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ABSTRACT Many recent state-of-the-art approaches for document image classification are based on
supervised feature learning that requires a large amount of labeled training data. In real-world problem of
document image classification, the available amount of labeled data is limited and scarce while a large
amount of unlabeled data is often available at almost no cost. In this paper, we present an approach for
learning visual features for document analysis in an unsupervised way, which improves the document image
classification performance without increasing the amount of annotated data. The proposed approach trains
a neural network model on an auxiliary task in which every training example is associated with a different
label (exemplar) and expanded to multiple images through a data augmentation technique. Thus, the learned
model, which is trained in an unsupervised way, is used to boost the document classification performance. In
fact, this learned model has proved to be consistently efficient in two different settings: i) as an unsupervised
feature extractor to represent document images for an unsupervised classification task (i.e., clustering); and
ii) in the parameters initialization of a supervised classification task trained with a small amount of annotated
data. We perform experiments on the Tobacco-3482 dataset and demonstrate the capability of our approach to
improve i) the unsupervised classification accuracy up to 2.4%; and ii) the supervised classification accuracy
by 1.5% without any extra data or by 5% when using 3000 additional not annotated samples.

INDEX TERMS Document image classification, document analysis, document image representation.

I. INTRODUCTION

Document image classification is a crucial step in the process
of document understanding. Finding the document category
is essential to later understanding steps, such as text recog-
nition and document retrieval [1]. The current state-of-the-
art approaches for document image classification depend
on either carefully hand-crafted features [2]-[4] or feature
learning [5]-[9]. Engineering features is a complex process
that requires special expertise for designing and adapting the
features to the desired domain and makes it hard to generalize
to new tasks [10], [11]. Recently, approaches that directly
learn features from data have received more interest and it is
also the approach that we use. Among the feature learning
approaches, methods based on Convolutional Neural Net-
works (CNNs), in which features are learned by the convo-
lutional layers [5]-[9], achieved state of the art performance.
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In terms of supervision, most of the successful feature
learning approaches in the domain of document image clas-
sification are based on a supervised pre-training paradigm.
Using fully supervised feature learning is often an efficient
solution that provides very good results as long as enough
labeled training data can be provided. This is not often
the case in document classification, because the process of
manually annotating data is slow and expensive in terms of
both, the needed time and expertise. This results in a limited
amount of labeled data that can actually be used in the feature
learning process. On the other hand, a large amount of related
unlabeled data is widely available (e.g., HathiTrust digital
library' that contains millions of digitized document images).

Thus, semi-supervised and unsupervised approaches seem
to be a good solution to improve the classification
results without increasing the amount of annotated data.
For instance, unsupervised feature learning approaches at
the pre-training stage [12], [13] can provide substantial

1 https://www.hathitrust.org/
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classification improvements [14] without additional data
annotation. In these approaches, structural and spatial-related
features are learned using only unlabeled data. Then, these
learned features are used at a later fine-tuning stage, improv-
ing the supervised classification performance.

In this paper, we propose to first learn a neural network
model during a pre-training phase on a set of data without
annotation, thus in an unsupervised manner. This is per-
formed with an exemplar learning in which a neural network
is trained to accomplish the auxiliary task of classifying
each sample in a data-augmented version of the original
dataset. Then, we tackle the problem of document image
classification, in which the pre-trained model is used in two
different ways: i) in an unsupervised manner, by clustering on
features extracted with the pre-trained model ii) initializing
a supervised training with the pre-trained network weights.
In both cases, the pre-trained model consistently improves
the classification performance, over the baseline approaches
on the respective tasks, without the need to use any addi-
tional labeled data. Note that for unsupervised classification,
the reported results are with respect to a baseline that does
not utilize the learned featured of our pre-trained network; in
addition to, other methods based on a more complex cluster-
ing algorithm and hand-crafted features. For the supervised
case, the baseline to compare with is a trained model without
our pre-trained initialization of the weights.

A. CONTRIBUTIONS OF THIS PAPER
Our paper provides the following contributions:

o We propose a unified unsupervised pre-training based
framework that is simple, yet capable of consistently
boosting the performance of both unsupervised and
supervised classification.

« To the best of our knowledge, our approach is the first to
perform an unsupervised document image classification
using a representation that is entirely based on feature
learning using unlabeled data, and does not depend on
any hand-crafted features. In the experimental results,
we show that our approach outperforms the previous
baseline approaches.

o We demonstrate and experimentally validate that by
incorporating a small fraction of unlabeled data from
a related-dataset we can easily gain up to 2.4% boost
in the unsupervised classification performance and over
5% boost in the supervised classification performance.

