
Received August 26, 2019, accepted September 6, 2019, date of publication September 17, 2019, date of current version October 16, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2941725

A Fuzzy Selection Compressive Sampling
Matching Pursuit Algorithm for
Its Practical Application
HU YUNFENG AND ZHAO LIQUAN
Key Laboratory of Modern Power System Simulation and Control and Renewable Energy Technology, Ministry of Education (Northeast Electric Power
University), Jilin 132012, China

Corresponding author: Zhao Liquan (zhao_liquan@163.com)

This work was supported by the National Natural Science Foundation of China under Grant 61271115.

ABSTRACT In compressive sampling matching pursuit algorithm, it requires that the sparsity information
of original signal to control the size of the preliminary atomic set and the maximum number of the algorithm
iteration. This weakens the reconstruction accuracy, increases the computation complexity and limits its
practical application capacity. To overcome the problem, an improved method is proposed. The proposed
method firstly sets a fixed step-size as the assumed sparsity to expand the preliminary atomic set at the initial
stage when the sparsity information is unknown. Secondly, the proposed algorithm adopts the fuzzy threshold
strategy to select the more relevant atoms from the preliminary atomic set to expand the candidate atomic set.
Finally, the double threshold control method, multiply stages setting and variable step-size method are used
to control the iteration stop condition and adjust the estimated sparsity. When the two threshold iteration
stop conditions are simultaneously satisfied, the iteration stops, which shows that the reconstructed signal
better approximated the original signal, and the reconstruction performance is the best. Otherwise, if only
one of the conditions is satisfied, the size of the estimated sparsity is increased by the variable step size
method to reduce the error between the reconstructed signal and original signal. In addition, we extended the
proposed algorithm to the multiple measurement vectors scenario for joint sparse signal recovery. Simulation
results indicate that the proposed algorithm is better than the other method in terms of the reconstruction
performance in single measurement vector and multiple measurement vector cases.

INDEX TERMS Compressed sensing, compressive sampling matching pursuit, adaptive sparsity, fuzzy
threshold, variable step-size, multiply stage, single measurement vector, multiple measurement vector.

I. INTRODUCTION
Compressed sensing (CS) [1] is a novel signal compression
and processing theory. Compared with the Nyquist sampling
theory, the most important of CS theory is that it can be ran-
domly sampled by standards that are far less than Nyquist’s,
and the original signal can be recovered under small distortion
rates. CS theory differs from the traditional Nyquist sampling
theory, which includes three aspects: sparse representation of
the signal, design of the measurement matrix, and design of
the reconstruction algorithm. A crucial step to implement is
design of the reconstruction algorithm. The CS framework is
attractive, as it implies that x can be faithfully recovered from
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onlyM = O(K logN ) samples [2], suggesting the significant
cost reduction in digital data acquisition.

At present, many reconstruction algorithms have been
proposed to obtain the sparse signal and approximated
sparse signal from compressed measurements. There are two
major classes of reconstruction algorithms: convex optimiza-
tion methods and matching pursuit methods. Convex opti-
mization methods include basis pursuit (BP) [3], gradient
projection for sparse reconstruction (GPSR) [4], iterative
threshold(IT) [5], iterative hard threshold (IHT) [6], interior-
point method [7], Bergman iteration (BT) [8], and total vari-
ation (TV) [9]. Although it requires fewer measurements, its
computational complexity is higher, which leads to slower
convergence. Matching pursuit algorithms that are based on
the idea of iterative greedy pursuit are popular sparse recon-
struction algorithms. The earliest ones include the matching
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pursuit (MP) [10]. Based on theMP algorithm, the orthogonal
matching pursuit (OMP) [11] algorithms was proposed to
optimize the MP via orthogonalization of the atoms of the
support set. Their successors include the stage-wise OMP
(StOMP) [12], regularized OMP (ROMP) [13], subspace
pursuit (SP) [14], compressive sampling matching pursuit
(CoSaMP) [15], [16] and sparsity adaptive matching pur-
suit(SAMP) [17] algorithms. The StOMP algorithm selects
multiple atoms (columns) of the measurement matrix via a
threshold parameter. The ROMP algorithm filters the selected
atoms of the measurement matrix with regularized rule to
reduce the running time of the OMP. The SP and CoSaMP
algorithm was a similar algorithm. Both of these algorithms
are proposed with the idea of backtracking, and the differ-
ences are that SP selects the most relevant K columns from
the measurement matrix in each iteration, while CoSaMP
selects the most relevant 2K columns from the measurement
matrix. The CoSaMP method requires the sparsity infor-
mation, which limits its application. We are inspired by
the SAMP method to deduce a sparsity adaptive CoSaMP
method. Furthermore, we use two threshold strategies to
control the stop condition, to reduce reconstruction error.
Recently, the multiple measurement vectors (MMV) model
is extended to compressed sensing theory to solve the jointly
sparse recovery problem [18]–[22]. Therefore, we also extend
the proposed algorithm to the MMV scenario.

