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ABSTRACT In this paper, we present a fast hybrid priority queue architecture intended for scheduling and
prioritizing packets in a network data plane. Due to increasing traffic and tight requirements of high-speed
networking devices, a high capacity priority queue, with constant latency and guaranteed performance is
needed.We aim at reducing latency to best support the upcoming 5Gwireless standards. The proposed hybrid
priority queuing system (HPQS) enables pipelined queue operations with almost constant time complexity
in practice. The proposed architecture is implemented in C++, and is synthesized with the Vivado High-
Level Synthesis (HLS) tool. Two configurations are proposed. The first one is intended for scheduling with
a multi-queuing system for which implementation results of 64 up to 512 independent queues are reported.
The second configuration is intended for large capacity priority queues, that are placed and routed on a
ZC706 board and a XCVU440-FLGB2377-3-E Xilinx FPGA supporting a total capacity of 1/2 million
packet tags. The reported results are compared across a range of priority queue depths and performance
metrics with existing approaches. The proposed HPQS supports links operating at 40 Gb/s.

INDEX TERMS Priority queue, networking devices, high-level synthesis, field-programmable gate
array (FPGA).

I. INTRODUCTION
In modern routers, switches, line cards, etc., we find Net-
work Processing Units (NPUs) [1]–[3]. They provide dedi-
cated processing stages for traffic management and buffering.
Traffic management includes policing, scheduling, shaping
and queuing. For high-speed network switches and devices,
queuing may represent a bottleneck. One of the feasible
solutions to reduce queuing latencies is to tag the packets.
This taggingwill hold concise packet information for fast pro-
cessing, while the actual packets are buffered independently
by the NPU, thus reducing the queuing latencies between the
different network processing stages [4].

Priority queues have been used in many applications such
as event driven simulation [5], scheduling [6], real-time sort-
ing [7], etc. A priority queue (PQ) can be represented as an
abstract data structure that allows insertion and extraction
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of items in priority order. Different types of PQs have been
proposed. In the literature, solutions span between the fol-
lowing: calendar queues [5], binary trees [8], shift registers
[8]–[10], systolic arrays [8], [11], register-based arrays [12],
and binary heaps [7], [12]–[14]. However, PQs can be divided
in two classes: PQs with O(1) time complexity operations,
independently of the queue size (number of nodes), and those
with variable processing times.

One of the significant challenges facing network operators
and Internet providers is the rising number of connected
devices. This sets a need for scheduling, prioritizing packets
of different applications, and routing the related traffic in a
minimum time with the upcoming next generation cellular
communication infrastructure (5G) [15]. Also, many applica-
tionsmust deal with real-time traffic, such as video streaming,
voice over Internet protocol (VoIP), online gaming, etc. These
applications require quality of service (QoS) guarantees. QoS
are quantitative measures of the service provided by the net-
work, for example, the average throughput, end-to-end delay,
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and packet loss. To provide such QoS for large numbers of
connected devices, users, etc., high capacity priority queues
must be used to maintain real-time sorting of queue elements
at link speeds with guaranteed performance.

In this work, we propose a hybrid priority queuing system
(HPQS) with two distinct configurations. The first configu-
ration is intended for strict priority scheduling with distinct
queues. The second configuration is a single high capacity
queue intended for priority queuing. The HPQS would fit
in the scheduling stage of today’s data planes networking
devices such as NPUs and switches (more details are given in
Section II-A). Also, it can be used in different contexts such
as traffic managers, task schedulers, sorting, etc.

This work is an extension of a previous related work [29].
The new contributions are as follows:

1) In the first configuration (distinct-queues model),
we support full sort capability with the enqueue
and dequeue operations. The second configuration
(single-queue model) supports a third queue operation
(replace). The HPQS supports independently all queue
operations in a single clock cycle (see Section VI).
The HPQS throughput can reach 40 Gb/s for minimum
sized packets.

2) Analysis of HPQS operations leading to improvements
that allowed matching the performance of hand-written
register transfer logic (RTL) codes with high-level
synthesis (HLS) design (see Section V). Moreover,
by leveraging HLS, we have derived with a very small
effort 92 substantially different implementations from
the same high-level description (see Section VI-A)
through model specialization.

3) Design space exploration targeting the ZC706 FPGA
board and XCVU440 device was conducted. This
exploration allowed characterizing resource usage
(look-up tables and flip-flops), performance metrics
(throughput, latency, and clock period), and power con-
sumption of the HPQS design (more details are given
in Section VI-A).

In this paper, we present placement and routing results
of the HPQS in a ZC706 field programmable gate array
(FPGA) board and XCVU440 device, the total capacity can

reach 1/2 million packet tags of 16-bit priority keys in a
single FPGA. The HPQS is proposed for high-speed net-
working devices operating in a constant 1-cycle latency per
packet (queue operation) targeting 10 to 40 Gb/s network
links. Moreover, the performance of the proposed HPQS is
independent of the PQ capacity. Also, the proposed HPQS
architecture is entirely coded in C++, providing easier
implementation and more flexibility than some reported
works in the literature [7], [8], [14], which use low-level
coding, mostly in Verilog, VHDL, and targeting ASIC
implementations.

The remainder of this paper is organized as follows.
In Section II, we present a general switch architecture. That
switch architecture provides a meaningful context where the
proposed HQPS would fit. In Section III, we detail some
related work on PQs found in the literature. In Section IV,
the architecture of the proposed HPQS with its different
configurations is presented. In Section V, we detail the HLS
HPQS design methodology and considerations leading to
the best performances. Section VI reports hardware imple-
mentation results and comparisons to related work. Finally,
Section VII draws conclusions from this work.

