDNA, respectively.

TABLE 2. Total running time in seconds of the optimal and heuristic
approaches for multi-destinations problem.

it heads to the right destination. With ODNA (green path),
the vehicle reaches the right destination first so that result
in the delay of total traveling time. For the ‘UDNA’ algo-
rithm (black path), although it heads to the left destination
first, the selected route is not the optimum one compared to
the WSA. In this example, WSA saves 12% of the time
compared toODNAand 20%of the time compared toUDNA.

E. COMPUTATION COMPLEXITY
Although the travel time of WSA is better than ODNA and
UDNA, the running time of heuristic approaches is much
faster than the WSA, the running times of WSA, ODNA,
and UDNA to converge to the results illustrated in Fig. 8 are
shown in Table 2.

The average solving time of WSA is between 300 and
4000 seconds and it increases dramatically when the number
of destinations increases, while the solving time of heuristic
approaches is between 1 to 4 seconds. In short, our heuristic
approaches are applicable in practice and we recommend the
ODNA in this case.

In details, for the WSA, we are iteratively solving a large-
scale ILPs with more than 700 constraints and thousands of
decision variables. For the GDA, the complexity is O(E +
VlogV ) where E is the number of edages (E = 11381) and
V is the number of vertices (V = 8758). Note that all tests
were performed on a laptop machine featuring an Intel(R)
Core(TM) i7 CPU and running Windows 8:1. The clock of
the machine is set to 2:66 GHz with an 8 GB memory.

F. NAVIGATION UNDER UNCERTAINTY FEEDBACK
We have investigated the performance of the real-time navi-
gation using the estimated traffic status measured through the
collected data. In this section, we evaluate the performances
of the WSA algorithm with the same simulation parameters
but while considering different levels of uncertainty. The nav-
igation problem is then solved using robust optimization at
every iteration of the WSA. In Fig. 10, we depict the selected
routes given zero, low, and high uncertainty levels. The red
line represents the perfect knowledge where no uncertainty

FIGURE 10. Time spent by a vehicle for different uncertainty levels using
WSA and robust optimization.

FIGURE 11. Avoidance of uncertain roads using WSA and robust
optimization.

exists. The yellow and pink lines represent the selected routes
with low and high uncertainty levels, respectively. We notice
that with high uncertainty level in some roads, the selected
route usually becomes longer and time consuming, due to
the fact that the vehicle tends to avoid those uncertain road
segments.

In Fig. 11, we visualize how vehicles avoid uncertain roads
(colored in black). The red line represents the original route
selection with no uncertainty, while the yellow line represents
the new selected route with some uncertainties. We find out
that the vehicle avoids most of the uncertain roads in the
map and reaches the destination with longer traveled distance
and time.

VI. DISCUSSION AND PERSPECTIVE
In this paper, we mainly investigated one among many poten-
tial applications of mobile and real-time crowdsourcing, that
is, real-time navigation problem. In such an application,
performances are significantly depending on the input data
provided by ubiquitous sources having different characteris-
tics and controlled by various owners. Therefore, data col-
lection, availability, and treatment are all important steps to
optimize before making real-time decisions.

VOLUME 7, 2019 137007



X. Wan et al.: Mobile Crowdsourcing for ITSs: Real-Time Navigation in Urban Areas

Enabling real-time navigation requires the simultaneous
collection of an important amount of data. Hence, dedicated
infrastructure need to be deployed and novel technologies
must be adopted to enable large-scale data exchange. Indeed,
vehicular adhoc network (VANET) roadside units alone will
not be sufficient to meet the requirements of effective real-
time mobile crowdsourcing services due to the expensive
installation cost and the authority limitation [32]. Fortu-
nately, 5G will represent a great technological breakthrough
in this context, by providing communication services with
low latency, higher throughput, and increased reliability [33].
Moreover, hybrid and heterogeneous communication solu-
tions must bel employed in a transparent manner to the cloud
server, requesters, and road data sources (machine or human
workers) such that reliable data exchange is guaranteed.