The layout of this paper is as follows. Section II introduces
the CS theory, including the sparse signal reconstruction
for Single Measurement Vector (SMV) model and the joint
sparse signal reconstruction for MMV model. The CoSaMP
algorithm is described in Section III. The proposed methods
with SMVmodel andMMVmodel are deduced in Section IV.
The simulation results and the discussion are provided in
Section V, and the conclusion is drawn in Section VI.

II. COMPRESSED SENSING THEORY
A. SINGLE MEASUREMENT VECTOR MODEL
The compressed sensing is a powerful framework for signal
acquisition, which asserts that we can recover signals from
far fewer measurements than traditional methods. In Single
Measurement Vector (SMV) model, it supposes that a signal
x ∈ RN is K -sparse or compressible, where K is the sparsity
level. The signal x can be well-approximated using a sparse
orthogonal basis 9 = {ψ1, ψ2, . . . ψN } ∈ RN×N , with notes
K << N . According to the CS theory, such a signal x can be
defined as

x =
N∑
i=1

ψiθi = 9θ (1)

where, θ = 9T x is the N × 1 column vector of projection
coefficients, θi = 〈x, ψi〉 = ψT

i x is the projection coefficient
and (·)T denotes the transpose operation. Therefore, we can
discovery that x and θ are equivalent representations of the
original signal. x is the representation of the signal in the
time domain and θ is the representation of the signal in the9

domain. Generally, we consider this step a sparse represen-
tation of the signal. Next, we need to design a measurement
matrix 8 that is unrelated to the sparse orthogonal basis 9,
obtaining an observing vector y, expressed as

y = 8x + w (2)

where y ∈ RM×1, 8 ∈ RM×N (M << N ) represents the
observing vector and a random measurement matrix, respec-
tively. w ∈ RM×1 denotes that the additive noise vector, and
which is usually Gaussian white noise. This reconstruction
problem, approximately estimating x from (2) using the mea-
surement matrix 8 and the observing vector, is known as the
SMV problem. Obviously, equation (2) can be regarded as
a linear projection of the signal x on the 8. Now, we con-
sider reconstruction of x from y. However, we can see that
the dimension of yis much lower than the dimension of x,
meaning (2) has infinitely many solutions. That is, (2) is
an underdetermined equation, and it is difficult to obtain
an accurate reconstruction of the original signal x using the
conventional ‘inverse’ transforms of 8. Whereas, it is well
known that, with prior information on the signal sparsity K
and 8 meeting certain conditions, x can be reconstructed by
solving the lp-minimization problem:

min ‖x‖0 subject to 8x = y (3)

min ‖x‖1 subject to 8x = y (4)

where ‖.‖ represents that the l0 -norm and l1 -norm of the
vector. In formulation (3), the problem is an l0 -minimization
problem, which can be reconstructed by a greedy pur-
suit algorithm. In formulation (4), the problem is an l1 -
minimization problem, which can be solved using a convex
optimization. A condition of 8 ensuring the exact recovery
of x is called the restricted isometric property (RIP) [2], [23].
Definition1: For each integer K = 1, 2, . . . , define the

isometry constant δK of a measurement matrix 8 as the
smallest number such that

(1− δK ) ‖x‖22 ≤ ‖8x‖
2
2 ≤ (1+ δK ) ‖x‖

2
2 (5)

holds for all K -sparse vector x and a vector is said to be K -
sparse if it has at mostK -nonzero entries, namely, ‖x‖0 ≤ K .

B. MULTIPLE MEASUREMENT VECTORS MODEL
Recently, the reconstruction problem of finding sparse rep-
resentation of multiple measurement vectors (MMV) in a
redundant dictionary was motivated by EEG/MEG source
localization and DOA estimation, where sequences of mea-
surement vectors are available. Obviously, the reconstruction
problem of MMV can be regard as how to simultaneously
reconstruct multiple one dimensional sparse signals from the
single measurement vector.
In SMV problem, we say that, a vector x ∈ RN×1 is

K -sparse if it has at most K non-zeros components, the
sparsity level and the support of the x can be represented by
the index set of the non-zeros components and their number,
respectively. Similarly, in MMV model, we let {xi}Ni=1 ∈ R

N
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be the jointly K -sparse (i.e. the union of the support set of
xi has at most K non-zeros elements). Therefore, the joint-
sparse signal X has no more than K non-zero rows, and we
also call as the row K -sparse. Where, the X ∈ RN×l , that
is, X has l one-dimensional K -sparse signal with the same
nonzero positions. Besides, it is noted that the support of X
represents the set of indices of non-zero rows. Therefore, such
jointly sparse signal can be expressed as

y(l) = 8x(l) + w(l) (6)

where, 8 ∈ RM×N represents that the measurement matrix,
x(l) ∈ RN×1 represents that the l-th source vector, and
y(l) is the measurement vector corresponding to the source
vector x(l). It is noted that, the size of support of x(l) is∣∣supp (x(l))∣∣ ≤ K and x(l) have a common support set for
l = 1, 2, . . .L. w(l) ∈ RM×1 denotes the additive noise vector
to the y(l). For simplicity, the equation (6) can be rewrite as

Y = AX +W (7)

where, X =
[
x(1), x(2), . . . , x(L)

]
, W =

[
w(1),w(2), . . . ,w(L)

]
and Y =

[
y(1), y(2), . . . , y(L)

]
. From the equation (6) and (7),

we can known that the measurement process has a common
measurement matrix 8 and the noise matrixW .
We described the minimize formulation of MMV model.