The organization of this paper is as follows; section II

provides a comprehensive review study on the related work.
In section II1, the proposed approach is introduced in details.
The experimental setup is presented at section IV and the
results with their related analysis are discussed at section V.
Finally, the paper is concluded at section VI.

Il. RELATED WORK

A. DOCUMENT IMAGE CLASSIFICATION

The problem of document image classification has been
tackled in the literature through many approaches that
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differentiate based on i) the chosen features and ii) the utilized
learning mechanism [15].

Considering the chosen features, recent approaches in the
literature are either content (text) based [16], visual appear-
ance based or a combination of both [17]. The content-based
approaches are typically restricted to documents with text
and depend mainly on Optical Character Recognition (OCR)
methods, which may output text with errors that can affect the
classification performance [18]. To avoid this, our proposed
work is based instead on the visual appearance characteristics
of the document image and does not rely on OCR.

Conventionally, visual appearance based approaches uti-
lizes hand-crafted features [2]. For instance, Scale Invari-
ant Feature Transform (SIFT) [19] is exploited by [3] and
Speeded Up Robust Features (SURF) [20] is used by [21].
However, lately, visual appearance approaches that are based
on feature learning [7] have attracted considerable attention.

Since this work is mainly focused on the pre-training stage
of the classification process, a review on the related visual
appearance based works is discussed in further detail below.

The simplest and most used pre-training approach that has
been utilized extensively in recent years is supervised pre-
training, in which a big and fully labeled dataset is used to
perform a pre-training process [ 10]. For instance, [5], [6], [8],
[9] are all incorporating a supervised pre-training process. In
this process, annotated samples are used to train a network in
a supervised manner, then that pre-trained network’s learned
parameters are used to initialize a fine-tuning network and
perform the process of document classification. Usually a
huge amount of annotated data is exploited in this process; for
example, around 1 million labeled images of ImageNet [22]
are used in [6], [8], and [9] and 320,000 labeled images
of RVL-CDIP [6] are used in [5]. Das et al. [8] extended
that approach using an ensemble of region-based classifiers
(i.e., a strategy that has been introduced by [23]). However,
the method is still limited to a specific set of documents (e.g.,
forms, memo), and cannot be applied easily to other docu-
ment types because it depends on the spatial features of the
documents and requires a manual readjustment to the learning
algorithm for any new document type. Similarly, [6] eval-
uated enforcing learning region-specific features and con-
cluded that it is not effective in case of enough training data.

In addition to supervised classification, some related works
in literature have explored classifying the document images in
an unsupervised manner, hence considered as unsupervised
classification’ (i.e., more details about the unsupervised clas-
sification process are discussed at section III-C). For instance,
[4] introduced the horizontal vertical partitioning-random
forest (HVP-RF) model, which trains a random forest classi-
fier to learn structural patterns from SURF features [20] code-
book. This model has a complex pipeline that depends heavily
on traditional hand-crafted features; in contrast, our approach
achieves better results using a pipeline that is based entirely
on unsupervised feature learning. Moreover, the CONFIRM
algorithm [24] uses page elements such as OCR transcrip-
tions and rule lines to obtain collection-dependent features.
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Using rule lines makes this approach limited and more spe-
cific to tables. Additionally, depending on OCR is not ideal
as discussed earlier in this section.

B. UNSUPERVISED FEATURE LEARNING

Unsupervised feature learning often works on modeling the
distribution of the training data to learn the common invariant
features in it. For instance, Deep Belief Networks (DBN5s)
[25] learn features by yielding the parameters that maximize
the latent variables likelihood given the observed ones. The
main drawback of this technique is its inefficiency due to
the intractability of the estimation of the latent variables
likelihood. On the other hand, in direct mapping techniques,
features are learned by minimizing the error between an input
sample and the reconstructed output or some variants of it
(e.g., stacked denoising auto-encoders [26], k-sparse auto-
encoder [27] and variational auto-encoder [28]). Another
interesting approach for improving the classification accu-
racy of documents is to perform an unsupervised pre-training.
On the contrary to the supervised approach, the unsupervised
pre-training depends only on unlabeled data. This means fast
and cheap access to the available data since the labeling
process has been bypassed. Even if very appealing, the impact
of unsupervised pre-training on the final classification per-
formance is still limited and not performing as effective as
supervised pre-training.