II. BACKGROUND
In this section, we present the general architecture of a
shared memory switch. Then, we elaborate on the concepts
of scheduling and priority queuing.

A. NETWORK SWITCHES
Today’s switches provide various sets of functionalities, from
parsing, classification, scheduling and buffering of the net-
work traffic. These functionalities can be supported by trans-
formations applied to the traffic from the moment packets
are received on input ports up to their transmission through
destination ports. From the requirements of today’s networks,
switches must run at line rates of 10 to 40 Gb/s. The archi-
tecture of a shared memory switch, with its internal mod-
ules, is depicted in Fig. 1. An example of such switches
in the literature is the Broadcom’s Trident II series [16].
In these switches, a parser feeds packets from all ports into the
ingress pipeline. After some processing in the match-action

FIGURE 1. A general switch architecture with 64 input/output ports based on [17]. In this paper, we are mainly interested in the scheduler module.
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stages, they enter a scheduler. Then, they exit from the egress
pipeline [17]. Therefore, the switch must handle the aggre-
gate processing requirements of all output ports at minimum
packet size, such as 64 ports of 10 – 40 Gb/s each transmitting
84 byte packets (with preamble and interpacket gap). This
translates into about 1 – 4 billion packets per second.

An HPQS is a powerful module that would fit in the
scheduling stage of such switch architectures. The HPQS can
be placed in each ingress port. A packet extracted from an
HPQS would typically provide data to one egress port at a
time. It will be shown that our proposed architecture is scal-
able in terms of performance for different queue capacities
with network links of 10 – 40 Gb/s (see Section VI) using a
single FPGA (Zynq-7000 and XCVU440 devices). To scale
the implementation up to 64 ports, we can use many FPGAs
in parallel like in a multicard ‘‘pizza box’’ system.

Means of scheduling and managing priorities with the
considered class of architectures are explained in the next
subsection.

B. SCHEDULING AND PRIORITY QUEUING
Network switches must provide scheduling capabilities
(see Fig. 1). Some of the well-known scheduling algorithms
are deficit round robin (DRR), fair queuing [18], and strict
priority [1], etc. In this work, we are mainly interested
in scheduling through strict priority and priority queuing,
while providing large buffering capacity implemented using
on-chip memories in an FPGA.

The high capacity priority queue is provided with guar-
anteed performance that can be used for sorting purposes.
This sorting may represent the prioritization of the different
class of service (CoS): voice, video, signaling, transactional
data, network management, basic service, and low priority
for each packet or flow. A flow maybe defined for example
from the 5-tuple header information (source and destination
IP, source and destination port, and protocol). The priority
key is generated prior entry of the packet tag into the HPQS
by the classification stage. It should be noted that packet
classification is not discussed further in this paper, as we
focus on strict priority scheduling and high capacity priority
queuing with the proposed HPQS architecture in FPGA.

III. RELATED WORK
Several PQs have been proposed in the literature. These
works can be classified as software-based and hardware-
based solutions. In software-based solutions, we find mainly
heaps and binary search trees [12], [19]. However, these
implementations cannot handle large priority queues with
high throughput and very low latency, due to the inherent
O(log n) complexity per queue operation, where n is the
number of keys.

Reported solutions for hardware PQs are based on calendar
queues [5], binary trees [8], shift registers [8]–[10], systolic
arrays [8], [11], and binary heaps [7], [12]–[14]. Moon [8]
analyzed four scalable priority queue architectures based
on: FIFOs, binary trees, shift registers and systolic arrays.

Moon showed that the shift register architecture suffers from
heavy bus loading, and that the systolic array overcomes
this problem at the cost of doubling the hardware complex-
ity. Meanwhile, the total capacity previously investigated by
Moon is 1024 (1 Ki) elements. Also, the hardware approaches
that were adopted limit queue size scalability due to lim-
ited resources. This motivated the research reported in the
present paper to explore alternatives for building high capac-
ity priority queues that can offer high throughput and low
latencywith O(1) time complexity (guaranteed performance).
The reported solution is a hybrid PQ. Basically, hybrid PQs
combine dedicated hardware approaches extended using on-
chip or off-chip memories. In this work, we target to use only
on-chip memories available in FPGAs (block RAMs).

Bhagwan and Lin [7] and Ioannou and Katevenis [14]
proposed hybrid priority queue architectures based on a
pipelined heap, i.e., a p-heap (which is similar to a
binary heap). However, the proposed priority queue supports
en/dequeue operations in O(log n) time against a fixed time
for the systolic array and shift register, where n is the num-
ber of keys. Also, these two implementations of pipelined
PQs offer scalability and achieve high throughput, but at
the cost of increased hardware complexity and performance
degradation for larger priority values and queue sizes. The
reported solutions implemented on ASICs had 64 Ki [14]
and 128 Ki [7] as maximum queue capacities. Kumar [13]
proposed a hybrid priority queue architecture based on a
p-heap implemented on FPGA supporting 8 Ki elements.
This architecture can handle size overflow from the hardware
queue to the off-chip memory. Huang et al. [12] proposed an
improvement to the binary heap architecture. Huang’s hybrid
PQ combines the best of register-based array and BRAM-
tree architectures. It offers a performance close to 1 cycle per
replace (simultaneous dequeue-enqueue) operation. In this
solution, the total implemented queue capacity is 8 Ki ele-
ments when targeting the ZC706 FPGA board.