From the existing equations (3) and (4) in SMV scenario,
similarly, we give the solutions to the following optimization
problem in noiseless and MMV scenarios:

min ‖Xl‖0 subject to 8Xl = Yl (8)

min ‖Xl‖1 subject to 8Xl = Yl (9)

where, X ∈ RN×L and Xl is the l-th column vector in
matrix X . Here, l = 1, 2, . . . ,L, L is the number of the
columns of X . Yl is the l-th column vector of matrix Y . From
the equations (3) and (4) in SMV model and the equations
(8) and (9) in MMV model, we can known that the above
optimization problem in equations (8) and (9) can equivalent
as the optimization problems in equations (3) and (4) when
the number of column is equal to 1, that is, L = 1.

III. CoSaMP ALGORITHM
This section presents a summary of existing matching pur-
suit algorithms for CS. Recently, the matching algorithms
are widely used for signal reconstruction due to the simple
structure and low computational complexity. The algorithms
can be divided into top-down and bottom-up categories.
Bottom-up methods such as OMP assume a possible ini-
tial solution before the iteration to develop the final solu-
tion. Top-down methods such as SP and CoSaMP use the
backtracking strategy to more accurately determine the true
support set of atoms, and the final solution of the signal is
obtained by the least squares methods. Although the compu-
tational complexity of backward tracking methods is higher,
they can be more accurate in many cases. We introduce the
CoSaMP.

To improve the convergence rate and efficiency of the algo-
rithm, in the preliminary stage of the algorithm, it chooses

2K atoms (columns) that are the most relevant to the residual
of the last iteration from the measurement matrix to form the
preliminary atomic set, and rejects the irrelevant atoms. Then,
we merge into the support atomic set of the last iteration and
current preliminary atomic to update the candidate atomic
set. Next, the transition solution of the signal is obtained by
the least square method. Finally, the support set of the signal
is obtained by prune the candidate atomic set. The specific
algorithm procedure is displayed in Algorithm 1.

The entire procedure is as shown in Algorithm 1.

Algorithm 1 CoSaMP Algorithm
Input: matrix 8, observation signal y, sparsity levelK
Output: K -sparse approximation x̂ to original signal x
Initialize: x̂ ← 0, r ← y, k ← 0
repeat
k ← k + 1 Loop index
e← 8T

× r Form signal proxy
�← supp (|e| , 2K ) Identify large 2K components
T ← � ∪ 0k−1 Merge supports
b|T ← 8

†
T y Signal estimation by least square

0← supp (|b| ,K ) Prune to obtain current supports
x̂k ← bk0 Update the final approximation
r ← y−8x̂k Computing current residual

Until halting criterion true; return x̂ ← x̂k

IV. PROPOSED ALGORITHM
The CoSaMP algorithm requires that the sparsity of the signal
is known, and uses the size of the sparsity to set the number of
selected atoms. However, the sparsity of the signal is usually
unknown in practice, which limits the practical application
of the algorithm. To solve the problem, we first randomly set
the estimated sparsity as K̂ , and step-size s(K̂ = s). In the
following, we deduce the proposed method for SMV model
and MMV model, respectively.

A. PROPOSED ALGORITHM FOR SMV
1) SELECTION OF ATOMIC
In SMV model, we firstly select the 2K̂ atoms to expand the
set of atoms, then calculate the atomic coefficient Ck and
select 2K̂ maximum atomic correlations to determine their
corresponding atomic index and form an atomic index set �.
The values of Ck and � can be expressed as

Ck =
{
cj|cj =

〈
rk−1, φj

〉}
(10)

� = supp
(
|Ck | , 2K̂

)
(11)

where j = 1, 2, . . . ,N , k is the number of iterations, rk−1 is
the residual of (k−1)th iterations, φj is the j-th column of the
measurement matrix 8. < . > represents the inner product
of the previous residual and the atomic of the measurement
matrix. Ck is the correlation coefficients at k-th iteration, and
the length of the Ck is N . In the first iteration, we let rk
equal y. supp

(
|·| , 2K̂

)
is used to determine the atomic index
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corresponding to the 2K̂ maximal value from e, and forms a
preliminary atoms index set �.
In the CoSaMP algorithm, if the known sparsity isK , it will

select 2K atoms to add into the candidate support sets. This
will consume much more time to select K better atoms to
former new support sets. To reduce complexity, we use the
fuzzy threshold method to control the number of selected
atoms that will be added into the candidate atomic set.