A special case of unsupervised pre-training, is self-
supervised pre-training. In that case, the learning task
exploits the structure of the training data, such that data
annotations are already available or come for free. In this
way, normal supervised learning techniques can be used on
those pseudo-annotations. For instance, the spatial informa-
tion of neighboring patches is used to automatically label the
input data through either context prediction [29] or solving
jigsaw puzzles [30]. Additionally, [31] applies four different
rotations to each unlabeled sample and trains a network to
recognize the correct one. On the same line, an exemplar-
based learning with CNN is introduced by Dosovitskiy et al.
[32]. In this approach, data-augmentation is applied to each
unlabeled sample to create a set of surrogate classes and
a network is trained to discriminate between them. Due to
its simplicity and closeness to the classification tasks, the
Exemplar-CNN based learning has inspired the pre-training
part of our framework. However, various changes in the
architecture have been introduced for better adaptation to the
problem of structural document classification.

lll. THE PROPOSED METHODOLOGY

Our proposed framework is based on an unsupervised
pre-training step in which a convolutional neural net-
work (CNN) model is learned using only unlabeled data. This
is followed by two different document image classification
approaches: an unsupervised classification on the learned
representation and a supervised classification initialized with
the pre-trained model.
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TABLE 1. The architecture of the CNN model used in our experiments.

Layer (type) Output shape  Filter
input (InputLayer) 1x227x227 -
conv_1 (Conv2D) 96 x 55 x 55 11x11

96 x 27 x 27 3x3
256x27x27 5x5
256x13x13  3x3
384x13x13 3x3
384x13x13 3x3
256x13x13  3x3
256x6x6 3x3

max_pooling_1 (MaxPooling2D)
conv_2 (Conv2D)
max_pooling_2 (MaxPooling2D)
conv_3 (Conv2D)
conv_4 (Conv2D)
conv_5 (Conv2D)
max_pooling_3 (MaxPooling2D)

flatten (Flatten) 9216 -
dense_1 (Fully-connected) 4096 -
dense_2 (Fully-connected) 4096 -
dense_3 (Fully-connected) N* -

* Number of surrogate classes.

More insights on the different learning stages and other
related steps are detailed in the following subsections.

A. PRE-PROCESSING

As shown in table 1, our network is based on the AlexNet
architecture [33]. Thus, in order to match the network input
size, all the utilized input document images, at the stages of
unsupervised pre-training and classification, are resized to
227x227 pixel resolution. To provide an efficient process-
ing performance, the resizing process keeps the fundamental
structural features of the document, while reducing other
less critical information for our model (e.g., the exact shape
of characters and words). After resizing the image, a bina-
rization process is performed: the image pixels values are
rounded to either O or 1.

B. UNSUPERVISED PRE-TRAINING STAGE

The main objective of this stage is to train a CNN model using
a set of unlabeled data. As shown in Fig. 2, the training pro-
cedure is composed of two steps: first, the generation of aug-
mented data and surrogate classes; and then the actual train-
ing of the neural network to classify these generated classes.
The two steps are detailed in the following paragraphs.

1) GENERATE AUGMENTED DATA AND

SURROGATE CLASSES

Inspired by data augmentation [34] and similarly to [32],
we generate a set of transformations of our original document
images such that the augmented data are still valid and real-
istic document representations. We consider an initial train-
ing set X containing N unlabeled document images. A set
of randomly-chosen combination of pre-defined transforma-
tions {71, ... Tk} is applied to each image x; € X, which
produces K augmented versions of this image. Specifically,
each augmented image Tyx; is the result of incrementally
applying (with 50% probabilities) three basic transforma-
tions. To guarantee robust, descriptive and generic learned
features, the following basic transformations that relate to
some core characteristics of the document images have been
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FIGURE 1. Applying T transformations (i.e., rotation by angles +90°, zooming-in by a
uniformly sampled factor between 1 and 1.15, and horizontal flipping) to an unlabeled
document image x; from the Tobacco-3482 dataset to generate {T;x;, ... T x;} samples of a
surrogate class Sy; . The seed image x; is at the top left corner.

