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ABSTRACT ORB (Oriented FAST and Rotated BRIEF) feature is wildly applied in visual SLAM because
of its excellent computational efficiency and stability. Aiming at the problem of uneven distribution of ORB
feature, and improving the calculate efficiency of feature extraction at the same time, we proposed an ORB
feature extraction algorithm based on improved quadtree in this paper. The proposed algorithm will select
the threshold adaptively for FAST extraction according to the gray image instead of the value set artificially.
And then we set different depth of quadtree according to the expected feature number which decreases as
the number of image pyramid layers increases to reduce redundancy. The remained key points selected by
Harris score will distribute well in the image. The results show that the proposed algorithm can improve the
uniformity of ORB feature, and reduce feature extraction time compared to the algorithm in ORB_SLAM,
it has certain application value for the realization of real-time SLAM system.

INDEX TERMS Simultaneous localization and mapping, feature extraction, improved quadtree, uniform
distribution.

I. INTRODUCTION
SLAM (Simultaneous Localization and Mapping) is the
process through sensor to reconstruct the environment and
estimate the position of robots at the same time [1], [2].
It has been catching the attention of more and more scholars
in recent years. The technology upgrades faster especially
in Visual SLAM because the visual sensor can get more
information than other traditional sensors [3], [4]. It plays
an important role in 3D reconstruction, semantic compre-
hension, navigation, path planning and other application.
However, there are still some questions in feature uniform
distribution which will bring bad impact to the subsequent
work such as image matching and pose estimation. It is
necessary to improve the uniformity of feature distribution
and the calculate efficiency.

There are many feature extraction algorithms for visual
SLAM. Scale Invariant Feature Transform (SIFT) algorithm
was proposed by Lowe [5] in 1999 and improved in 2004,
the features are invariant to image scale and rotation and
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robust in image matching. The SIFT gives a possibility for
the realization of visual SLAM. But SIFT needs a lot com-
putational resource because of the 128-dimensional feature
vector. To solve the problem, Speeded-Up Robust Features
(SURF) algorithmwas proposed byBay [7] in 2006.The algo-
rithm accelerates the extraction process by relying on integral
images for image convolutions, using a Hessian matrix-based
measure for the detector and a distribution-based descriptor.
SURF algorithm is faster than SIFT, but it still cannotmeet the
real-time requirement of visual SLAM. In 2001, Rublee [8]
proposed ORB algorithmwhich is at two orders of magnitude
faster than SIFT. The algorithm solved the problem of time
consumption, and it can operate in real-time without GPU.
However, although this algorithm improves the extraction
efficiency of feature extraction, ORB feature points are still
unevenly distributed in the image plane and easy to aggre-
gation, which reduces the accuracy of subsequent feature
matching and pose estimation. Therefore, in the ORB-SLAM
system, Mur-Arta et al. [9] and Mur-Artal and Tardós [10]
proposed the use of quadtree to improve the uniformity of
feature distribution, which has a very obvious effect. YuXinyi
proposed Qtree_ORB [11] algorithm on this basis, effectively
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eliminate the redundant feature points, but the algorithm still
adopts the traditional quadtree structure, so the computational
efficiency needs to be improved. Wang set the maximum
depth of the quadtree for matching. The algorithm is used
to adaptively segment the image into blocks by quadtree.
However, it should not be same maximum depth for different
pyramid layer of the image, it ought to determine by the layer.
The maximum depth should be larger for low pyramid layer
than the high pyramid layer’s, because the number of feature
points in low layer is larger than the number in high layer.

In this paper, we proposed an ORB uniform distribution
algorithm based on improved quadtree. The overall image
contrast is taken into account when extracting feature points,
and the maximum depth of quadtree is set according to differ-
ent pyramid layers, so as to eliminate redundant feature points
and improve the efficiency of feature detection.

This article is organized as follows. Section II provides an
overview of existing feature extracting algorithms. Section III
introduces our uniform distribution ORB feature based on
improved quadtree. Section IV discusses the results between
the previous algorithms an ours. Finally, Section V concludes
the paper.