In the atomic index set �, the atoms corresponding to the
index are expressed as τ , τ = [τ1, τ2, · · · τ2K̂ ]. We select the
atoms that are larger than the fuzzy threshold in the atomic
set τ , to form a new atomic set, and the index of the new
atomic set forms the new atomic index set �∗. This process
is described as

ωk = αk × (ck1 + ck2)× t (12)

C∗k = |Ck |2K̂ (13)

�∗ = supp
(
C∗k , ωk

)
(14)

where, ωk is the fuzzy threshold at the k-th iteration, ck1
and ck2 correspond to the first and second components after
sorting Ck in descending order in (11), the specify value of
the αk = ck2

/
ck1, and the variable range of αk is [0.60 0.90]

according our experiments. The αk is not fixed value that we
set. The specify value of αk is determined by the coefficients
ck1 and ck2. In (12), we can known that the fuzzy threshold
ωk is control by the αk , the sum of the coefficients ck1 and
ck2, and the threshold t . Besides, due to the atomic relation
coefficients ck1 and ck2 is different at each iteration, the spec-
ify value of ωk is also not the same at each iteration, which
ensure that the proposed method select more atoms with
higher relevant at each iterations. In terms of the parameter
αk , we set it as αk = ck2

/
ck1, mainly because that the first

two atomic relevant coefficients can more accurately measure
the atomic reliability at each iteration, thereby searching the
atoms with higher relevant to add it to the new preliminary
atomic set.

For the threshold t , if the threshold is too larger, the number
of the atoms with higher relevant will reduce in the new
preliminary atomic index set via fuzzy threshold selection
strategy selected. This will increase the computation com-
plexity of the algorithm and reduce the reconstruction accu-
racy of original signal. Meanwhile, if the size of the threshold
is too smaller, it will make the redundant atoms and lower
relevant atoms cannot be effectively rejected. Specifically,
if we select a too large threshold t and take it as the input
parameter of the proposed algorithm, such as t = 0.8,
it will not only eliminate too many preliminary atoms with
high reliability in preliminary atomic set, but also cause the
scale of the preliminary atomic set to be too small. These
defects will lead to the inaccuracy of the transition signal
estimated by the least squaremethod and the inaccuracy of the
support atom set estimated by pruning the transition signal,
which causes the algorithm need more iteration to complete
the reconstruction of the algorithm. Therefore, if we choose
a larger threshold, the computational complexity of the

proposed method will increase and the reconstruction precise
of the proposed method will decline. On the contrary, when
we select a too smaller threshold t , such as t = 0.01, it will
not only effectively reject the preliminary atoms with lower
reliability and higher redundantly in preliminary atomic set,
but also cause the size of the preliminary atomic set to be
too larger. These shortcomings will lead to the inaccuracy of
the transition signal and the final support atomic set, which
causes the algorithm need more iteration to complete the
reconstruction of the algorithm. Therefore, if we choose a
too small threshold, the computational complexity of the
proposed method will increase and the reconstruction precise
of the proposed method will decline. Therefore, based on the
above analysis on the threshold t , we should select a suitable
threshold that is neither small nor large. According the exper-
iments in the section V for different source signals, we test the
proposed method performance with t ∈ [0.3 0.5]. It shows
the proposed method has better performance for different
source signals with t = 0.4, t = 0.45 and t = 0.5, and
the performance has little difference. Therefore, we randomly
select the threshold t = 0.5.

Combining the equation (10) and (13), we can known
that the new atomic coefficient C∗k is sub-set of the initial
atomic coefficient set Ck , that is, C∗k is belongs to Ck . Note
that, the length of C∗k is equal to 2K̂ . Besides, supp ((·) , ωk)
represents that searches the corresponding index that satisfies
the fuzzy-threshold condition and forms a new atomic index
set �∗.
After the fuzzy threshold selection strategy is completed

for SMV model, we need to merge the atomic set �∗ and the
support set 0k−1 to update the current candidate atom set T ,
described as:

T = �∗ ∪ 0k−1 (15)

where T , �∗, 0k−1 represent the current candidate atomic
index set, the current atomic index set, and the support atomic
index set of the previous iteration, respectively.

Next, we use the least squares method to obtain the transi-
tion estimation of original signal for SMV model, which can
be described as in follow:

bkT = 8
†
T y (16)

where, bkT is the transition estimation of the sparse signal
x by the least square method at the k-th iteration and the
position of the non-zeros is consistent with the atomic can-
didate index set. This is known as the transition signal. 8†

T
represents that the pseudo inverse matrix of the candidate
atomic matrix8T (or set), and y is a observing vector, which
is used to storage the information of original signal.

Finally, we update the support index set F , described as:

0 = supp
(
|bkT | , K̂

)
(17)

where |·| represents is the absolute value of transition signal
bkT at k-th iteration. supp

(
|·| , K̂

)
is used to determines the
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atomic(or column) index of the measurement matrix corre-
sponding to the maximum K̂ value from transition signal bkT
and consist of the support atomic index set0. Using the atoms
corresponding to the support set index set, we construct the
new support set 80 .
Next, we update the final estimation of sparse signal x at

k-th iteration, which is expressed as

xk = bk0 (18)

where xk is the final approximation estimation of the original
signal at the k-th iteration, and bk0 is the recovery signal
corresponding to the support atomic index set 0.
The fuzzy threshold strategy accords the atomic correlation

degree to secondly select the preliminary atoms. This can
improve the reliability of the preliminary atoms and eliminate
the atoms with low correlation degree in the pre-selected
atoms to make the supporting atom set more be accuracy.
Therefore it can reduce the reconstruction error. In addition,
it can faster select the useful atoms, so it reduces the compu-
tation time for convergence.