Effective real-time navigation requires the joint analysis of
off-line, historical, and online data. Analytical and artificial
intelligent techniques to estimate/predict the future traffic
status in every segment of the road network and deal with
uncertainty with contaminated data need to be designed to
deliver accurate and precise information and allow the server
determine least congested and fastest routes and avoid false-
positive and false-negative prediction of blocked roads.

The data treatment is a complex problem requiring signif-
icant computational resources especially when dealing with
hundreds or thousands of crowdsourcing units. Centralized
solutions residing on a single cloud crowdsourcing server
might not be the best solution for use-cases. Distributed
solutions based on edge computing resources could be an
alternative solution for such applications [34]. For instance,
when navigating, during each window size, the route is pro-
vided by the nearest edge server instead of being limited
to a single entity throughout the route. This will help in
reducing congestion on the communication network and the
cloud server itself. Effective coordination and data sharing
among the entities of the decentralized approach is needed
for reliable real-time navigation recommendation.

To sum-up. from a crowdsourcing perspective, there are
three major challenges [35]:
• Quality control: address noisy and/or incorrect submis-
sions,

• Latency control: deal with delays due to human work-
ers’s submissions which are usually slower compared to
automated computing time scales,

• Cost control: finally, find solutions to reduce monetary
cost since the crowd is not always free.

On the other hand, the trend of collecting crowdsourcing
data is also paving the way towards efficient navigation of
self-driving vehicles. Real-time navigation would very useful
to future self-driving vehicles, which should not be solely
depending on their own on-board sensors. Via VSN and
crowdsourcing, autonomous vehicles can play at the same
time the role of requester and worker by asking its peers
some information about the road network to navigate and,
at the same time, provide useful information to the server to
help other vehicles navigate. It is challenging to develop a

complete framework for machine-to-machine crowdsourcing
allowing safe navigation for these vehicles.

Finally, privacy remains a continuous concern, for such
applications, considering the sensitivity of data such as geo-
spatial data that maps real-time movement of end-users,
ITS crowdsourcing systems must be engineered securely
first, incorporating powerful end-to-end encryption to protect
transmissions from interception by malicious actors. Addi-
tionally, the systems should be designed to allow for end-
users to be in control of their data, and should be explicitly
informed in plain language how their information is used
and shared, in order to protect their privacy, build trustful
services, and improve the sustainability of ITS crowdsourcing
platforms.

VII. CONCLUSION
In this paper, we have designed real-time navigation algo-
rithms by exploiting automatic sensed mobile crowdsourcing
data to predict the status of the traffic network in urban areas
and enable online route updates. We formulate an ILP to
model the real-time navigation and designed ILP-based and
graph-based approaches with different computational com-
plexity levels to determine routes. The algorithms updates the
routes every window size, if needed, according to the reported
updates. Results have shown that our approaches outper-
form state-of-the-art algorithms by exploiting the knowledge
about the road network status thanks to information sharing.
Moreover, the proposed algorithms determine less congested
routes while avoiding reported blocked streets in advance.
Uncertainty in identifying road statuses is also addressed.
Our algorithms choose routes with low risk of uncertainty to
guarantee safe navigation with minimum error risk.

ACKNOWLEDGMENT
A part of this work has been accepted for publication in IEEE
Intl. Syst. Conf. (SYSCON’19), Orlando, Florida, USA,
April 2019 [1].

REFERENCES
[1] X. Wan, H. Ghazzai, and Y. Massoud, ‘‘Real-time navigation in urban

areas using mobile crowd-sourced data,’’ in Proc. IEEE Intl. Syst. Conf.
(SYSCON), Orlando, FL, USA, Apr. 2019.

[2] T. I. Bv, ‘‘Tomtom traffic index/New York congestion statistics,’’ TomTom
N.V., Amsterdam, The Netherlands, Tech. Rep., Jan. 2016. [Online]. Avail-
able: https://corporate.tomtom.com/node/25601/pdf

[3] K. Lord, ‘‘North avenue smart corridor: Intelligent mobility
innovations in Atlanta improving safety and efficiency,’’ Atkins,
Epsom, U.K., Tech. Rep., Jul. 2018. [Online]. Available: https://
www.atkinsglobal.com/en-gb/angles/all-angles/north-ave-smart-corridor

[4] N. Caceres, L. M. Romero, F. G. Benitez, and J. M. Del Castillo, ‘‘Traffic
flow estimation models using cellular phone data,’’ IEEE Trans. Intell.
Transp. Syst., vol. 13, no. 3, pp. 1430–1441, Sep. 2012.