II. RELATED WORK
Traditional ORB algorithm includes two steps, the FAST cor-
ner detection and Rotated in the descriptor computation [8].
Among them, FAST algorithm detects corner points by the
difference between the selected element and the pixel gray
of surrounding elements. In this paper [8], fast-9 algorithm
is adopted. Taking pixel P as an example, a total of 16 pixel
points are found on a circle with a center radius of 3 pixels
of P. If the gray difference between 9 consecutive pixels and P
in these 16 pixels is greater than the set threshold value t, P is
judged to be the corner point of FAST. Computing such as:

N =
∑

x∈(circle(p))

|I (x)− I (p)| ≥ t (1)

where I (x) is the pixel value of any point on the circum-
ference, I (p) is the gray value of the pixel to be detected,
t is the corner detection threshold, and N=9 in FAST-9.
In addition, in order to eliminate the edge points, the Harris
response value is used to replace the FAST response value,
and in order to improve the robustness of the feature, the
scale invariance is realized by constructing the pyramid, and
the main direction is added to the feature point to realize the
rotation invariance. In order to avoid the problem of corner
concentration, it is screened by non-maximum suppression.
The calculation of the direction of its feature points is as
follows. The moments of a patch is defined as:

mpq =
∑
x,y∈B

xpyqI (x, y) ,p, q = {0, 1} (2)

Next we find the centroid of the image block by the
moment:

C =
(
m10

/
m00, m01

/
m00

)
(3)

Thenwe connect the geometric centerO and the centroidC
of the image block to obtain a direction vector

−→
OC , and the

direction of the feature is defined as:

θ = arctan
(
m01

/
m10

)
(4)

The description of the feature points uses Rotation BFIEF,
which is a binary descriptor whose description vector consists
of multiple 0 and 1. The sum of the gray values of the sub-
windows in the pixel area near the feature point is used as the
basis for judging the descriptor, and the sub-segment function
is obtained. The specific calculation is:

τ (p; x, y) =

{
1 : p (x) < p (y)
0 : p (x) ≥ p (y)

(5)

The feature is defined as a vector of n binary tests:

fn (p) :=
∑
1≤i≤n

2i−1τ (p; xi, yi) (6)

where p(x) and p(y) are the gray values of the pixels at point x
and point y, respectively, τ is the value of the descriptor, and
the gray value at x and y is the sum of the gray values of the
above sub-windows. Furthermore, the direction calculated in
equation (4) is added to the descriptor so that the descriptor
has good rotational invariance.

III. UNIFORM DISTRIBUTION ORB
The improved algorithm firstly aims at the problem of
poor anti-interference ability for FAST corner points, and
replaces the artificial value by the gray value calculation of
each image. Secondly, according to the method proposed by
Mur-Arta et al. [9] and Mur-Artal and Tardós [10], we set
different maximum depth for quadtree according to differ-
ent pyramids to limit the over-segmentation. The maximum
depth will be determined by the expected number of key-
points in each pyramid layer. The purpose of different max-
imum depth is to reduce redundant features and improve the
computational efficiency. The algorithm structure is shown
in Figure 1.

FIGURE 1. Algorithm flowchart.

The extraction of the FAST corner point is performed
according to the gradation difference between the pixel to be
detected and the surrounding pixel. However, the extracted
threshold of FAST corner is set artificially in traditional ORB
algorithm, it’s usually engineering experience value. It’s the
same situation in Mur-Arta’s algorithm. But this value does
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not consider the global information of the image itself, it can-
not apply to all images, especially in images with large con-
trast differences. Otherwise, the adaptive threshold proposed
by Fan [8] still contains the scale factor set artificially. So we
set a adaptive threshold based on image gray information
for FAST corner detection. The calculation method of initial
threshold is as shown in equation (7):

iniT =

(
1
n

n∑
i=1

(
I (xi)− I (x)

)2)/
I (x) (7)

where I (xi) is the gray value of each pixel in the image,
I (x) is the average value of the image gray. And iniT is the
calculated initial extraction threshold. By using equation (7),
different comparison thresholds can be calculated according
to different images, so that the algorithm has stronger anti-
interference ability.

In the second step, we calculated the image pyramid in
order to make the ORB feature scale invariant, an eight-layer
pyramid is constructed for the image, and then we calculated
the number of desired feature points required by each layer
according to the scale factor. For example, we set the total
number of required feature points is m, the scale factor is s,
and the number of features required for the first layer is a,
then:

a+
1
s
a+

1
s2
a+

1
s3
a+ . . . . . .+

1
s7
a = m (8)

The third step is to divide the mesh to extract the FAST
corner points. In order to make the corner points evenly
distributed throughout the image, the image is meshed. Since
the nodes of the quadtree use the same rectangle as the
original image aspect ratio, a square is used for the mesh
division, so that the division of the mesh does not coincide
with the boundary of the quadtree, which reduces the effect
of ignoring mesh edge corner detection on feature extraction.
After the meshing is completed, the FAST corner extraction
is started, and the initial extraction threshold of the corner
point is set to the calculated value iniT of the equation (7).
If the corner point is not extracted in the grid, the threshold
is lowered to minT= iniT/4. And then corner detection will
continue within the grid until the traversal of all the meshes
in the image to complete the adaptive extraction of the FAST
corners.