2) TERMINATION CONDITION
In the termination condition of the CoSaMP algorithm, one
of the iterative halt conditions is that the maximum iteration
number is the sparsity value. That is, it stops until the iteration
reaches the maximum iteration number. However, in practi-
cal, the true sparsity level is unknown. Therefore, the termi-
nation condition is unsatisfied if we still use the sparsity value
as the maximum iteration number. To overcome this problem,
we propose a double threshold control method and multiple
stage variable step-size method to control the convergence
condition of the algorithm and adjust the estimated sparsity,
thereby getting rid of the dependency of sparsity information
of original signal. In particular, we set the maximum number
of iteration is set as the number of measurementsM to ensure
the reconstruction accuracy when the estimated sparsity is
much lower than the real sparsity of original signal.

First, we compute the residual by

rc = y−8xk (19)

where rc is the current residual. Next, we use the difference
between the current residual value and the iterative halt error
to decide how to adjust the estimated sparsity L. If

‖rc‖2 ≤ ε2 or k > M (20)

then the algorithm stops the iteration and outputs the final
estimation of the original signal x̂. ‖.‖2 denotes that the
l2 -norm of residual vector rc. ε2 and M are the iteration
stopping error threshold of the algorithm and the number
of measurement values, respectively. It is noted that, if the
current residual rc is smaller than the second threshold ε2, this
means that the estimated sparsity is better approach the real
sparsity of the original signal and the reconstruction accuracy
can satisfy that we require. Besides, to avoid the excessive
estimation of the sparsity, we set that the number of the loop

index k is greater than the number of measurement values
M . If the condition in equation (20) is not satisfied, the other
condition should be judge, that is, If

ε2 ≤ ‖rc‖2 ≤ ε1 (21)

then

s = s (22)

J = J + 1 (23)

K̂ = J × s (24)

where ε1 is another iteration stopping error threshold of the
proposed algorithm (ε1 > ε2), and s, J and K̂ are the fixed
step-size, stage index and estimated sparsity, respectively.
If the condition is satisfy, it is indicates that the estimated
sparsity is close to the real sparsity, but it not approach to the
real sparsity. So, we still need to use the smaller step-size to
complete the approximately approach of the real sparsity of
original sparsity, and enhancing the reconstruction accuracy
and capacity. Here, the double halt error threshold ε1 and ε2
that we set according experiment and some relevant reference
literatures [13], [15], [16]. We set the double thresholds that
is mainly to more accurate approximately approach the true
sparsity of the original signal, and enhance the reconstruction
capacity in unknown sparsity environment. When the 2-norm
of the current residual rc is smaller than the first threshold
ε1 but greater than the second threshold ε2, the estimated
sparsity is gradually close to the true sparsity but need to
achieve a more accurately approach by utilized the smaller
iterative step-size, which will enhance the accuracy of the
final estimation signal and the support atomic set at next
iteration. If

‖rc‖2 > ε1 and ‖rc‖2 ≥ ‖rk−1‖2 (25)

then

s = 2× s (26)

J = J + 1 (27)

K̂ = J × s (28)

where, rc and rk−1 are the current and the previous residuals.
It is noted that, when the current residual is greater than the
threshold ε1, it indicates that the estimated sparsity is smaller
than the real sparsity and the reconstruction accuracy is not
satisfy that we can be acceptable value. Therefore, we utilizes
the larger step size to speedy approximate the real sparsity,
thereby reducing the adjusted runtime of estimated sparsity,
which will lower the computational complexity. If

‖rc‖2 > ε1 and ‖rc‖2 < ‖rk−1‖2 (29)

then continue to iterate and update the parameters:

rk = rc and 0k = 0 (30)

where rk and 0k are the current residual and the support
index set, which will be used to compute atomic correlation
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coefficients and the expansion of the candidate atomic set in
the next iteration.

The entire procedure of the proposed method for SMV
model is shown in Algorithm 2.