[5] X. Chen and L. Wang, ‘‘A cloud-based trust management framework for
vehicular social networks,’’ IEEE Access, vol. 5, pp. 2967–2980, 2017.

[6] A. M. Vegni and V. Loscrí, ‘‘A survey on vehicular social networks,’’ IEEE
Commun. Surveys Tuts., vol. 17, no. 4, pp. 2397–2419, 4th Quart., 2015.

[7] Y. R. B. Al-Mayouf, N. F. Abdullah, O. A. Mahdi, S. Khan, M. Ismail,
M. Guizani, and S. H. Ahmed, ‘‘Real-time intersection-based segment
aware routing algorithm for urban vehicular networks,’’ IEEE Trans. Intell.
Transp. Syst., vol. 19, no. 7, pp. 2125–2141, Jul. 2018.

[8] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi,
‘‘Internet of Things for smart cities,’’ IEEE Internet Things J., vol. 1, no. 1,
pp. 22–32, Feb. 2014.

137008 VOLUME 7, 2019



X. Wan et al.: Mobile Crowdsourcing for ITSs: Real-Time Navigation in Urban Areas

[9] S. Orgera, ‘‘What is waze and how does it work?’’ Lifewire,
New York, NY, USA, Tech. Rep., Nov. 2018. [Online]. Available:
https://www.lifewire.com/what-is-waze-4153570

[10] E. Wirtschafter, ‘‘Driving apps like waze are creating new traffic
problems,’’ KALW, San Francisco, CA, USA, Tech. Rep., Mar. 2017.
[Online]. Available: https://www.kalw.org/post/driving-apps-waze-are-
creating-new-traffic-problems#stream/0

[11] J. Moghaddasi and K. Wu, ‘‘Multifunctional transceiver for future radar
sensing and radio communicating data-fusion platform,’’ IEEE Access,
vol. 4, pp. 818–838, 2016.

[12] C. Roman, R. Liao, P. Ball, S. Ou, and M. de Heaver, ‘‘Detecting on-
street parking spaces in smart cities: Performance evaluation of fixed and
mobile sensing systems,’’ IEEE Trans. Intell. Transp. Syst., vol. 19, no. 7,
pp. 2234–2245, Jul. 2018.

[13] L. Tang, X. Yang, Z. Dong, and Q. Li, ‘‘CLRIC: Collecting lane-based road
information via crowdsourcing,’’ IEEE Trans. Intell. Transp. Syst., vol. 17,
no. 9, pp. 2552–2562, Mar. 2016.

[14] Y. Y. Ye, X. Li Hao, and H. J. Chen, ‘‘Lane detection method based on lane
structural analysis and CNNs,’’ IET Intell. Transport Syst., vol. 12, no. 6,
pp. 513–520, 2018.

[15] X. Fan, J. Liu, Z.Wang, Y. Jiang, andX. S. Liu, ‘‘Crowdnavi: Demystifying
last mile navigation with crowdsourced driving information,’’ IEEE Trans.
Ind. Informat., vol. 13, no. 2, pp. 771–781, Oct. 2016.

[16] H. Yan and D.-J. Yu, ‘‘Short-term traffic condition prediction of urban road
network based on improved SVM,’’ in Proc. IEEE Int. Smart Cities Conf.
(ISC), Wuxi, China, Sep. 2017, pp. 1–2.

[17] R. Hussain, F. Abbas, J. Son, D. Kim, S. Kim, and H. Oh, ‘‘Vehicle
witnesses as a service: Leveraging vehicles as witnesses on the road in
vanet clouds,’’ in Proc. IEEE Int. Conf. Cloud Comput. Technol. Sci.
(CloudCom), Bristol, UK, Dec. 2013, pp. 439–444.

