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ABSTRACT Deep learning methods have been successfully applied in medical image classification,
segmentation and detection tasks. The U-Net architecture has been widely applied for these tasks. In this
paper, we propose a U-Net variant for improved vessel segmentation in retinal fundus images. Firstly,
we design a minimal U-Net (Mi-UNet) architecture, which drastically reduces the parameter count to 0.07M
compared to 31.03M for the conventional U-Net. Moreover, based on Mi-UNet, we propose Salient U-Net
(S-UNet), a bridge-style U-Net architecture with a saliency mechanism and with only 0.21M parameters.
S-UNet uses a cascading technique that employs the foreground features of one net block as the foreground
attention information of the next net block. This cascading leads to enhanced input images, inheritance of
the learning experience of previous net blocks, and hence effective solution of the data imbalance problem.
S-UNet was tested on two benchmark datasets, DRIVE and CHASE_DB1, with image sizes of 584× 565
and 960 × 999, respectively. S-UNet was tested on the TONGREN clinical dataset with image sizes of
1880 × 2816. The experimental results show superior performance in comparison to other state-of-the-
art methods. Especially, for whole-image input from the DRIVE dataset, S-UNet achieved a Matthews
correlation coefficient (MCC), an area under curve (AUC), and an F1 score of 0.8055, 0.9821, and 0.8303,
respectively. The corresponding scores for the CHASE_DB1 dataset were 0.8065, 0.9867, and 0.8242,
respectively. Moreover, our model shows an excellent performance on the TONGREN clinical dataset.
In addition, S-UNet segments images of low, medium, and high resolutions in just 33ms, 91ms and 0.49s,
respectively. This shows the real-time applicability of the proposed model.

INDEX TERMS Deep learning, retinal fundus image, saliency mechanism, vessel segmentation.

I. INTRODUCTION
Early diagnosis is crucial for many diseases that lead to
human vision deterioration, such as glaucoma, hypertension
and diabetic retinopathy [1], [2]. Ophthalmologists typically
examine retinal fundus images to assess the clinical condition
of the retinal blood vessels, which is an important indicator

The associate editor coordinating the review of this manuscript and

approving it for publication was Madhu S. Nair .

for the diagnosis of various ophthalmic diseases. However,
manual labeling of retinal vessels in these images is time-
consuming, tedious and requires high clinical experience.
Hence, real-time automatic segmentation of retinal blood
vessels is highly needed [3], and has attracted great attention
in recent decades [4].

Existing retinal vessel segmentation methods can be
divided into unsupervised and supervised methods [5]. For
unsupervised methods, features of given unlabeled data
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samples are extracted, clustered, and used to distinguish
between blood vessels and background tissues. For example,
Azzopardi and Petkov [6] used a two-dimensional kernel
function to fit the retinal vessel characteristics and produce a
Gaussian intensity profile of the vessels. In Feng et al. [7], 3D
directional scores were computed from retinal images, and
then blood vessels were enhanced through multi-scale deriva-
tives. Roychowdhury et al. [8] used fundus vascular morphol-
ogy and adaptive thresholding for segmentation. A center-line
detection approach for vessel segmentation was introduced
by Jiang et al. [9]. Unsupervised methods have advantages
of low sample data requirements, and low data acquisition
cost. Nevertheless, features from small datasets are typically
obvious individual features that do not reflect the complexity
of vessel boundaries.

For supervised methods, retinal vessel segmentation is
treated as a classification problem. In this problem, blood
vessels and other tissues are considered to be two categories
and classification is made on a pixel-by-pixel basis. For
example, Strisciuglio et al. [10] proposed a set of COSFIRE
filters, trained a support vector machine (SVM) classifier, and
determined the most discriminative filter subset for vessel
delineation. Orlando et al. [11] proposed a fully-connected
conditional-random-field vessel segmentation model with
structured-output SVM learning. Recently, Zhang et al. [12]
combined vascular and wavelet features, processed 29 feature
sets, and used a random-forest classifier for vessel segmen-
tation. Compared with unsupervised methods, the results of
supervised methods have high computational costs and are
often strongly influenced by expert labeling and engineered
features.