Algorithm 2 Proposed Algorithm for SMV Model
Input: matrix 8, observation signal y, step-size s
Initialize: x̂ ← 0, r ← y, k ← 0, J ← 0, K̂ ← s
Output: K -sparse estimation x̂ to original signal x
repeat
k ← k + 1 loop index
C ← 8T

× r form signal proxy for SMV
�← supp

(
|C| , 2K̂

)
Identify large 2K̂ components

ω← α × (c1 + c2)/2 computing fuzzy threshold
C∗← |C|2L obtain the maximum 2K̂ correlations
�∗← supp (|C∗| , ω) obtain the new preliminary set
T ← �∗ ∪0k−1 Merge to form current candidate set
b|T ← 8

†
T y Transition estimation

0← supp
(
|b| , K̂

)
Prune to obtain current supports

x̂k ← bk0 Update the final estimation
rc← y−8x̂k Computing current residual

If halting criterion 1 true then
If halting criterion 2 true then

quit iteration;
else

s← s Keeping step-size
J ← J + 1 Stage index
K̂ ← J × s Update the sparsity estimation

end
else if (‖rc‖2 ≥ ‖rk−1‖2)
s← 2× s Increasing step size
J ← J + 1 Stage index
K̂ ← J × s Update the sparsity estimation
else
rk ← rc Update current residual
0k ← 0 Update current support set
end if
until halting criterion true; return x̂ ← x̂k

The purpose of setting two thresholds is to make estimated
sparsity morel close to the real sparsity, which will improve
the accuracy of support set estimation and the reconstruc-
tion performance. If the residual error is larger than the
first threshold (larger threshold), it means that the estimated
sparsity is far away from the real sparsity, and then large
step size is used to adjust the estimated sparsity to make
the estimated sparsity faster close to the real sparsity. If the
residual error is between the two thresholds, it means that the
estimated sparsity is not far away from the real sparsity, and
then small step size is used to adjust the estimated sparsity
to avoid overestimating the estimated sparsity. If the residual
error is smaller than the second threshold (smaller threshold),
it means that the estimated sparsity is enough close to the real
sparsity, and it will not adjust the estimated sparsity.

The two thresholds are used to control the step size of
sparsity estimation. When the estimated sparsity is far away
from the real sparsity (it is evaluated by residual error), it will
use larger step size to adjust the estimated sparsity. This can
make the estimated sparsity faster close to the real sparsity.
When the estimated sparsity is close to the real sparsity, it will
use smaller step size to adjust the estimated sparsity. This can
avoid overestimating the sparsity.

The values of two thresholds are just used to indirectly
evaluate the proximity between the estimated sparsity and
the real estimated sparsity. They have nothing to do with
the sparsity of source signals. The different value of two
thresholds may affect the performance of proposed method.

In the following experiments, we set the two thresholds as
ε1 = 1× e−5 and ε2 = 1× e−7 for different source signals,
bases on analysis of simulation results, the proposed method
has better performance than others for different source sig-
nals. Therefore, we can use the two values as the two thresh-
olds.

B. PROPOSED ALGORITHM FOR MMV
1) SELECTION OF ATOMIC
In MMV model, we also select the 2K̂ atoms to expand the
preliminary atomic set, then calculate the atomic coefficient
Ek and select the 2K̂ maximum atomic correlations to iden-
tify their corresponding atomic index set �, which can be
expressed as in follow.

Ek =
{
ej
∣∣ ej = norm

(
φTj × Rk−1, p

)}
(31)

� = supp
(
Ek , 2K̂

)
(32)

where, j = 1, 2, . . . .N , k is the number of iterations in
algorithm. Rk−1 represents that the residual of the previous
iteration and the size of residual matrix is M × l. l is the
number of source signal, which is joint sparse signal. φj is the
j-th column of the sensing matrix 8, and φTj × Rk−1 denotes
the matrix multiplication of the column atoms of matrix 8
and the previous residual, and it’s a vector with 1×l.We name
φTj × Rk−1 as the inner product vector, and for simplicity,
which can be expressed as 3j. norm (|·| , p) represents the lp
-norm operation of inner product vector 3j. Here, p = 2. Ej
is the atomic correlation coefficients for MMV model at k-th
iteration. In the first iteration of algorithm, we use observa-
tion signal Y as the initial residual R0. The supp

(
Ek , 2K̂

)
represents the preliminary atomic index set corresponding to
the largest 2K̂ value in the atomic correlation coefficient Ek
at k-th iteration.
After the preliminary stage for MMV model, the pre-

liminary atomic set still exists the redundant atoms, which
will reduce the estimation accuracy of the support set. This
eventually affects the reconstruction capacity, the computa-
tion complexity and the reconstruction precision. Therefore,
we also use the fuzzy threshold selection strategy to reduce
the number of the lower relevant and redundant atoms that
will be added into the follow candidate atomic set. This
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process is mainly described as

ωk = αk × (ek1 + ek2)× t (33)

E∗k = (Ek)2L (34)

�∗ = supp
(
E∗k , ωk

)
(35)

where, The αk is not fixed value that we set, and with variabil-
ity at each of iterations until the proposed method can achieve
reconstruction. The variable range of αk is [0.55 0.95] for
MMV model. The specify value of the αk is determined by
the coefficients ek1 and ek2, that is, αk = ek2

/
ek1. The ek1

and ek2 correspond to the first and second components after
sorting Ek in descending order in (32). The t is threshold
that we set, and the rang of is usually set as t ∈ [0.3 0.5].
It is noted that, if the threshold is greater than 0.5, then ωk
is the fuzzy threshold at the k-th iteration. Combining the
equation (31) and (34), we can known that the new atomic
coefficient E∗k is sub-set of the initial atomic coefficient set
Ek , that is, E∗k is belongs to Ek . Note that, the length of
E∗k is 2K̂ . Besides, supp ((·) , ωk) represents that searches
the corresponding index that satisfies the fuzzy-threshold
condition and forms a new atomic index set �∗.