Zhuang and Pande [20] proposed a hybrid PQ system
exploiting an SRAM-DRAM-FIFO queue using an input
heap, a creation heap and an output heap. The packet priorities
are kept in sorted FIFOs called SFIFO queues that are sorted
in decreasing order from head to tail. The 3 heaps are built
with SRAM, while the SFIFO queues extend the SRAM-
based output heap to DRAM. Zhuang validated his proposal
using a 0.13µm technology under CACTI [21] targeting very
large capacity and line rates: OC-768 and OC-3072 (40 and
160 Gb/s), while the total expected packet buffering capacity
reached 100 million packets.

Chandra and Sinnen [9] proposed an extension of the
shift register based PQ of Moon [8] using a software binary
heap. For larger queue capacity implementation (up to 2 Ki),
the resource consumption increases linearly, while the design
frequency reduces logarithmically. This is a limitation for
larger queues in terms of achieved performance and required
hardware resources. Bloom et al. [10] proposed an exception-
based mechanism used to move the data to secondary storage
(memory) when the hardware PQ overflows.

130674 VOLUME 7, 2019



I. Benacer et al.: HPQS: Fast, High-Capacity, HPQS for High-Speed Networking Devices

Sivaraman et al. [17] proposed the PIFO queue. A PIFO is
a PQ that allows elements to be enqueued into an arbitrary
position according to the elements ranks (the scheduling
order or time), while dequeued elements are always from the
head. The sorting algorithm, called flow scheduler in a PIFO,
manages to enqueue, dequeue, and replace in the correct order
and in constant time a total capacity of 1 Ki elements.

McLaughlin [22], [23] proposed a packet sorting circuit
based on a lookup tree (a trie). This architecture is composed
of three main parts: the tree that performs the lookup func-
tion with 8 Ki capacity, the translation table which connects
the tree to the third part, the tag storage memory. It was
implemented as an ASIC using the UMC 130-nm standard
cell technology, and the reported PQ had a packet buffering
capacity of up to 30 million packet tags.

Wang and Lin [24], [25] proposed a succinct priority index
in SRAM that can efficiently maintain a real-time sorting of
priorities, coupled with a DRAM-based implementation of
large packet buffers targeting 40 Gb/s line rate. This com-
plex architecture was not implemented, it was intended for
high-performance network processing applications such as
advanced per-flow scheduling with QoS guarantee.

Afek [26] proposed a PQ using TCAM/SRAM. This author
showed the efficiency of the proposed solution and its advan-
tages over other ASIC designs [20], [22], [23], but its overall
rate degrades almost linearly with larger queue size while tar-
geting 100 Gb/s line rate. Also, Afek presented an estimation
of performance with no actual implementation.

Van et al. [27] proposed a high throughput pipelined archi-
tecture for tag sorting targeting FPGAwith 100Gb/s line rate.
This architecture is based on multi-bit tree and provides con-
stant insert and delete operation requiring two clock cycles.
The total supported number of packet tags is 8 Ki.

IV. THE HYBRID PRIORITY QUEUE ARCHITECTURE
In this section, we present the HPQS architecture. Then,
we detail its different queuing models for scheduling and
priority queuing, with the supported sorting types.

Fig. 2 depicts the proposed HPQS architecture. The HPQS
assumes one input port representing the operation to perform
and the pushed packet tag (Element In), and one output port
representing the dequeued packet tag (Element Out). The
HPQS is devised in four parts. The first part is the storage
area of the queues implemented with on-chip Block RAMs
(BRAMs). The second part contains the hardware PQ used to
sort out packets in a single clock cycle, its depth represents
the HPQS queuing width (QW), or simply the entire queue
line. In this work, packets are sorted in ascending order of
priority value based on the PQ presented in [28]. It should
be noted that this work extends the PQ presented in [28]
with full sort. The QW impacts directly the logic resources
usage, especially in the hardware PQ. Moreover, the number
of queue lines (QL) impacts the complexity of the exit buffer,
and the priority encoder used in the push/pop indexes calcu-
lation module. Hence, to reduce the impact of QW and QL
during the HPQS implementation (see Section VI), the HPQS

FIGURE 2. The proposed HPQS architecture.

has an almost square shape. Also, the HPQS is chosen for
its guaranteed performance (almost constant time complex-
ity in practice) per queue operation that is independent of
its capacity. More details about the HPQS time complexity
theoretical analysis are given in Section IV-C. The third part
is represented by the exit buffer that is holding the top element
for each queue line. The fourth part is the special module for
push/pop indexes calculation.

From the same architecture of Fig. 2, we derive two queue
models, where the main difference is how push/pop indexes
are calculated. In type-1, each queue line is a distinct queue,
with its own priority range, the first line having highest
priorities, more details are given in Section IV-A. In type-2,
all lines are used together as if they were a single large
queue, more details are given in Section IV-B. The sup-
ported queue operations are enqueue and dequeue in type-1.
A third operation, i.e., replace, is also supported in type-2.
An enqueue enables insertion of an element to the HPQS,
while a dequeue removes the highest priority element (lowest
in priority value). The replace operation allows insertion
while extracting the highest priority element. The whole
HPQS design is described at high-level using the C++ lan-
guage. The code is written in a way that allows efficient
hardware implementation and prototyping in an FPGA plat-
form. Moreover, this HPQS supports 512× with type-1, and
256× with type-2, larger capacity as compared to the PQ
presented in [28] when targeting the same ZC706 FPGA
board (see Section VI).

A. TYPE-1 DISTINCT-QUEUES MODEL
In the type-1 architecture, each queue line of the storage area
represents a distinct queue. The system assumes the highest
priority is the first queue line, while the lowest is the last
one. Elements will be dequeued from first to last queue line
according to their occupancy in ascending order of priority
values. This represents a strict priority scheduler with distinct
queues.
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FIGURE 3. Push and Pop indices calculation in HPQS type-1 architecture.