Deep learning achieves state-of-the-art performance in
many computer vision tasks, such as image classification,
image segmentation, target recognition, motion tracking and
creating image subtitles [13]. In particular, the performance
of deep convolutional neural networks (CNN) is close to
that of the radiologists in many semantic segmentation tasks
in medical image analysis. U-Net [14] is the most widely
used deep learning architecture in medical image analysis,
mainly because of its codec structure with jump joints which
allows efficient information flow and good performance in
the absence of a sufficiently large dataset. Thus, many vari-
ants of U-Net have been proposed. Alom et al. [15] proposed
a U-Net segmentation architecture with recurrent convolu-
tional neural network (RCNN), which is named RU-Net.
Oktay et al. [16] proposed using an attention module with
U-Net for pancreas segmentation. Jégou et al. [17] pro-
posed Tiramisu, a U-Net architecture whose cascaded con-
volutional layers are replaced with dense blocks such that
each convolutional layer is directly connected to every other
layer in a feed-forward fashion. However, fundus image data
is extremely unbalanced: the training dataset typically has
only 20 cases, out of which the positive cases account for
only 10-20% [18]. Therefore, the classic U-Net architecture
cannot be applied blindly. To deal with data imbalance, earlier
approaches involved extracting image patches, and randomly

selecting 3,000 to 10,000 48 × 48 image patches for train-
ing [7], [19]–[22]. However, these patch-based approaches
show slow convergence rates, long testing times, failure to
obtain real-time results, and hence less applicability in clin-
ical applications. Although the BTS-DSN method does not
divide the fundus images into patches, the results are lower
than those of a patch-based method. For small datasets, pre-
vious methods adopted diverse data augmentation methods.
For instance, Bandara and Giragama [23] applied a spatially
adaptive contrast enhancement technique to retinal fundus
images for vessel segmentation. Oliveira et al. [19] used
the stationary wavelet transform (SWT) to preprocess retinal
fundus images. However, SWT preprocessing is complex and
slow.

In this paper, we created a minimal U-Net (Mi-UNet),
a simplified architecture of U-Net, with parameters whose
count is only 0.23% of those of U-Net. This reduction
effectively prevents overfitting on small datasets for retinal
vessel segmentation. In addition, we propose Salient U-Net
(S-UNet), a bridge-style architecture based on Mi-UNet. For
this proposed architecture, the foreground features learned
from one Mi-UNet model are taken as the foreground
salient information and concatenated with the original data
to be transmitted to the next Mi-UNet in a cascade manner.
As shown in Table 3 and Table 4, by integrating multiple
learning experiences of Mi-UNet blocks, S-UNet achieved
an excellent performance in terms of the Matthews correla-
tion coefficient (MCC), the area under curve (AUC) and the
F1 score on the DRIVE and CHASE_DB1 datasets. Mean-
while, our model has also been trained and tested on actual
clinical data of TONGREN, achieving an AUC of 0.9824, and
a testing time of only 0.49s for a 1880× 2816 fundus image.
These results are of great significance for the practical pro-
motion and clinical application of the proposed architecture.

The main contribution of this paper is that we propose
S-UNet, a bridge-style deep learning architecture that uses
a cascading approach to apply the foreground features of one
Mi-UNet block as the foreground salient information of the
next Mi-UNet block to enhance the input images and inherit
the learning experiences of the previous Mi-UNet blocks.
S-UNet uses a saliency mechanism to effectively solve the
problem of data imbalance. In addition, the S-UNet parame-
ters are only 0.7% of those of the original U-Net. This makes
S-UNet one of the architectures with the fewest parameters.

The rest of the paper is organized as follows. The pro-
posed deep learning architecture is described in Section 2.
Section 3 shows the experimental setup. Results and discus-
sion are given in Section 4, while the main conclusions are
summarized in Section 5.