Convolutional
neural network

B N-classes !
Xn ;

Unlabeled Augmented
data data

FIGURE 2. Proposed unsupervised pre-training stage.

used: rotation by angles 90 or -90 degrees, zooming-in by a
uniformly sampled factor between 1 and 1.15, and horizontal
flipping. Algorithm 1 provides more details on how the aug-
mentation process is carried out. Each unlabeled image, x;,
is now considered a surrogate class Sy;, and its correspond-
ing generated transformations {7x;, ...Tkx;} are samples
of that class with a surrogate label i € N. Fig. 1 shows
some generated samples of a surrogate class. We will show
that the numbers of surrogate classes N and samples per
surrogate class K have a critical impact on the classification
performance; more insights are discussed in subsection V-B1.

2) TRAIN THE NETWORK

An exemplar learning process is accomplished using the
obtained set of N surrogate classes and their N * K samples.
Specifically, a neural network is trained to associate each

VOLUME 7, 2019

Algorithm 1 Generate Surrogate Classes: for Each Image x;,
we Generate a Transformation as a Random Composition of
Rotation of 8 Degrees (Ry), Zoom-in by a Factor z (Z;) and
Horizontal Flip (F)

1: for each x; € X do

2: fork=1 to K do

3 T, =1 > I: identity transf.
4 rotate ~ Bernoulli(0.5)

5: if rotate then

6: 6 <« either —90° or 90°
7 T =Tr oRp

8 end if

9: zoom-in ~ Bernoulli(0.5)
10: if zoom-in then

11: z~U(1,1.15)

12: Ty =TroZ,

13: end if

14: flip ~ Bernoulli(0.5)

15: if flip then

16: Ty =T oF

17: end if

18: end for

19: Sy, = {T1xi,...,Tgx;}

20: end for

sample Tjx; to its related surrogate class Sy, by minimizing
the augmented samples cross-entropy loss:

N K
LX) =YY UTexi, i),

i=1 k=1

I(x, 1) = =log(p(y = i; X)), ey
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FIGURE 3. Proposed unsupervised classification stage.

where p(y = i; x) is the probability of sample x to belong
to class i and p(.) is the softmax output of our network. After
training, the obtained network parameters 6 are considered to
be invariant to the transformations used during the augmen-
tation process.

The used network, as reported in table 1, contains eight
layers (i.e., five convolutional and three fully connected lay-
ers) with around 56 million parameters. A zero padding is
included to all the convolutional layers except the last one.
In addition, the last fully-connected layer is coupled with
an N-way softmax that provides an estimate of each class’s
conditional probability.

C. UNSUPERVISED CLASSIFICATION STAGE

As illustrated in Fig. 3, the unsupervised classification is
actually a clustering process in its core. During training,
we divide the training data into clusters and then associate
each cluster to the best class in the test data. Thus, we separate
the data into M classes in an unsupervised manner, but then
for the evaluation, we consider the labeled data to associate
each group to an actual class. This is a common way to
evaluate unsupervised learning for a classification task [4];
more insights are discussed at the clustering step.

1) FEATURE EXTRACTION

In the scenario of the unavailability of any annotated data,
the derived pre-trained model is used to extract features. In
this case, we consider the learned neural network as a function
f : R — RE, which maps each image x; € X from its
original space R to the representation space RZ . The choice
of representation and its related feature vector length E is
studied in more detail in subsection V-Al.

2) CLUSTERING
Each obtained representation, f(x;), from the previous step
is used as an input to a clustering algorithm. Since the main
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FIGURE 4. Proposed supervised classification stage.

focus of this work is on the representation learning part, two
off-the-shelf standard clustering algorithms, k-means [35]
and spherical k-means [36], are utilized. In k-means, the cen-
triods {u1, ..., upm} of the cluster sets C = {cy,,m =
1,..., M} are found through minimizing the Euclidean dis-
tance between each obtained document image representation,
f(xi), and the nearest centroid, u,,, over all the M clusters
using the following objective function J(C):

M
JO =" Y )= pm I )

m=1f(x;)ecn

The spherical k-means algorithm is also based on a similar
loss, but the cosine similarity is used instead of the Euclidean
distance.

Once the cluster centroids {i1, ..., ua} are obtained dur-
ing the training process, each test sample is then assigned to
its nearest centroid in the unsupervised classification process.
Afterwards, each cluster of test samples is assigned to an
actual class (i.e., from the test set true labels) in an optimal
way using the Hungarian algorithm [37]. This algorithm con-
siders a matching matrix of the predicted cluster labels and
true labels and returns the indices of the best matching pairs.