When a packet tag is received (Element In) as depicted
in Fig. 3, it contains its priority and required metadata infor-
mation like the actual packet address, egress destination
port, or any other attributes. The configuration of the data type
limit can be modified for tag fields. The received packet tag
is pushed with reduced priority information into the HPQS
(priority information for sorting + push index) that is subse-
quently sorted in the appropriate queue. In this architecture,
the priority key is 16-bit (P), and the word element length is
32-bit. The total number of queues, i.e. QL, is given by 2Q.

Upon an enqueue operation, the line index is extracted
from the priority of the received packet tag to select the line
where this incoming element should be inserted. This is done
by a simple bit extraction of the Q most significant bits,
to have the push index. For a dequeue, a priority encoder
finds the pop index of the highest priority element in the exit
buffer by selecting the first non empty line from the HPQS
line counters, see Fig. 3. Then, sorting in the hardware PQ,
and storing the result back to the BRAMs are performed. The
priority key that will reside inside each queue element can be
further optimized to P − Q + 1 bits (the additional 1 bit is
used to differentiate valid sort information from empty ele-
ments during hardware PQ sort). For example, for 64 queues,
the priority key length stored inside each queue is only 11 bits.
For 512 queues, the priority key length stored is 8 bits.
Thus, the metadata field varies from 21 bits up to 24 bits
for the same example (i.e., for 64 and 512 distinct queues,
respectively). The on-chip memory BRAM_18K can hold a
maximum of 512× 32-bit elements per memory block. It will
be shown that during implementation (see Section VI-A),
the width of the HPQS is varied from 64 to 1024 (1 Ki)
elements, while QL is varied from 64 to 512.

A counter per queue line is needed during pop index
calculation for the design to be fully pipelined, as the HLS
tool fails to meet the 1 cycle target while accessing directly
the exit buffer due to carried dependency constraint. This
carried dependency is between the store operation of the top
element in the exit buffer after each HPQS operation, and
the load operation of the top element in each line for pop

index calculation. To prevent this dependency, we access the
counters during pop index calculation, while the exit buffer
is used to pass the output and to store top elements only.
In addition, all counters contain the actual stored number of
elements per queue line. When reaching or exceeding the
queue line capacity during an enqueue, the specific queue line
counter is halted, while the last queued element is dropped.
Normal counter operation is resumed once a dequeue is per-
formed. More details on how to achieve best performances
and matching handwritten designs through HLS are given in
Section V.
In this configuration, we propose two sorting types in

the hardware PQ, a partial and full sort. Fig. 4 depicts the
partial sort (called P. sort) architecture. The hardware PQ is
divided in groups, a group contains two packets representing
the min and max elements. Each group is being connected
with its adjacent groups, and each independently applying
in parallel a common operation on its data. This hardware
PQ architecture is register-based single-instruction-multiple-
data (SIMD), with only local data interconnects, and a short
broadcasted instruction. More details are provided in [28].

FIGURE 4. The hardware PQ architecture with partial sort.

Fig. 5 depicts the full sort (called F. sort) architecture.
In here, the hardware PQ fully sorts the elements by com-
paring the incoming element to all existing elements during
enqueue. The first activated comparator indicates the inser-
tion location for the new element. This is found through
a priority encoder leading to the appropriate enqueue index.

FIGURE 5. The hardware PQ architecture with full sort.
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A shift register is used to move the elements beyond the
enqueue index by one location to the bottom of the hardware
PQ. During a dequeue, the top element is removed from the
hardware PQ, while the remaining elements are shifted to the
top by one location.

In partial sort, the elements with similar priorities are not
distinguishable in their order of departure according to their
order of arrival. Full sort is proposed to guarantee the order
of departure for such packets, as the new incoming elements
are enqueued and placed after the existing ones. Also, this
is suitable for some network equipment where out of order
reception is not supported.

B. TYPE-2 SINGLE-QUEUE MODEL
In this architecture, a high capacity PQ is proposed.
In addition to enqueue and dequeue operations, a third basic
operation called replace (simultaneous dequeue-enqueue) is
supported. This architecture supports 16-bit priority and
48-bit metadata (64-bit elements) spread over distinct queue
lines, similar to type-1, but virtually grouped to form a
single queue. An enqueue is performed after receiving the
line information of the first queue line with empty location
through a priority encoder. This priority encoder selects the
first non full line counter as depicted in Fig. 6. After sorting
the upcoming element with the existing ones in the hardware
PQ (load all elements from the BRAMs to the hardware
PQ), the result is written to the same line in the BRAMs.
In the case of a dequeue operation, a parallel comparison
is made between the elements stored in the exit buffer with
a binary parallel selection tree. The parallel selection tree
has O(logQL) time complexity, this complexity is almost
constant during implementation, see Section VI-A. The exit
buffer holds the highest priority element of each queue line.
From the corresponding pop index, the content of on-chip
memories are sorted to complete the dequeue operation the

FIGURE 6. Push and Pop indices calculation in HPQS type-2 architecture.

same way an enqueue operation is performed. Also, for this
configuration, it will be shown that during implementation,
the width of the HPQS is varied from 64 to 1024 elements,
while QL is varied from 64 to 512.