II. METHODS
In this section, we describe in detail the design of the bridge-
style S-UNet architecture. We use a cascading approach to
apply the foreground features of an earlier network block
as the foreground salient information of the next network
block to enhance the input images and inherit the learning
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FIGURE 1. Overview of the S-UNet architecture for retinal vessel segmentation. Top: Flow diagram of the S-UNet vessel segmentation
algorithm. Bottom left: The saliency module. Bottom right: The Mi-UNet block structure.

experience of the previous network blocks. We used full
images and performed horizontal and vertical data augmen-
tation. An overview of the proposed framework is shown in
Fig. 1.

U-Net and its variants in the literature have encoder-
decoder structures, and remarkable results have been
achieved using these architectures in fundus vascular segmen-
tation. However, for this segmentation problem, excessive
downsampling can lead to loss of vascular details while too
many parameters can cause overfitting. Therefore, we have
simplified the classical U-Net framework to aMi-UNet archi-
tecture which is used as the basic building block of our seg-
mentation model. An outline of Mi-UNet is shown in Fig. 1,
and the network parameters are listed in Table 1. Mi-UNet
drastically reduces the parameter count to 0.07M compared
to 31.03M for the baseline U-Net [14].

Let S = {(Xn,Yn), n = 1, . . . ,N}, where Xn =

{xj(n), i = 1, . . . , |Xn|} denotes a raw input retinal image
and Yn = {yj(n), i = 1, . . . , |Xn|}, y(n) ∈ {0, 1} denotes the
corresponding ground-truth binary vessel segmentation map
for the image Xn. Since each image is handled separately,
the subscript n is omitted for simplicity. We suppose there
are N Mi-UNet blocks in the network, and we denote by

WL(L = 1, 2, . . . ,N) the collection of all convolutional
layers of the Mi-UNet blocks.

In the proposed method, we use a cascading scheme to link
N Mi-UNet blocks, as shown in Fig. 1, use the foreground
features of the previous Mi-UNet blocks as the foreground
attention information of the next Mi-UNet block. This cas-
cading embodies the saliency mechanism of our method (See
the saliency mechanism in Fig. 1). Then, we concatenate the
foreground features of the output of all of the preceding net-
work blocks with the original input. Specifically, the output
of the first block O1 equals the product of the parametersW1
of the first Mi-UNet block with the original input X :

O1 = W1X (1)

The output of the first saliency module is defined as:

sO1 = (W1X )f ⊕ X (2)

where (·)f represents the foreground features, and ⊕ repre-
sents the concatenation of the foreground features and the
input images, and sO0 is X . Thus, the second Mi-UNet block
gets enhanced input data as shown in Fig. 2.
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TABLE 1. Mi-UNet architectural parameters for fundus vascular segmentation.

FIGURE 2. The input data of the second Mi-UNet block. a) The heat map
of the output foreground features after the first Mi-UNet block (Vessels
are shown in red, and the background is shown in blue). b) The input
image (in gray).

Therefore, the output of the L-1Mi-UNet block is defined
as:

OL−1 = WL−1sOL−2, L ≥ 2 (3)

The input of the L Mi-UNet block is defined as:

IL = sOL−1 = ⊕
L−1
i=0 (OL−1)f , L ≥ 2 (4)

In this framework, in order to enforce each block to learn
some new knowledge, we add an auxiliary binary cross-
entropy loss function to the output of each block (See the
S-UNet architecture in Fig. 1). For the output of the L-1
Mi-UNet, the auxiliary loss function is defined as:

LBECL−1 = −
1
n

∑n

i=1
(yilog

(
y′i
)
+ (1− yi)log(1− y′i))

(5)

and the total loss is defined as:

Loss =
∑N

i=1
αi ∗ LBEC i + β ∗ ‖W‖22 (6)∑N

i=1
αi = 1 (7)

where n denotes the pixel count in a given image, y′ is the
network’s predicted output probability of a vessel pixel, y is
the ground-truth class, and αi is the weight of the ith auxiliary
loss (αi = 1

/
L in our work). We use L2 regularization with a

weighting factor of β = 0.0002.