[18] W. Alasmary, H. Sadeghi, and S. Valaee, ‘‘Crowdsensing in vehicular
sensor networks with limited channel capacity,’’ in Proc. IEEE Int. Conf.
Commun. (ICC), Budapest, Hungary, Jun. 2013, pp. 1833–1838.

[19] X. Zhang, Z. Yang, and Y. Liu, ‘‘Vehicle-based bi-objective crowdsourc-
ing,’’ IEEE Trans. Intell. Transp. Syst., vol. 19, no. 10, pp. 3420–3428,
Oct. 2018.

[20] D. Cerotti, S. Distefano, G. Merlino, and A. Puliafito, ‘‘A crowd-
cooperative approach for intelligent transportation systems,’’ IEEE Trans.
Intell. Transp. Syst., vol. 18, no. 6, pp. 1529–1539, Jun. 2017.

[21] Z. Li, I. V. Kolmanovsky, E.M. Atkins, J. Lu, D. P. Filev, and Y. Bai, ‘‘Road
disturbance estimation and cloud-aided comfort-based route planning,’’
IEEE Trans. Cybern., vol. 47, no. 11, pp. 3879–3891, Jul. 2016.

[22] J.-D. Zhang, Y.-J. Feng, F.-F. Shi, G. Wang, B. Ma, R.-S. Li, and
X.-Y. Jia, ‘‘Vehicle routing in urban areas based on the oil consump-
tion weight-Dijkstra algorithm,’’ IET Intell. Transp. Syst., vol. 10, no. 7,
pp. 495–502, 2016.

[23] C. Ruan, J. Luo, and Y. Wu, ‘‘Map navigation system based on optimal
dijkstra algorithm,’’ in Proc. IEEE 3rd Int. Conf. Cloud Comput. Intell.
Syst., Shenzhen, China, Nov. 2014, pp. 559–564.

[24] K. Kaneko and S. Honda, ‘‘A map database system for route navigation
with multiple transit points and destination points,’’ in Proc. 5th IIAI
Int. Congr. Adv. Appl. Informat. (IIAI-AAI), Kumamoto, Japan, Jul. 2016,
pp. 219–223.

[25] J. Zhang, J. Fan, and Z. Luo, ‘‘Generating multi-destination maps,’’
IEEE Trans. Vis. Comput. Graphics, vol. 23, no. 8, pp. 1964–1976,
Aug. 2017.

[26] W. Rahiman and Z. Zainal, ‘‘An overview of development GPS navigation
for autonomous car,’’ in Proc. IEEE 8th Conf. Ind. Electron. Appl. (ICIEA),
Melbourne, VIC, Australia, Jun. 2013, pp. 1112–1118.

[27] Y. Zhao and Q. Han, ‘‘Spatial crowdsourcing: Current state and future
directions,’’ IEEE Commun. Mag., vol. 54, no. 7, pp. 102–107, Jul. 2016.

[28] J. Löfberg, ‘‘Automatic robust convex programming,’’ Optim. Methods
Softw., vol. 27, no. 1, pp. 115–129, Sep. 2012.

[29] A. Bahabry, X. Wan, H. Ghazzai, H. Menouar, G. Vesonder, and
Y. Massoud, ‘‘Low-altitude navigation for multi-rotor drones in urban
areas,’’ IEEE Access, vol. 7, pp. 87716–87731, 2019.

[30] J. C. Dela Cruz, G. V. Magwili, J. P. E. Mundo, G. P. B. Gregorio,
M. L. L. Lamoca, and J. A. Villaseñor, ‘‘Items-mapping and route opti-
mization in a grocery store using Dijkstra’s, Bellman-Ford and Floyd-
Warshall Algorithms,’’ in Proc. IEEE Region 10 Conf. (TENCON),
Singapore, Nov. 2016, pp. 243–246.

[31] G. Boeing, ‘‘OSMnx: Newmethods for acquiring, constructing, analyzing,
and visualizing complex street networks,’’ Comput. Env. Urban Syst.,
vol. 65, pp. 126–139, Sep. 2017.