After the fuzzy threshold selection strategy is completed
for MMVmodel, we need to merge the atomic set�∗ and the
support set 0k−1 to update the current candidate atom set T ,
described as:

T = �∗ ∪ 0k−1 (36)

where T , �∗, 0k−1 represent the current candidate atomic
index set, the current atomic index set, and the support atomic
index set of the previous iteration, respectively.

Next, we use the least squares method to obtain the transi-
tion estimation of original signal for MMVmodel, which can
be described as in follow:

BkT = 8
†
TY (37)

where, BkT is the transition estimation of the sparse signal X
by the least square method at the k-th iteration and the posi-
tion of the non-zeros is consistent with the atomic candidate
index set. The transition estimation BkT can be considered as
matrix withN×l. The number of the rows is |T | and the |T | is
the length of candidate atomic index set. For simplicity, BkT
is usually named as the transition signal B corresponding to
the candidate atomic index set T at k-th. 8†

T represents that
the pseudo inverse matrix of the candidate atomic matrix8T
(or set), and Y is a observing vector withM × l which is used
to storage the information of original signal.

Before pruning the support index set, we need to operate
l2 -norm of each row vector in transition signal B to obtain a
transition estimation vector U at each iteration, this process
can be described as

Uk =
{
uj
∣∣ uj = norm

(
Bj, 2

)}
(38)

where, the Uk call as the estimation vector of transition
estimation matrix B at k-th iteration. j = 1, 2, . . . ..N , Bj
represents that the j-th row of thematrixB. uj is the estimation

value corresponding to the Bj after l2 -norm operation on the
row vector Bj.

Next, we update the support index set F , described as:

0 = supp
(
Uk , K̂

)
(39)

where K̂ is the estimated sparsity of the original signal at
k-th iteration. supp

(
(·) , K̂

)
is used to determines the support

atomic (or column) index of the measurement matrix corre-
sponding to the maximum K̂ value from transition estimation
vector Uk and consist of the support atomic index set 0.
Using the atoms corresponding to the support set index set,
we construct the new support set 80 .
Finally, we update the final estimation of joint random

sparse signal X at k-th iteration, which is expressed as

X̂k = Bk0 (40)

where X̂k is the final approximation estimation of the original
signal at the k-th iteration, and Bk0 is the recovery signal
corresponding to the support atomic index set 0.

2) TERMINATION CONDITION
In the termination condition of the CoSaMP algorithm, one
of the iterative halt conditions is that the maximum iteration
number is the sparsity value. That is, it stops until the iteration
reaches the maximum iteration number. However, in practi-
cal, the true sparsity level is unknown. Therefore, the termi-
nation condition is unsatisfied if we still use the sparsity value
as the maximum iteration number. To overcome this problem,
we propose a double threshold control method and multiple
stage variable step-size method to control the convergence
condition of the algorithm and adjust the estimated sparsity,
thereby getting rid of the dependency of sparsity informa-
tion of original signal. In particular, we set the maximum
number of iteration is set as the number of measurements
M to ensure the reconstruction accuracy when the estimated
sparsity is much lower than the real sparsity of original
signal.

First, we computing the residual by

Rc = Y −8Xk (41)

where Rc is the current residual. Next, we use the difference
between the current residual value and the iterative halt error
to decide how to adjust the estimated sparsity K̂ . If

‖Rc‖2 ≤ ε2 or k > M (42)

then the algorithm stops the iteration and outputs the final
estimation of the original signal X̂ . ‖.‖2 denotes that the
l2 -norm of residual vector Rc. ε2 and M are the iteration
stopping error threshold of the algorithm and the number
of measurement values, respectively. It is noted that, if the
current residual Rc is smaller than the second threshold ε2,
this means that the estimated sparsity is better approach the
real sparsity of the original signal and the reconstruction
accuracy can satisfy that we require. Besides, to avoid the
excessive estimation of the sparsity, we set that the number of
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the loop index k is greater than the number of measurement
valuesM . If the condition in equation (41) is not satisfied, the
other condition should be judge, that is, If

ε2 ≤ ‖Rc‖2 ≤ ε1 (43)

then

s = s (44)

J = J + 1 (45)

K̂ = J × s (46)

where ε1 is another iteration stopping error threshold of the
proposed algorithm (ε1 > ε2), and s, J and K̂ are the fixed
step-size, stage index and estimated sparsity, respectively.
If the condition is satisfy, it is indicates that the estimated
sparsity is close to the real sparsity, but it not approach to the
real sparsity. So, we still need to use the smaller step-size to
complete the approximately approach of the real sparsity of
original sparsity, and enhancing the reconstruction accuracy
and capacity. If

‖Rc‖2 > ε1 and ‖Rc‖2 ≥ ‖Rk−1‖2 (47)

then

s = 2× s (48)

J = J + 1 (49)