III. EXPERIMENTAL SETUP
In the following subsections, we describe the used dataset,
the evaluation criteria for retinal vessel segmentation, the
implementation, and the training details.

A. RETINAL IMAGE DATASETS
In this work, we evaluate our method and assess its clin-
ical applicability on three retinal image datasets of dif-
ferent scales, where the first two datasets are publically
available while the third one was collected by the authors.
The DRIVE database [18] has forty 565 × 584 images,
out of which 7 images exhibit pathological patterns. The
CHASE_DB1 database [24] has twenty eight 999 × 960
images, collected from 14 children, with images from both
eyes for each child. The third dataset is the TONGREN
clinical database which consists of thirty 1880×2816 images,
collected from 30 people at the Tongren Beijing Hospital,
where five of these images show pathological patterns. Sam-
ples from the three datasets are shown in Fig. 3.

For the DRIVE and TONGREN datasets, the images were
divided equally among training and testing sets. Specifically,
for the DRIVE dataset, both the training and testing sets are
20 images, while for the TONGREN dataset, both the train-
ing and testing sets are 15 images. Besides, the TONGREN
dataset was stratified to ensure the balance of healthy and
pathological cases.

For the CHASE_DB1 dataset, no clear distinction could be
made between healthy and pathological cases. Hence, a strat-
ified k-fold cross-validation scheme was adopted. In this
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FIGURE 3. Examples of the retinal images and their pixel dimensions (H × W). (a) Input retinal images: Top Left: DRIVE
(584 × 565); top right: CHASE_DB1 (960 × 999); bottom: TONGREN (1880 × 2816). (b) Vessel manual labels. (c) Fundus image
masks.

scheme, the original dataset is partitioned into k folds of equal
sizes, where one fold is used for testing, and the other k-1
folds are used for training. This process is repeated k times,
and the k results are averaged to produce a single perfor-
mance metric estimate. For evaluation consistency, the same
architecture settings and training from scratch were used
for each repetition of the k-fold cross-validation. For our
experiments on the CHASE_DB1 dataset, we used k = 4
folds, where each fold has 7 images: 3 images for one eye
side and 4 images for the other.

For the DRIVE and CHASE_DB1 datasets, manual seg-
mentation masks by two independent human observers are
available. Annotations made by the first human observer
were used as the ground truth for the DRIVE dataset while
Hoover’s annotations were used as the ground truth for the
CHASE_DB1 dataset. The binary segmentationmasks for the
DRIVE images are publicly available. For the other datasets,
we have manually created the field-of-view (FOV) masks by
applying techniques similar to those in [25].

B. SEGMENTATION EVALUTION METRICS
Several metrics were used to compare the performance of the
proposed method against other reference methods: sensitivity
(SE), specificity (SP), accuracy (ACC), Matthews correlation
coefficient (MCC), F1 score (F1), and the area under the ROC
curve (AUC). The values of all of these metrics are 1 for
a perfect classifier. The binary segmentation outputs were
found by applying thresholding to probability maps with a
threshold of 0.5. Computations were made only on the pixels
within the field of view (FOV).

C. TRAINING SETUP
Since the sizes of the training sets are quite small and insuf-
ficient to deal with the model complexity, several strategies

for data augmentation may be explored [7], [19]–[22],
[26]–[28]. Those include image rotation by different angels,
and image scaling with different factors. For example,
Oliveira et al. [19], proposed a vessel segmentation method
based on SWT [29] and extracted 48 × 48 image patches as
the input data. Since we have no prior knowledge on suitable
patch sizes for our method, we use full retinal images and
only horizontal and vertical data augmentation. We use the
gray-level images instead of the color RGB retinal images
for avoiding the impact of the individual differences.