D. SUPERVISED CLASSIFICATION STAGE

If a limited amount of annotated data is available, the learned
parameters 6 of the same network architecture of the unsu-
pervised pre-training are used as an initialization to improve
the supervised classification performance. As illustrated
in Fig. 4, this neural network is then fine-tuned on the pro-
vided small annotated data with cross-entropy loss function
and an M-way softmax classification layer. Notice that M is
now the real number of classes of the task.

IV. EXPERIMENTAL SETUP
In this section, the used datasets and the implementation
details for the different experiments are explained.

A. DATASETS
During the unsupervised pre-training stage, two datasets have
been utilized with our proposed framework. In both datasets,
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only the document images are used. The first dataset is
Tobacco-34822 [4], which contains 3,482 document images
and 10 document classes. The second dataset is RVL-CDIP
dataset® [6]. This dataset originally contains 400,000 docu-
ment images and 16 document classes, but only a small subset
of those images (i.e., up to 5000) has been used throughout
the pre-training stage. This is because more images did not
further improve the results and made the training longer,
as demonstrated at section V-B1.

At the later stage of both unsupervised and supervised
classification, only the Tobacco-3482 dataset has been uti-
lized. At the unsupervised classification stage, the document
images are used solely without their associated labels; while
at the supervised classification stage, the document images of
the Tobacco-3482 dataset and their related labels have been
utilized.

At the unsupervised pre-training stage and when using the
Tobacco-3482 dataset, we performed the process ten times,
one for each partition using 1,000 samples of the related
training set. This is to guarantee that all the test samples, at the
later classification stages, are completely unseen and have
not been used previously during pre-training. On the other
hand, when using RVL-CDIP dataset for pre-training, we per-
formed the process only once since all the used samples are
considered unseen for the testing process.

To evaluate our document image classification approach
at either the unsupervised classification or the supervised
classification stages, we follow the same evaluation protocol
presented in the literature [5]-[7] to guarantee fair com-
parisons. Initially, the Tobacco-3482 dataset is divided into
1,000 samples for training and the rest of the samples (2,482)
for testing. Since the samples in the original dataset are
unevenly distributed between its 10 classes, we make sure
that the training set contains exactly 100 samples per class.
Then, the training set is divided into 800 samples for train-
ing and 200 for validation, where each class is represented
with 80 images for training and 20 images for validation.
To guarantee a reliable estimation of the proposed approach
performance, we report the median classification accuracy of
ten randomly-created partitions of the dataset.

B. IMPLEMENTATION DETAILS

All the provided results are based on implementations carried
out on an Nvidia GeForce GTX 960 GPU using Theano [38]
and Keras APL*

For the pre-training stage, the Adam optimization algo-
rithm [39] has been used to train our models with a learning
rate of 1e —4 for 120 epochs; while at the supervised classifi-
cation stage, the same algorithm has been utilized with le —6
learning rate for 1100 epochs.

During the pre-training stage, the unlabeled training data
has been subdivided into batches of 5 samples, where for each

2https://1ampsrv02.umiacs.umd.edu/projdb/project.php?id=72
3http://scs.ryerson.ca/ aharley/rvl-cdip/
4https:// github.com/keras-team/keras

VOLUME 7, 2019

epoch, the run-time was around 2 seconds per batch. While
during the supervised classification stage, the run-time was
around 8 seconds per epoch using 800 samples for training
and 200 samples for validation.

At the unsupervised classification stage, the number
of times the clustering algorithm will be run with ran-
domly initialized centroids (’n_init’) and the maximum
number of iterations for each run (‘max_iter’) are set to
50 and 300, respectively, in case of k-means; while they
are set to 150 and 300 in case of spherical k-means.
In addition, the ’linear_assignment’ function provided by
scikit-learn library [40] is used to implement the Hungarian
algorithm.

V. RESULTS AND DISCUSSION

A. UNSUPERVISED FEATURE LEARNING

In this subsection, we discuss in details the unsupervised
classification performance and the effect of the learned rep-
resentation on it.

1) SELECTION OF THE LEARNED REPRESENTATION

To study the effect of the learned representation on the unsu-
pervised classification performance, various experiments
have been performed using a partition of the Tobacco-
3482 dataset. To evaluate the unsupervised classification
performance (i.e. clustering is well-matched with the test
set’s true labels), we follow the literature [4] in com-
puting the purity [41] and the Adjusted Rand Index
(ARI) [42].