[32] L. Xue, Y. Yang, and D. Dong, ‘‘Roadside infrastructure planning scheme
for the urban vehicular networks,’’ Transp. Res. Procedia, vol. 25,
pp. 1380–1396, May 2017.

[33] C. M. Silva, B. M. Masini, G. Ferrari, and I. Thibault, ‘‘A survey on
infrastructure-based vehicular networks,’’ Mobile Inf. Syst., vol. 2017,
Apr. 2017, Art. no. 6123868.

[34] M. Marjanovic, A. Antonic, and I. P. Žarko, ‘‘Edge computing architecture
for mobile crowdsensing,’’ IEEE Access, vol. 6, pp. 10662–10674, 2018.

[35] G. Li, J. Wang, Y. Zheng, and M. J. Franklin, ‘‘Crowdsourced data
management: A survey,’’ IEEE Trans. Knowl. Data Eng., vol. 28, no. 9,
pp. 2296–2319, Sep. 2016.

XIANGPENG WAN received the bachelor’s
degree in electrical engineering from the Harbin
Institute of Technology, Harbin, China, in 2015,
and the master’s degree in applied mathemat-
ics from the University of Minnesota, Duluth,
MN, USA, in 2017. He is currently pursuing the
Ph.D. degree in engineering management with the
Stevens Institute of Technology, Hoboken, NJ,
USA. His research interests include smart city
design, big data analysis, and applied machine
learning.

HAKIM GHAZZAI (S’12–M’15) received the
Ph.D. degree in electrical engineering from
KAUST, Saudi Arabia, in 2015, and the Diplome
d’Ingenieur (Hons.) in telecommunication engi-
neering and the master’s degree in high-rate trans-
mission systems from the Ecole Superieure des
Communications de Tunis (SUP’COM), Tunis,
Tunisia, in 2010 and 2011, respectively. He was
a Visiting Researcher with Karlstad University,
Sweden, and a Research Scientist with the Qatar

Mobility Innovations Center (QMIC), Doha, Qatar, from 2015 to 2018. He
is currently a Research Scientist with the Stevens Institute of Technology,
Hoboken, NJ, USA. His general research interests include the intersection of
wireless networks, UAVs, the Internet of Things, intelligent transportation
systems, and optimization.

YEHIA MASSOUD (F’15) received the Ph.D.
degree in electrical engineering and computer
science from the Massachusetts Institute of Tech-
nology, Cambridge, MA, USA. He has held sev-
eral industrial and academic positions, including
a member of the technical staff with the Advanced
Technology Group, Synopsys, Inc., Mountain
View, CA, USA, a tenured Associate Professor
with the Departments of Electrical and Computer
Engineering and Computer Science, Rice Univer-

sity, Houston, TX, USA, the W. R. Bunn Head of the Department of Elec-
trical and Computer Engineering, The University of Alabama, Birmingham,
Birmingham, AL, USA, and the Head of the Department of Electrical and
Computer Engineering, Worcester Polytechnic Institute, Worcester, MA,
USA. He is currently the Dean of the School of Systems and Enterprises,
Stevens University of Science and Technology, Hoboken, NJ, USA. He leads
research efforts in various areas of electrical and computer engineering,
computing, and systems and software engineering. He has authored over
225 articles in peer-reviewed journals and conferences. He was an elected
member of the IEEE Nanotechnology Council, from 2009 to 2011. He was
selected as one of the tenMITAlumni Featured in theMIT EECSNewsletter,
in 2012. He was a recipient of the Rising Star of Texas Medal, in 2007,
the National Science Foundation CAREER Award, in 2005, the DAC Fel-
lowship, in 2005, the Synopsys Special Recognition Engineering Award,
in 2000, several best paper award nominations, and two best paper awards at
the IEEE International Symposium on Quality Electronic Design, in 2007,
and the IEEE International Conference on Nanotechnology, in 2011. He
served as the Theme Leader of Novel Interconnects and Architectures in the
SRC Southwest Academy of Nanoelectronics, from 2006 to 2011. He was
named a Distinguished Lecturer by the IEEE Circuits and Systems Society,
from 2014 to 2015.

VOLUME 7, 2019 137009