The proposed method was implemented using a Ten-
sorFlow (https://github.com/tensorflow/tensorflow) backend
[30], cuDNN 9.0, an Intel(R) Xeon(R) Gold 6148 CPU with
a 2.40-GHz processor, 256 GB of RAM, and an Ubuntu
16.04 operating system.

IV. RESULTS
In this section, we validate the key components of the pro-
posed model, and compare its performance with other state-
of-the-art methods on three datasets including a clinical-scale
dataset of fundus images.

A. MI-UNET ASSESSMENT ON THE DRIVE DATASET
Firstly, we compare the segmentation performance of the
Mi-UNet architecture with the conventional U-Net [14].
We could observe from Table 2 that the vessel segmentation
results of Mi-UNet are much better than those of U-Net.
In particular, the SE and F1 metrics are higher by 5.62% and
0.89%, respectively. Also, the parameter count of Mi-UNet is
only 0.2% of that of U-Net. Moreover, while U-Net operates
on image patches, Mi-UNet takes whole images as input.
These observations validate the effectiveness and accuracy
of the Mi-UNet segmentation results. A comparison of the
performance and the computations of Mi-UNet and U-Net is
shown in Fig. 6.

VOLUME 7, 2019 174171



J. Hu et al.: S-UNet: Bridge-Style U-Net Framework With a Saliency Mechanism for Retinal Vessel Segmentation

TABLE 2. Retinal vessel segmentation performance of Mi-UNet versus U-Net on the DRIVE dataset (The best results are shown in bold).

FIGURE 4. The performance of the S-UNet model with different numbers
of Mi-UNet blocks.

B. S-UNET PERFORMANCE ON THE DRIVE DATASET
We assess the effectiveness of the proposed S-UNet model
by performing several experiments on different numbers
of Mi-UNet architectures. A comparison of the statistical
measures of seven such architectures are shown in Fig. 4.
When we just add one Mi-UNet block, the AUC and
F1 scores are higher by 0.57% and 0.15%, respectively,
compared to the case of one Mi-UNet block. For architec-
tures with three Mi-UNet blocks, the AUC and F1 scores
are significantly improved to 98.21% and 83.03%, respec-
tively. For four or more Mi-UNet blocks, the AUC measure
reaches 98.23%, the F1 score oscillates around 82.95%, and
the computations increase substantially. For the cascading
scheme, we let the foreground features of a previous Mi-
UNet block be used as the foreground attention information
of the next Mi-UNet block to enhance the input images
and inherit the learning experiences of the previous blocks.
Based on the performance and computations, we chose
an S-UNet model with three Mi-UNet blocks as our final
network.

With three Mi-UNet blocks of our S-UNet model, we
visualized the segmentation results of each Mi-UNet block.
As shown in Fig. 5 (b), the segmentation results of the
first Mi-UNet block are relatively confusing, especially with
many outliers appearing in the microvascular area. After
the first application of the saliency mechanism, the vascu-
lar characteristics of the first Mi-UNet block are used as
the salient information for the second Mi-UNet block. This
transfer of salient information enhances the input information
of the second Mi-UNet block based on the learning expe-
rience of the first Mi-UNet block. As shown in Fig. 5 (c),

the results were significantly improved in the microvascular
area. After intensive computations, our S-UNet model, which
is equipped with three Mi-UNet blocks, gives the segmenta-
tion results shown in Fig. 5 (d), which are the closest in details
to the ground-truth segmentation of Fig. 5 (e).