Specifically, at the feature extraction stage, we study the
correlation between the different characteristics of the learned
document representations and the unsupervised classifica-
tion (clustering) performance. The representation characteris-
tics mentioned here refer to the location of the layer to extract
the features from and its associated feature vector length E,
table 1 provides more details about the different types of
layers and their associated locations in the neural network and
related output shapes.

Table 2 shows the performance of different learned rep-
resentations with various locations and dimensionality that
ranges from E = 4,096 to E = 43,264. Although the
flatten representation has a larger feature vector (E = 9, 216)
than the dense_2 representation (E = 4,096), the former
performs better than the latter. This is due to the fact that
the flatten representation preserves the spatial locality infor-
mation of its obtained features unlike dense_2. On the other
hand, since the number of the unlabeled training samples is
limited (N = 1000), and considering the curse of dimen-
sionality, it is understandable that both high-dimensional
representations conv_5 (E = 43,264) and flatten+dense_I
(E = 13,312) obtain a poor performance despite pre-
serving full/some spatial locality information about their
features.
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TABLE 2. The unsupervised classification (clustering) ARI and purity when utilizing various learned representations (i.e., on a partition of the

Tobacco-3482 dataset).

. k-means Spherical k-means
Representation Feature vector length (E) ART Purity ART Purity
conv_5 43,264 0.1387  0.4057 0.2321  0.4899
flatten + dense_1 13,312 0.2094 0.4694 02742 0.5254
flatten 9,216 02726  0.5242  0.2759  0.5294
dense_2 4,096 0.2141 0.4895 02194 0.5153
TABLE 3. The unsupervised classification (clustering) ARI and purity Total number of pre-training samples
results of our learned representation and the state-of-the-art
representations. N N N > > > > >
096 096 096 QQ"Q f»“"g S @9 %Q"Q
» QS B N N N N N
Representation ARI  Purity RS RAAARAR AR AAARARM AR ARRRRAARRRRRRRRH ‘65” 4‘5‘ T ‘65‘—3‘.4§’
G-BOW-RF [4] 021 048 I Shes ]
SP-RF [4] 0.22 046 65 | N
HVP-E [4] 0.18  0.46 P64 ]
HVP-RF [4] 0.24 049 . L 5
Proposed U-FL (w/o add. data) -k-means- 0.27 0.52 X L ]
Proposed U-FL (w/ add. data) -k-means- 0.29 0.54 > I |
Proposed U-FL (w/o add. data) -spherical k-means-  0.28  0.53 § 64
Proposed U-FL (w/ add. data) -spherical k-means- 0.27  0.52 § L 1
< - .
TABLE 4. The supervised classification median and mean accuracy, on the 63 L .
Tobacco-3482 dataset, with different parameters initialization methods. Pty
Le2ls ]
Parameters initialization method ~ Median accuracy (%)  Mean accuracy=std (%) bl d
40 60 80 100 120 140 160 180

No U-PT 63.38 62.74+0.017
Proposed U-PT (w/o add. data) 65.01 65.134+0.012
Proposed U-PT (w/ add. data) 68.86 68.954+0.012

Our best results are obtained when using the flatten repre-
sentation for both clustering algorithms, k-means and spher-
ical k-means.

2) UNSUPERVISED CLASSIFICATION (CLUSTERING) RESULTS
Table 3 reports the unsupervised classification results using
our proposed unsupervised feature learning (U-FL) based
representations, which show an improvement in the perfor-
mance compared to the best four performing representations
in the literature [4]. These codewords based representations
are either global-based (G-BOW) or partitioning-based that
use either spatial-pyramid (SP) or horizontal vertical par-
titioning (HVP) to capture the spatial dependencies. After-
ward either Euclidean distance (E) or random forest (RF)
is used to compute similarities. For our proposed approach,
we compare two configurations: ’without additional data (w/o
add. data)’ refers to using 1000 training samples (unlabeled)
of Tobacco-3482 at pre-training, while *with additional data
(w/ add. data)’ denotes utilizing 3000 unlabeled samples from
RVL-CDIP dataset. In our experiments, the best configura-
tion seems to be k-means with additional data although the
difference with respect to the other configurations of our
algorithm is relatively small.