In this HPQS configuration, even if full sort is used,
we cannot guarantee the order of departure according to the
order of arrival for similar priority elements from the differ-
ent queue lines. The selection of the minimum element to
dequeue is done by a binary parallel selection tree, while the
push index is selected by a priority encoder from any queue
line with empty location. As we can enqueue and dequeue
from any queue line, the order of departure for similar priority
elements cannot be guaranteed. In the type-1 architecture, this
order is guaranteed by the hardware PQ (with full sort) and the
exit buffer. Each queue line contains the elements in ascend-
ing order of departure, and the selection in the exit buffer is
done by a priority encoder that will choose the best element
from top to bottom in priority order. This guarantees the order
of departure for similar priority elements. Therefore, in the
type-2 architecture only partial sort is used.

C. HPQS TIME COMPLEXITY THEORETICAL ANALYSIS
The HPQS is composed of four parts (see Fig. 2), from which
we can derive the time complexity.

1) Storage area: this storage exploits BRAMs, which can
be accessed at each clock cycle through a read and
a write operation (in dual port memories). From the
HPQS BRAMs configuration (column wise), we can
both load and store in pipelined fashion an entire line
from the storage area to the hardware PQ, and vice
versa, in only 1 clock cycle. It should be noted that
with larger designs requiringmore BRAMs, the routing
resources impacts directly the read/write operation’s
propagation time. Meanwhile, our design has an almost
constant time complexity in practice regardless of the
number of BRAMs used, the delay being dominated by
other HPQS modules (see Section VI-A).

2) Hardware PQ with partial and full sort: a PQ per-
forming partial sort [28] has O(logN ) time complexity,
where N is the number of packet tags in each group,
while the quality of dismissed elements when the queue
is full is 1/N (lower is better). In this work, N is fixed
to 2 packet tags in each group, for all queue depths.
So, this lead to O(1) complexity during placement and
routing of the partial sort in the FPGA. The full sort
(explained in Section IV-A) is composed of parallel
comparators that feed a priority encoder. The output
of the priority encoder (insert location) is fed to a
shift register. It should be noted that with larger QW,
the slower is the priority encoder due to large fan-in.
The time complexity of the full sort is almost constant
time complexity in practice (see Section VI-A).

3) Exit buffer: this buffer contains a register-array that
holds the top elements of each queue line. As we can
load and store in the exit buffer at each clock cycle,
the time complexity of this module is O(1).
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4) Push/pop indexes calculation module: In the type-1
configuration, this module contains only queue line
elements counters and a priority encoder (more details
are given in Section IV-A). So, its time complexity
is O(1). In the type-2 configuration, it contains in
addition to the queue line elements counters and pri-
ority encoder, the binary selection tree. This selection
tree has O(logQL) complexity. The QL needs to be
small to lower the impact of this complexity. Therefore,
we will show implementation results for QL varying
from 64 up to 512. This leads to almost constant time
complexity that in practice is essentially O(1). Also,
the HPQS was chosen with an almost square shape
to lower the logic resources usage, especially in the
hardware PQ [28] and queue line elements counters
(see Section VI).

D. HPQS FUNCTIONAL DESIGN
From a conceptual point of view, the HPQS is intended to
work in a pipelined fashion. Each load/store from all BRAMs
can be done in a single clock cycle. The HPQS operates as
follows, in the first cycle (see circled numbers on Fig. 2),
according to the operation to perform, either an enqueue or a
dequeue in the type-1 architecture, in addition to replace in
the type-2 architecture, an index is calculated. This index
corresponds to the BRAMs line (together the respective lines
of the parallel BRAMs contain 64 to 1 Ki elements, according
to the queue capacity) to be loaded onto the hardware PQ.
The ordering of the active queue is done in the second clock
cycle, while a write back to the same BRAMs line to store the
result is also done in the second clock cycle (More details are
provided in Section V-A).
It should be noted that each BRAM holds up to 512 cat-

egories, and each category can have from 64 up to 1 Ki
elements. This leads to 512 queues with at most 1 Ki capacity.
The load and store operations require two distinct buses
of 1024 × 32-bit to transfer the elements in type-1, and
1024 × 64-bit elements in type-2 architectures. They are
necessary to transfer the stored elements in the BRAMs to
the hardware PQ and vice versa.When the HQPS is generated
with its full capacity, 216 and 217 nets are instantiated for each
configuration, respectively. This impacts performance (more
details are given in the implementation results Section VI).

V. HLS DESIGN METHODOLOGY AND CONSIDERATIONS
In this section, we first present the analysis of operations
required by the proposed HPQS design. Then, we detail the
steps applied in HLS to obtain the desired throughput and
latency.

A. ANALYSIS OF HPQS OPERATIONS
The timing diagram demonstrating correct operation of the
proposed HPQS is shown in Fig. 7. The required oper-
ations for the HPQS are to extract (in type-1 architec-
ture) or choose (in type-2 architecture) the line to enqueue,
dequeue, or replace an element, load the line content from

FIGURE 7. Proposed HPQS pipeline operations timing diagram.

the BRAMs to the hardware PQ for sorting, and finally write
back the result to the same line in the BRAMs. Therefore,
the HPQS operations consist in reading the storage memory
(steps C0-C1), sorting the queue elements (step C1), and
writing back the result to the samememory location (step C1).
These are the specific tasks done by the proposed HPQS for
each queue operation at any given clock cycle.

B. DESIGN METHODOLOGY
1) HIGH-LEVEL DESIGN
High-level synthesis enables raising the design abstraction
level, while providing more flexibility by automatically gen-
erating synthesizable Register Transfer Logic (RTL) from
C/C++ models, as compared to Hardware Description Lan-
guage (HDL) hand-written designs. Also, HLS requires less
design effort, when performing a broad design space explo-
ration, such that many derivative designs can be obtained with
a small incremental effort. In this paper, we have derived
92 substantially different implementations from the same
high-level description with HLS with a very small effort
using the HPQS model parameters specialization such as
the group size, QL, sort type (partial and full sort), HPQS
configuration (type-1 and type-2), etc. This specialization is
possible due to the elevated abstraction level at which the
HPQS is expressed. In addition, design space exploration
can be performed through different available directives and
constraints provided by the tool. Using directives, a user can
guide the HLS tool during C-synthesis. Thus, the designer
can focus on the algorithmic design aspects, rather than on
low-level details required when using HDL. HLS was chosen
in this work for the above reasons.