Earlier patch-based approaches have demonstrated reason-
able performance [19], [22]. However, we just use whole reti-
nal images as input to Mi-UNet. We quantitatively compare
our method with other recent methods in Table 3. For the
DRIVE dataset, S-UNet outperformed all the other methods
in terms of the F1, AUC and MCC measures for both of
the patch-based and image-based models. As for the AUC
measure, when the number of Mi-UNet blocks is 3, our
S-UNet model shows similar performance to the patch-based
method of Oliveira et al. [19], but the latter uses various data
augmentation approaches. When the number of the Mi-UNet
blocks is 4 or 5, S-UNet gives the state-of-the-art performance
both on the patch and image levels. In terms of the SE and
ACC metrics, our S-UNet ranked as the second in terms
of performance among the supervised methods. Although
retinal vessel segmentation is difficult due to class imbalance,
where only 10% of a retinal image corresponds to vessel
pixels, we get a high SEwith S-UNet for both of the patch and
image levels. For the image-level variant, S-UNet improved
the ACCmeasure by 4.21% and achieved state-of-the-art per-
formance. The segmentation outcome of the S-UNet model
on the image level is better than that of the earlier patch-level
models. This reflects that our method with deeper learning
can alleviate the problem of data imbalance to some extent.
Though the BTS-DSNmethod does not also divide the fundus
images into patches, S-UNet gets surpassed in all indicators
apart from SP. In addition, it takes about 3 hours to train
our model and only about 33ms to form the image-level
vessel segmentation. Indeed, the results demonstrate that the
proposed S-UNet represents an excellent approach for retinal
vessel segmentation.

We also compare the performance and the computations of
S-UNet with other methods, as shown in Fig. 6. In fact, our
proposed S-UNet model gives the best performance with the
minimum number of parameters. This is especially important
for clinical application deployment.

Some S-UNet segmentation outcomes are visualized
in Fig. 7. Fig. 7 (d) shows that the segmentation output
includes some false-positive and false-negative results. The
false-positive results are mainly reflected in the bifurcation
and terminal parts of the learnt vessels, while the false-
negative results are mainly reflected in the solid disk areas
and the edges of the vascular diameter. In Fig. 7 (h-k),
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FIGURE 5. The S-UNet output: a) Raw images; b-d) The outputs of the three Mi-UNet blocks of S-UNet; e) The ground-truth retinal
vessel segmentation.

FIGURE 6. Comparison of the performance and the computations with
other methods. The area of the circle represents the total of parameters.
UNet is the model by Alom et al. [15], DRIU was proposed by Maninis
et al. [28], SWT-UNet is the model by Oliveira et al. [19], and BTS-UNet is
the model by Guo et al. [22].

the arrows point to two blood vessels that come from the
bifurcation of one main blood vessel. As the retinal image
is of low resolution, the small vessels are of a width of
one or two pixels. The manual labeling did not mark these
small vessels, but our model did capture them. In addition,
as shown in Fig. 7 (e-g), there are no blood vessels in
the direction indicated by the arrow, but the manual label-
ing depicted a straight line to the main blood vessels. The
results show that our S-UNet model did not predict this
area as a blood vessel. This shows the high sensitivity of
S-UNet, and agrees with the quantitative results of Table 3.
The quantitative performance of our model might be shown
to be even better if the ground-truth annotations are more
accurate.

C. S-UNET SEGMENTATION RESULTS ON THE CHASE_DB1
DATASET
For the CHASE_DB1 database, our S-UNet model gave the
top results for all performance metrics with image-based
network input as shown in Table 3. For the patch-based input,
S-UNet gave the best performancemeasures except for SP, for
which Oliveira et al. [19] took the lead. Among all methods,
only our method and that of Oliveira et al. [19] have used
cross validation for training, and reported more objective
results. In additional, though the BTS-DSN method does not
also divide the fundus images into patches, S-UNet gets sur-
passed in all indicators apart from SP. It takes about 5 hours
to train ourmodel and only about 91ms to compute the image-
level vessel segmentation map.