Compare with previous approaches, our proposed rep-
resentation outperforms the HVP-RF representation [4] by
4 points, in both ARI and purity, without the need of any
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Number of samples/surrogate class (K)

FIGURE 5. The supervised classification accuracy, on a partition of the
Tobacco-3482 dataset, with different numbers of used samples/surrogate
class (K) and fixed 1000 surrogate classes (N).

additional data (U-FL (w/o add. data) -spherical k-means-)
and 5 points using additional data (i.e., 3000 unlabeled
samples from RVL-CDIP dataset) (U-FL (w/ add. data)
-k-means-).

B. UNSUPERVISED PRE-TRAINING
This subsection studies the supervised classification perfor-
mance and its correlation with the pre-training parameters.

1) SELECTION OF THE PRE-TRAINING PARAMETERS

We study the importance of the number of surrogate classes N
and the number of samples per surrogate class K on the super-
vised classification task using a partition of the Tobacco-
3482 dataset for evaluation.

First, we study the correlation between the supervised
classification performance and the used number of samples
per surrogate class K. To do so, we examine the classifica-
tion performance with various K values using the Tobacco-
3482 dataset at the unsupervised pre-training stage with
1000 surrogate classes (N = 1000). Fig. 5 shows that increas-
ing the number of samples per surrogate class K results in an
improvement in the accuracy that saturates as the number of
samples becomes larger.
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FIGURE 6. The supervised classification accuracy, on a partition of the
Tobacco-3482 dataset, with different numbers of utilized surrogate
classes (N) and a fixed 40 samples per surrogate class (K).

Then, to examine the correlation between the supervised
classification performance and the number of used surro-
gate classes N (i.e., and consequently the total number of
pre-training samples), we apply our proposed approach with
various N values. This is performed using the RVL-CDIP
dataset with 40 samples per surrogate class (K = 40). Note
that, in this experiment, the RVL-CDIP dataset is used instead
of the Tobacco-3482 (only at the unsupervised pre-training
stage), where it offers studying the performance with surro-
gate classes N values that are beyond 1000 (i.e., the Tobacco-
3482 dataset is limited to 1000 training samples). On the
other hand, the Tobacco-3482 is still used at the supervised
classification stage.

Fig. 6 shows that the accuracy generally improves when
increasing the number of used surrogate classes N with a
clear saturation after a certain point. For instance, in the last
point of Fig. 6, although the number of surrogate classes N
has been increased by 2000 (i.e., 66%), the classification
performance has not improved significantly, only by 0.08%.
This is expected since utilizing more surrogate classes can
lead to considering too similar images as different classes,
which leads to harder pre-training discrimination and less
effective learned parameters [32].

2) SUPERVISED CLASSIFICATION RESULTS

Table 4 demonstrates the supervised classification median
and mean accuracy on the Tobacco-3482 dataset, where the
parameters initialization is with either i) no pre-training,
ii) our proposed unsupervised pre-training (U-PT) based
learned parameters 6 without any additional data (w/o add.
data) (i.e., based on the training data of the Tobacco-
3482 dataset using 1000 surrogate classes N with 100 sam-
ples/class K (100K samples)), or iii) our proposed
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unsupervised pre-training (U-PT) based learned parameters
6 with additional related unlabeled data (w/ add. data) (i.e.,
based on a small portion of the training data of the RVL-CDIP
dataset using 3000 surrogate classes N with 40 samples/class
K (120K samples)). Note that the used N and K values are
based on a trade-off between the accuracy and the computa-
tional cost of the algorithm (i.e., values where the accuracy
starts to saturate while the computation is still moderate).

The obtained results show that incorporating our proposed
unsupervised pre-training (U-PT) based learned parameters
0 can efficiently and consistently lead to a boost in the
supervised classification accuracy over the performance of
the method when trained from scratch. The improvement is
over 1.5% without the need of any extra data and using only
an unlabeled version of the same training data to be used at the
supervised classification stage. Additionally, our approach is
capable of boosting the classification accuracy to over 5%
when substituting the previously used data with unlabeled
data from a related dataset (e.g., RVL-CDIP dataset).

C. DISCUSSION

To illustrate the performance of both unsupervised and super-
vised classification on the same metric space, the accuracy of
the unsupervised classification process is calculated through
efficiently utilizing the Hungarian algorithm [37] to find the
optimal assignment between each cluster of document images
and its corresponding class in the ground truth (true label).

Fig. 7 and table 5 demonstrate the impact of utilizing
the learned pre-trained model on the document image clas-
sification performance with both of its unsupervised and
supervised settings, specifically: i) on the unsupervised clas-
sification accuracy using the model’s learned representations
ii) on the supervised classification accuracy using the model’s
learned parameters 6. In both cases, the results are compared
to their relevant baselines.