The main metrics used to measure performance in HLS
designs are area, latency, and Initiation Interval (II). In this
work, we performed all experiments with Vivado HLS while
the design is coded in C++. Appropriate design iterations
were applied to refine the HPQS (code optimization and
enhancement). The code was thoroughly tested.

The HPQS model is written in high-level C++0x. Indeed,
Vivado HLS (version 2016.2) does not support yet C++11 or
later. We used templated object oriented design for model
specialization with the above mentioned parameters and data
types lengths. Once we obtained a fully functional model,
we proceeded to high-level synthesis, as explained in the
following subsection.
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2) HIGH-LEVEL SYNTHESIS
Prior HLS, design metrics are defined such as the target
resource usage, desired throughput, clock frequency, and
design latency. The RTL-equivalent (VHDL) of the C++
model is exported from Vivado HLS once it passes suc-
cessfully the co-simulation with the high-level C++ HPQS
design. Then, the Vivado tool is used to place and route the
HPQS in the FPGA (more details are given in Section VI).
We performed a thorough design space exploration for the

HPQS through HLS targeting minimum latency, equivalent
memory usage (number of BRAMs) and highest throughput.
The total considered HPQS capacity is 512 Ki. From Fig. 7,
it can be seen that the minimum latency that can be achieved
from our design operation, and initiation interval (II) are one
clock cycle each, i.e., every clock cycle an output packet tag
is ready. To target this optimal performance through HLS,
the three directives that we focused on are: a latency directive
targeting one clock cycle, a pipeline directive with II of one
clock cycle, and a memory dependency directive asking for
separate true dual port memories for accessing the element
information through a read and/or write in the same cycle in
the BRAMs. As HLS constraint, we target the lowest feasible
clock period without violating the desired design latency and
II mentioned above.

The partition directive was used to guide the tool to use
only logic resources to implement logic and not the BRAMs
available in the FPGA, to reduce design latency by cutting
down the memory access time for the hardware PQ. To map
the storage to the on-chip BRAMs, the resource directive
is used with the option ‘‘true dual port RAM’’ enabling
load/store in the same cycle. The pipeline directive is used to
target an II of one clock cycle. All the mentioned directives
are used together to generate the HPQS design. It should be
noted that a bypass is not required for back-to-back similar
line accesses in the BRAMs as the previous line content
is already in the hardware PQ. In here, the load operation
from the BRAMs is simply discarded (see intra-dependences
in Fig. 7). More details on the experimental results of place-
ment and routing in FPGA for different HPQS configurations
and capacities are provided in Section VI-A.

VI. IMPLEMENTATION RESULTS
In this section, we detail the hardware implementation of our
proposed HPQS architecture, resource usage and achieved
performance, for different configurations (type-1 and type-2)
and capacities (design scalability). Then, comparisons to
existing works in the literature are discussed.

A. PLACEMENT AND ROUTING RESULTS
The proposed HPQS was implemented on a Xilinx
Zynq-7000 ZC706 board (based on the xc7z045ffg900-2
FPGA) and on a XCVU440 Virtex UltraScale device
(xcvu440-flgb2377-3-e), using Vivado tool with the Explore
directive enabled. The type-1 architecture implementation
results are summarized in Fig. 8, under ZC706 on the left

column (Fig. 8a to 8d), and the XCVU440 results are summa-
rized in the right column (Fig. 8e to 8h). Under ZC706 FPGA
board, the resource utilization in terms of the number of look-
up tables (LUTs) are reported in Fig. 8a, and of the number
of flip-flops (FFs) in Fig. 8b. For performance, we report the
achieved clock period in Fig. 8c. Also, the dynamic power
consumption of the proposed HPQS type-1 architecture are
depicted in Fig. 8d. In the same order, implementation results
when targeting aXCVU440 device are reported in Fig. 8e–8h,
respectively. In addition, the reported results are in terms of
the HPQSQW, sort types (see the legends: partial sort labeled
P. sort, and full sort labeled F. sort), and QL.

The type-2 architecture implementation results are
reported in Fig. 9 in the same manner we reported the
type-1 architecture implementation results. In here, the
reported results are in terms of supported queue operations
(with andwithout simultaneous dequeue-enqueue or replace),
and the QL. Moreover, in the type-2 architecture, under
ZC706 FPGA board, various HPQS queue widths are
explored from 64 up to 512 elements. By contrast,
the queue widths range from 64 to 1024 when targeting
the XCVU440 device. These ranges are determined by the
number of BRAM_18K available in the FPGA devices.
The ZC706 FPGA board has only 1090 blocks, while the
XCVU440 has 5040 blocks. Recall that a BRAM_18K can
hold an entire column of the HPQS storage with 512× 32-bit
elements. In the type-2 architecture, each element is 64-bit
that consumes 2 BRAMs to support the full width of each
entry. It should be noted that the achieved throughput and
latency for all HPQS configurations are one clock cycle.

In what follows, we discuss in details the obtained HPQS
implementation results under both FPGA devices in terms
of LUTs, FFs, achieved clock period and dynamic power
consumption.