However, in the fourth step, since the quadtree depth is
not limited, the number of segmentation times is too much,
which reduces the computational efficiency of the algorithm.
To solve the problem, an adaptive maximum depth is set
according to the desired feature points of different pyramid
layers. The relationship between the maximum depth and the
number of nodes in this layer is as shown in equation (9):

4Dmax ≥ Num_j (9)

where Dmax is the maximum depth, Num_j is the desired
number of key-points.

Taking 500 features as an example, the maximum depth of
the first layer is set to 5 to meet the requirements, and the

maximum depth of the 8th layer is set to 3. So it will not
split deeper sub-node when the current split depth coming to
themaximumdepth. The design of different maximumdepths
can improve the calculation efficiency. The specific algorithm
flow is shown in Figure.2.

FIGURE 2. Modified quadtree splitting process about how to manage the
split node.

In Figure2, d is the current quadtree depth, Dmax is the
maximum depth of the pyramid layer, it’s calculated accord-
ing to layers by equation (8), and the larger the value, themore
key points need to be calculated, it will decide the compute
efficiency.Nun_kp is the number of feature points in the node,
Num_j is the number of saved nodes, there is only one key
point in every saved node. Set_kp is the number of desired
feature points of the layer, if Num_j is updated to Set_kp,
the algorithm will stop splitting sub-node, it means we have
got enough feature points.

The fifth step is to calculate the direction and descriptor
of the feature points. This paper still uses the traditional
calculation method [4], which will not be repeated here.

IV. EXPERIMENT VERIFICATION
In this section, we employ three kinds of ORB algorithms
include traditional ORB, the algorithm proposed in
ORB_SLAM and what we proposed in this paper to
extract key points in the dataset created by K.Mikolajczyk
and C.Schmid. This experiment was carried out on the
Ubuntu16.04 LTS operating system, the computer CPU is
i5-4258U, 8GB memory. In order to quantify the uniformity,
we use the uniformity function [14] to extract the results.
And in order to verify the adaptability of the algorithm to
different contrast images, we performed experiments on the
leuven image set. Otherwise, the bike datasets are a set of
images with different degrees of blur, and the leuven datasets
are a set of different contrast images, the bark datasets are
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FIGURE 3. The result of three kinds of algorithm to extract 500 ORB key-points with img1 of the bike datasets. (a) is the result of
traditional ORB algorithm, (b) is the result of Mur-Artal’s algorithm used in ORB_SLAM, and (c) is the result of our algorithm.

TABLE 1. Uniformity and time-consuming comparison of three algorithms.

a set of images with a single background occupying more
image, the trees datasets are a set of images with complex
foreground which occupying more space, the ubc datasets
are a set of images with different degrees of compression.
In these datasets, the traditional ORB algorithm, the feature
extraction algorithm proposed byMur-Arta and the algorithm
we proposed for comparison experiments, and without loss of
generality. We extracted 500 features for each image of data
set, and took the average value as the experimental result with
30 experiments. The results of three kinds of algorithm to
extract ORB feature points with the same image is shown as
Figure 3. And the results of uniformity and feature extraction
time are shown in the Table 1.

In Table 1, A represents traditional ORB, B represents
Mur-Artal’s algorithm used in ORB_SLAM, C represents the
our algorithm. We can see that the B and C algorithms are far
better than the traditional algorithm in terms of uniformity,
which is 10% to 30% better than the traditional algorithm,
and the uniformity of B and C is similar. But in terms of time,
C algorithm is 12.12% less than B algorithm on average.

In order to verify the adaptability of the our algorithm
to different contrasts, the data set leuven was performed.
We calculated the feature uniformity and extraction time of
each image in leuven. The experimental results are shown
in Figure 4, Figure 5 and Table 2.

Figure4 and Figure5 show the feature extraction results of
the six images in the dataset leuven. The results show that
our algorithm can achieve good feature uniformity even in
the case of large contrast.

From Table 2, we can see that, the algorithm we pro-
posed has the same feature distribution and degree as the

TABLE 2. Comparison of the uniformity and time consumption of the
three algorithms on leuven.

Mur-Artal’s algorithm, but it has a significant reduction in
time consumption, the average reduction time is 10.43%. And
since the extraction threshold of the FAST corner point is
calculated based on the image information, the algorithm has
stronger anti-interference ability for images with different
contrasts.