D. S-UNET SEGMENTATION RESULTS FOR THE TONGREN
CLINICAL DATASET
The DRIVE and CHASE_DB1 datasets are more than
a decade old, as they were released in 2004 and 2009,
respectively. The resolutions of the fundus images in these
datasets is less than 1000 × 1000. However, the resolu-
tions of clinical fundus images more recently have reached
2000 × 2000 or higher. While the earlier DRIVE and
CHASE_DB1 datasets can be used to verify the effectiveness
of the proposed method, higher-resolution clinical image data
is needed to verify the clinical significance of the proposed
method. We applied S-UNet to the TONGREN dataset, and
the results are summarized in Table 3. Indeed, the proposed
model achieved excellent AUC performance and needed only
0.49s to segment the vessels in a fundus image. These results
are of great significance for the practical promotion and
clinical application of the algorithm. It takes about 9 hours
to train our model and only about 0.49s to create the vessel
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FIGURE 7. Visualization of the retinal vessel segmentation results. (a) The original image. (b) Ground-truth segmentation. (c) Segmentation
with S-UNet. (d) Differences between the segmentation of (a) and (b), where red is for true positives, green is for false negatives and blue is
for false positives. (e-g) One example of zoomed-in segmentation results. (h-k) Another example of zoomed-in segmentation results.

TABLE 3. Retinal vessel segmentation performance measures for different architectures on three datasets.

segmentation output for the image-level input. Again,
the excellent performance of our proposed method is
verified.

E. ASSESSMENT OF CLINICAL DATA MODELS
Previous work on retinal vessel segmentation had trained
and tested models on publicly available datasets, or, as with
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TABLE 4. The performance of the S-UNet model trained under different resolutions when directly tested on datasets of other resolutions.

Oliveira et al. [19], cross-trained test results on datasets with
similar resolutions. These approaches do not test well the
robustness of the segmentation models under different reso-
lutions and whether a model constructed with low-resolution
data can be directly migrated to work on high-resolution
clinical fundus data. Therefore, we tested whether the best
model trained with different resolutions could get good per-
formance directly on datasets of other resolutions. The results
are shown in Table 4. We can see that larger resolution
differences lead to more serious performance degradation
when low-resolution models are tested on high-resolution
data. For testing high-resolution models with low-resolution
data, the effect is also severe because the images of the
DRIVE dataset have about 60% of the resolution of the
CHASE_DB1 images. If an S-UNet is trained with high-
resolution TONGREN data and tested with DRIVE and
CHASE_DB1 images which have only 20-30% of the train-
ing resolution, the model fails and classifies all pixels as
background pixels. Therefore, publically available datasets
can be used to test the performance among different meth-
ods. However, when there is a certain difference between
these datasets and clinical data, it is necessary to optimize
the model on actual clinical data for which segmentation
algorithms will be typically and practically applied.

V. CONCLUSION
In this paper, we proposed Salient U-Net (S-UNet), a deep
learning bridge-style framework that uses a cascading scheme
to apply the foreground features of one Mi-UNet block
as the foreground salient information of the next Mi-UNet
block in order to enhance the input images and inherit
the learning experiences of the previous blocks. S-UNet
uses a saliency mechanism that solves the problem of data
imbalance effectively. In addition, the S-UNet parameters
are only 0.7% of those of the original U-Net model. So,
the proposed framework is one with the fewest parameters
among relevant methods in the literature. S-UNet normalizes
the data, conducts horizontal and vertical data augmenta-
tion, uses full graph tests, and reaches the state-of-the-art in
terms of the MCC, AUC and F1 measures on the DRIVE
and CHASE_DB1 datasets. S-UNet has also been trained
and tested on actual clinical data, and it achieved an AUC

of 0.9824 on the TONGREN dataset. Segmenting the vessels
in a 1880 × 2816 test fundus image takes only 0.49s. This
real-time good performance is of great significance for the
practical promotion and clinical application of the proposed
algorithm. In spite of the good performance of the pro-
posed methods, some aspects are still open for improvement.
We have shown in this work that S-UNet uses a saliency
mechanism to solve the problem of data imbalance effectively
with the fewest parameters. So, for future research, we will
optimize this saliency mechanism, test our model on a larger
clinical dataset, and explore the validity of our method on
other datasets.
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