The resource consumption of the different HPQS config-
urations can be divided into four main parts: hardware PQ,
exit buffer, storage resource, and counters of elements per
queue line. The hardware PQ depth (QW) is varied from 64 to
1024 elements, while the maximum HPQS height is 512.
In the hardware PQ implementation, only FFs and LUTswere
used to obtain a fast pipelined architecture achieving one
clock cycle per queue operation. The exit buffer was imple-
mented as a register-based array to hold only the top elements
of each queue line of the HPQS. The line counters are used
to break up the dependency on checking if the queue line is
empty/full at each queue operation on the exit buffer. Without
these line counters, the HLS tool was not able to pipeline
the design to one clock cycle. The BRAM_18K usage was
found to reflect directly the width of the HPQS (QW), as each
on-chip memory is mapped to hold an entire column of the
proposed HPQS storage (see Fig. 2). The HPQS architecture
for both configurations is scalable in terms of the number of
BRAMs for 32 up to 1024 blocks as per the implementation
results shown in Fig. 8 and Fig. 9.

In type-1 configuration (see Fig. 8a and 8e) with
both FPGA devices (ZC706 and XCVU440, respectively),
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FIGURE 8. The HPQS type-1 configuration implementation results for 32-bit element on the ZC706 FPGA board, and XCVU440 device with: (a) LUT
usage, (b) FF usage, (c) achieved clock period, and (d) dynamic power consumption using ZC706 FPGA board. Similarly from (e-h) under
XCVU440 device.

increasing the capacity of the hardware PQ (QW) from
64 to 1024 elements with partial sort, the LUTs consump-
tion linearly increases as more groups are attached in the
SIMD hardware PQ. However, with full sort, this increase
is linear over a range of capacity between 512-640 elements,
then it stabilizes between 768-896 after which it increases

again. This is the complexity of full sort with the priority
encoder for index selection through an array of comparators
(see Section IV-A). When increasing the number of queue
lines or the height of HPQS, from 64 to 256 lines with
its width not exceeding 512 elements, the LUTs usage is
quite similar with both sort types (see Fig. 8a and 8e).
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FIGURE 9. The HPQS type-2 configuration implementation results for 64-bit element on the ZC706 FPGA board, and XCVU440 device with: (a) LUT
usage, (b) FF usage, (c) achieved clock period, and (d) dynamic power consumption using ZC706 FPGA board. Similarly from (e-h) under
XCVU440 device.

Beyond 256 queue lines and 512 elements in HPQS width,
the increase in the number of LUTs is no longer linear. The
more lines in the HPQS, the more complex is the decoder
of line index and its routing (width of the multiplexers), this
complexity is logarithmic and appear to follow a stair case
function. The same tendency can be seen for both devices

(Zynq-7 and Virtex Ultrascale), where they have similar
slice organization with 6-input LUTs. It should be noted that
the XCVU440 device has more resources (11.5 × more in
LUTs/FFs) compared to the ZC706 FPGA board.

Type-2 architecture has a selection tree used during
dequeue, and a priority encoder for line selection during
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enqueue in addition to the resource of type-1 architecture,
with partial sort is used in hardware PQ. The LUTs usage
(see Fig. 9a and 9e) is higher with similar tendency (lin-
early increasing for 64 up to 256 queue lines or HPQS
height) and for different hardware PQ widths (64 up to
1024 elements). Also, supporting the third queue operation,
i.e. replace, does increase the resource consumption by 37%
in the worst case with the ZC706 FPGA board, and 54% with
the XCVU440 device.

Regarding the FFs usage (see Fig. 8b, 8f for the type-1
architecture, and Fig. 9b, 9f for the type-2 architecture under
ZC706 FPGA board and XCVU440 device, respectively),
it reflects directly the use of memory resource of the hardware
PQ, exit buffer and the line counters in all HPQS configura-
tions. For example, the hardware PQ uses element length ×
queue width, for the counters 11-bit × queue lines, and the
exit buffer element length× queue lines. let us recall that the
element length in the type-1 architecture is 32-bit, while in
the type-2 architecture is 64-bit. Also, as the HPQS capacity
increases, all the above FFs resource relations are linear with
the height and width dimensions.

For the performance metrics, the clock period achieved
with the type-1 architecture (see Fig. 8c, 8g) with partial sort
is better compared to the type-2 architecture (see Fig. 9c, 9g).
It should bementioned that the type-1 architecture is intended
only for strict priority scheduling with distinct queues. If used
as a priority queue, proper priorities repartition is advised.
Type-2 is a high capacity priority queue that supports by
default type-1 functionality. For type-1 with full sort, for
both devices (see Fig. 8c, 8g), the performance decreases
beyond 512 hardware PQ elements capacity with lower per-
formances compared to partial sort. However, the achieved
clock period is more stable and almost constant with partial
sort in both FPGA devices. The XCVU440 device achieved
better results than the Zynq-7. This is mainly due to the fact
that the XCVU440 device is less prone to net congestion
during routing, as it has more resources (11.5×) compared
to the ZC706 FPGA board that used up to 99.0% of its LUTs,
as reported in Table 1 for the largest design. It should be
noted that for a clock period of 16.8 ns, the different designs
are capable of supporting links up to 40 Gb/s for 84 bytes
minimum size Ethernet packets (including minimum size
packet of 64 bytes, preamble and interpacket gap of 20 bytes).