Fig. 7 reports the confusion matrices of tests performed on
one partition of the Tobacco-3482 dataset. We observe that
incorporating our proposed unsupervised feature learning
(U-FL) based representations with the unsupervised classifi-
cation leads to a better class grouping. This is except for some
classes which have low inter-class layout variations with each
other (i.e., the high layout similarities between the classes
of report, resume and scientific). Similarly, for the super-
vised classification, our proposed unsupervised pre-training
(U-PT) based learned parameters 6 yields better grouping
results in many classes comparing to training the network
from scratch.

Table 5 compares the performance of our methods
for supervised and unsupervised classification and other
approaches. In order to have a fair comparison, all methods
are trained (either supervised or unsupervised) on 1000 sam-
ples of the Tobacco-3482 dataset. We can separate the meth-
ods in unsupervised (upper part of the table) and super-
vised (lower part of the table). All the supervised methods
outperform the unsupervised ones. This is expected as in
the unsupervised case, classes are grouped based only on
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FIGURE 7. Confusion matrices for different models on one partition of the Tobacco-3482 dataset. (a) Unsupervised
classification using features from a randomly initialized network. (b) Unsupervised classification using features from a
network pre-trained on 1000 non-annotated samples. (c) Unsupervised classification using features from a network
pre-trained on 3000 non-annotated samples. (d) Supervised classification without any pre-training. (e) Supervised
classification with unsupervised pre-training on 1000 non-annotated samples. (f) Supervised classification with

unsupervised pre-training on 3000 non-annotated samples.
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TABLE 5. Classification median accuracy (i.e., on the Tobacco-3482 dataset-ten partitions-) for unsupervised and supervised methods with different

pre-training approaches.

Pre-training

Method Unsupervised Supervised Median accuracy (%)

] No U-FL - - 36.76
=3 HVP-RF [21] - - 43.80
é Proposed U-FL (w/o add. data) 1000 - 45.26
Proposed U-FL (w/ add. data) 3000 - 46.25

- No U-PT - - 63.38
2 Proposed U-PT (w/o add. data) 1000 - 65.01
E Proposed U-PT (w/ add. data) 3000 - 68.86
& S-PT (w/ ImageNet) - ~ 1,000,0000 72.89
“ S-PT (w/ document images) [5] - 320, 0000 90.04

clustering approaches and no labels are used. Among the
unsupervised methods, we can see that the features extracted
from our network architecture without any pre-training (No
U-FL) perform quite poorly. However, when we use the
features from our pre-trained network (U-FL), the results are
much better. This shows that our unsupervised pre-training
approach is very effective in learning good features. Addi-
tionally, our methods obtain better results than [21], which
is based on a random forest and hand-crafted features that
are selected for the specific task. For the supervised classifi-
cation (lower part of table 5), we can see a similar pattern
in which using unsupervised pre-training (U-PT) helps to
improve the performance, going from 63.38% to 68.86% for
the pre-training with 3000 images. In fact, our unsupervised
pre-training (U-PT) gets closer to the performance of a model
pre-trained with over one million labelled data (ImageNet).
Finally, we see that in the case of having access to a large
amount of similar labelled data (e.g., utilizing 320,000 anno-
tated document images in [5]), results can be further boosted
up to 90%. Overall, we can see that with limited training data
(1000 training samples) and without a proper pre-training
(No U-FL and No U-PT), CNN-based methods perform quite
poorly. However, incorporating our proposed unsupervised
pre-training enables these methods to be trained more effec-
tively and leads to better results without the need of extra
annotated data.

VI. CONCLUSION

Contrary to conventional document image classification
methods that use either hand-crafted features or supervised
pre-training approaches, we propose a visual features learn-
ing approach that is based on unsupervised pre-training.
The proposed approach uses only unlabeled data to learn
a pre-trained model, which is used later for unsupervised
and supervised classification. Our approach improves the
performance of the document image classification problem
in the cases of i) the unavailability of any labeled data,
ii) the availability of limited labeled data and iii) the avail-
ability of additional unlabeled data. Our experimental results
corroborate the capability of our approach to improve the
accuracy of CNN-based classification methods. Although

VOLUME 7, 2019

other supervised pre-training approaches may provide more
improvement in the classification performance, our approach
has a crucial advantage of not requiring any additional man-
ually annotated data.
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