The data of the remaining groups are shown in Figure6 and
Figure7. Where Old represents the traditional ORB algo-
rithm,MR represents the algorithm used in ORB_SLAM,My
represents the algorithm we proposed, and img1 represents
the number of different images in the data set.

As shown in Figure 6, under three different data sets,
the algorithm of Mur-Arta and ours are almost the same
in uniformity, and they are much better than the traditional
ORB feature extraction algorithm. While, the algorithm we
proposed here is slightly better than Mur-Arta algorithm in
bark and trees datasets, and the experimental results under
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FIGURE 4. Feature extraction results of traditional ORB algorithm in leuven, (a)-(f) is image sequence of leuven. As the illumination
changed, the uniformity got worse.

FIGURE 5. Feature extraction results of the algorithm we proposed in leuven, (a)-(f) is image sequence of leuven.

the ubc datasets have no obvious advantages, the uniformity
of the two algorithms is not much different when dealing with
images with higher compression.

It can be obtained from the analysis of Figure7 that under
the three different datasets, the extraction time of the tradi-
tional ORB feature extraction algorithm is the fastest, while
the extraction time of Mur-Arta algorithm and our algorithm
is higher than the traditional ORB algorithm. It is mainly
due to the calculation of increasing the uniformity. More
importantly, our algorithm has a significant improvement
in extraction time compared to the widely used Mur-Arta’s
algorithm proposed in ORB_SLAM. Under the bark data
set, the algorithm extraction time is 18.10% lower than the

Mur-Arta’s, and the average reduction time is. 16.73% under
the trees data set, the average reduction time in the ubc
data set is 16.30%, and the extraction efficiency is greatly
improved.

The experiment is carried out in different backgrounds,
different degrees of blur, different illumination conditions,
and different degrees of compression. The results show
that the proposed algorithm has a great improvement over
the feature uniformity of the traditional ORB algorithm.
More importantly, the extraction time is reduced 10%
or more.

We also did another experiment to verify the effec-
tiveness of modified algorithms in uniformity. We used
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FIGURE 6. Uniformity comparison of three algorithms under different data sets. The traditional ORB algorithm is far less than the
advanced algorithms whatever Mur-Arta’s algorithm or our algorithm.

FIGURE 7. Extract time comparisons of three algorithms under different data sets. The traditional algorithm is faster than the other
algorithms. But our algorithm is faster than Mur-Arta’s algorithm.

TABLE 3. Uniformity in different datasets with five methods.

five algorithms to extract feature points include SIFT,
SURF, BRISK, SuperPoint and our algorithm. As shown
in paper [18], SIFT also has good performance in feature
extraction and matching. SuperPoint is a new method based
on deep learning [19].We calculate uniformity of every image

in the five datasets, the uniformity mean value in all five
datasets is shown in Table 3 and Figure8 (a-e).

We can see that our algorithm’s uniformity is still the
smallest in all five algorithms in most datasets except in trees.
It means our algorithm can get better feature distribution.
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FIGURE 8. Uniformity in different datasets with five algorithms include SIFT, SURF, BRISK, SuperPoint and ours. The x-coordinate represents the
sequence of images, and the y-coordinate represents the uniformity value. Our algorithm is still better than other algorithms in most cases in
terms of feature distribution.

From the Fig.8, we can infer that our algorithm’s unifor-
mity is the smallest in most pictures of datasets. However,
we can also see that SuperPoint also has good performance
in datasets trees, the uniformity in img3 is even up to 108.16.
But there is a big gap between different images in the same
datasets. In trees datasets, the biggest uniformity value is
168.14, it’s 50% more than the smallest one. It’s not a good
index, the matching algorithms maybe cannot find the real
matching feature points because the large difference in uni-
formity. Our algorithm has a good performance in this area.
The uniformity value is close to the mean value.

V. CONCLUSION
In this paper, aiming at the problem that the traditional ORB
algorithm is unevenly distributed and the aggregation phe-
nomenon is obvious, we presented an adaptive uniform distri-
bution ORB feature extraction algorithm based on improved
quadtree, which solved the problem of adaptive extraction
threshold selection for FAST corner points, and the quadtree
depth of each layer is set for the number of desired feature
points for different pyramid layers. Finally, the public data
set is used for experimental verification. The experimental
results show that the algorithm has a higher uniformity than
the traditional ORB algorithm, and has higher computational
efficiency than the proposed algorithm by Mur-Artal. And
compared with the other state-of-the-art feature extraction
algorithms, our algorithm still has good performance in
feature distribution. The feature extraction time is reduced
by more than 10% due to the reduction of over-segmentation
of quadtree. The algorithm does have certain application
value for SLAM’s subsequent feature matching and pose
estimation.
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