For dynamic power consumption, the XCVU440 device
and ZC706 FPGA board have a similar tendency of linear
growth with the HPQS capacity (for type-1 with partial sort
and type-2 configurations, see Fig. 8d, 8h for the type-1 archi-
tecture, and Fig. 9d, 9h for the type-2 architecture under
ZC706 FPGA board and XCVU440 device, respectively).
It should be noted that with smaller designs, the lower the
achieved clock period, the more power is consumed. This can
be seen with designs having up to 256 lines with hardware PQ
width up to 640 elements (in type-1 full sort, see Fig. 8d, 8h).
Inversely, the larger is the design (beyond 256 queue lines),
the higher is the clock period leading to lower power
consumption. Overall, in type-1 configuration, both FPGA

devices have similar tendency. With the type-2 architecture,
the only difference is in the largest designs (HPQS height
of 512, see Fig. 9d, 9h), the ZC706 FPGA board is nearly
fully used leading to lower clock period and dynamic power
consumption compared to the XCVU440 device.

Table 1 depicts the percentage of the FPGA resource
usage, slice under ZC706 FPGA board, configurable logic
block (CLB) under XCVU440 device, and BRAM memory
after HPQS placement and routing of the largest designs
(type-1 and type-2), with the achieved clock period, and
dynamic power consumed in both FPGA devices. Note
that in the ZC706 FPGA board, we used 88 to 99% of
available slices, and 94.0% of BRAMs, that led to lower
performance in comparison with the XCVU440 UltraScale
device. The largest design (512 Ki capacity with type-2)
consumes less than 20% of the CLBs and 40.6% of the
BRAMs resources when targeting the XCVU440 device. So,
the unused resources could be easily exploited to scale the
HPQS design to even larger capacity beyond the proposed
512 Ki elements by 4.0×, and 2.0× for the type-1 and
type-2 HPQS architectures with 1024 elements queue width,
respectively. Note that when targeting the ZC706 FPGA
board, the largest HPQS type-2 design implemented was
256 Ki elements in capacity due to limited number of
BRAMs, leading to 94.0% memory usage.

TABLE 1. Percentage of resource utilization for the largest designs of
HPQS in ZC706 and XCVU440 FPGAs.

B. COMPARISON WITH RELATED WORKS
The proposed HPQS supports enqueue and dequeue opera-
tions for type-1, in addition to replace in type-2 configuration.
The number of cycles between successive dequeue–enqueue
(hold) operations is two clock cycles, and only 1 clock
cycle when replace is supported, as reported in Table 2.
Indeed, each queue operation takes one cycle to finish.
This is less than the binary heap [12] and p-heap archi-
tectures [14]. The reported shift register and systolic archi-
tectures in Moon’s work [8] have a latency of two clock
cycles for en/dequeue. In case of the shift register pro-
posed by Chandra and Sinnen [9], the performance degrades
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TABLE 2. Performance comparison for different priority queue
architectures.

logarithmically. Compared to the p-heap architecture [14],
even though it accepts pipelined operations each clock
cycle (except in case of successive deletions), the latency is
O(log n) in terms of the queue capacity, against constant time
latency for our proposed HPQS architecture.

Even though the hardware PQ is fast, achieving 3.31 ns
per operation with only enqueue/dequeue, and 4.0 ns with
replace (see Table 2), the BRAMs distribution in the FPGA
span many columns. During placement and routing of the
largest HPQS designs (up to 512 lines × 1024 elements),
long net delays tend to be generated by the hardware PQ to
BRAMs connections (recall that the full architecture requires
216 nets in the type-1 architecture and 217 nets in the type-2
architecture to connect the BRAMs to the hardware PQ
as explained in Section IV-D). This impacts directly the
overall performance of the design as the clock period of
the whole HPQS is 23.0 and 19.7 ns for the ZC706 and
XCVU440 FPGA devices respectively with 64 Ki capac-
ity (type-2). For 256 Ki capacity with the ZC706 FPGA
board (largest routed design under this FPGA), it decreases
to 37.0 ns. With 512 Ki design with XCVU440 device,
the clock period decreases to 22.6 and 25.9 ns w/o andw/ sup-
port of replace operation, respectively. This design supports

1/2 million elements in a single FPGA, against a few thou-
sands in previously published works.

In our proposed HPQS, we achieved a guaranteed perfor-
mance and latency due to the fixed number of cycles (O(1)
complexity). This constant number of cycles is independent
of the hardware PQ width and the HPQS capacity, unlike
the O(log n) time for the dequeue operation observed with
the heap [12], [14], [20], where n is the number of nodes
(keys). The throughput achieved with the proposed solution
is 22.1 million packets per second (Mpps) without replace,
and 38.5 Mpps with replace for 512 Ki total capacity (type-2)
under XCVU440 device. From works depicted in Table 2,
only some queues with 2 Ki and less capacity have through-
puts better than our proposed HPQS. Beyond this capacity,
either the designs have problem fitting in the targeted FPGA
like in [8], [9], and [17], or the throughput degrades bellow
our achieved throughputs [12], [14]. Compared to [4], [7], [8],
[12], [26], the reported throughput of the HPQS is indepen-
dent of the queue capacity.

VII. CONCLUSION
This paper proposed and evaluated a hybrid priority queue
architecture intended to support the requirements of todays
high-speed networking devices. The proposed HPQS was
coded in C++ and synthesized using Vivado HLS. The first
HPQS configuration with distinct-queues model is intended
for strict priority scheduling. The second configuration is
intended to offer a single large capacity priority queue for
sorting purposes.

The proposed HPQS can support pipelined operations,
with one operation completed at each clock cycle, with a
capacity up to 1/2 million elements in a single FPGA. Also,
the achieved throughput is comparable to similar related
works in the literature, while supporting 10 to 40 Gb/s links.
The achieved latency is in O(1) time complexity for the
different queue operations independent to the total number
of packet tags or HPQS capacity.
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