K̂ = J × s (50)

where, Rc and Rk−1 are the current and the previous residuals.
It is noted that, when the current residual is greater than
the threshold ε1, it is indicated that the estimated sparsity
is much smaller than the real sparsity and the reconstruction
accuracy is not satisfy that we acceptable maximum iterative
threshold. Therefore, we utilizes the larger to speedy approx-
imate the real sparsity, thereby reducing the adjusted runtime
of estimated sparsity, which will lower the computational
complexity. If

‖Rc‖2 > ε1 and ‖Rc‖2 < ‖Rk−1‖2 (51)

then continue to iterate and update the parameters:

Rk = Rc and 0k = 0 (52)

where Rk and 0k are the updated current residual and the
update support index set, which will used the calculation
of atomic correlation coefficients and the expansion of the
candidate atomic set in the next iteration.

The entire procedure of the proposed method for MMV
model is shown in Algorithm 3

V. SIMULATION AND DISCUSSION
In this section, we use one dimensional sparse signal, joint
sparse signals and two dimensional image signal as original
signal. All obtained reconstruction performance is an average
performance after running 1000 times using the computer
with a quad-core 64-bit processor and 4G memory. We use
the average approximation error (Aae) and mean square error

Algorithm 3 Proposed Algorithm for MMV Model
Input: matrix 8, observation signal Y , step-size s
Initialize: X̂ ← 0, R← Y , k ← 0, J ← 0, K̂ ← s
Output: K -sparse estimation X̂ to original signal X
repeat
k ← k + 1 loop index
for iteration j until j > N do
Ej← norm

(
8T
j × R, 2

)
form signal proxy

end for
�← supp

(
E, 2K̂

)
Identify large 2K̂ components

ω← α × (E1 + E2)/2 Computing fuzzy threshold
E∗← E2K̂ obtain the maximum 2K̂ correlations
�∗← supp (E∗, ω) obtain the new preliminary set
T ← �∗ ∪ 0k−1 Merge to form current candidate set
B|T ← 8

†
TY Transition estimation

for iteration j until j > N do
Uj← norm

(
Bj, 2

)
end for
0← supp

(
Uj, K̂

)
Prune to obtain current supports

X̂k ← Bk0 Update the final estimation
Rc← Y −8X̂k Computing current residual

If halting criterion 1 true then
If halting criterion 2 true then

quit iteration;
else

s← s Keeping step-size
J ← J + 1 stage index
K̂ ← J × s Update the sparsity estimation

end
else if (‖rc‖2 ≥ ‖rk−1‖2)
s← 2× s Increasing step size
J ← J + 1 Stage index
K̂ ← J × s Update the sparsity estimation
else
Rk ← Rc Update current residual
0k ← 0 Update current support set

end if
until halting criterion true; return X̂ ← X̂k

(MSE) as indicators to evaluate the reconstruction precision
for noiseless condition and noise condition, respectively.
The average approximation error and mean square error are
expressed as followings:

Aae =
1
n

n∑
i=1

∥∥x − x̂i∥∥2 (53)

MSE =
1
n

n∑
i=1

E{(x − x̂i)2} (54)

where, x, x̂i and n represents that the original signal, esti-
mation signal for the ith and the number of experiments,
respectively. E{(x − x̂i)2} is the expectation of (x − x̂i)2.∥∥x − x̂i∥∥2 is the 2 Forbenius of (x − x̂i).
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FIGURE 1. Reconstruction percentage of the proposed algorithms with
different sparsity levels at different thresholds and step-sizes conditions
(M = 130, N = 256, t ∈ [0.3 0.5]).

A. 1-D SPARSE SIGNAL RECONSTRUCTION FOR SMV
MODEL
In this sub-section, we use the random signal with K -sparse
and Gaussian distribution as original signal. The measure-
ment matrix is randomly generated with a Gaussian distri-
bution. We set the iteration step-size as s = 1, 5, 10. The
reconstruction error of all algorithms is 1 × e−6. Besides,
we set the iterative halt error of the proposed algorithm as
ε1 = 1× e−5 and ε2 = 1× e−7, respectively.
In Figure 1, we compare the reconstruction percentage

of the proposed algorithm with different sparsity level at
different thresholds and step-sizes conditions. In SMVmodel,
we set the sparsity level as K ∈ [15 75]. The threshold
set is t ∈ [0.3 0.5]. The iterative step-size of the proposed
method is set as s ∈ [1 5 10]. Besides, we set the number of
measurements (sampling points) asM = 130. From Figure 1
(a)-(c), we can see that, for different iterative step-sizes, the
reconstruction percentages of the proposed method with t =
0.4, t = 0.45 and t = 0.5 are very close, and are almost
no difference, except for t = 0.3 and t = 0.35. This means
that the reconstruction percentages of the proposed method
with large threshold are almost the same for different sparsity
levels.

In Figure 2, we compare the reconstruction percentage
of the proposed algorithm with different measurements in
different thresholds and step-sizes conditions. In the Figure 1,
it shows that when the sparsity level is smaller than 20 and the
number of measurement is equal to 130, the reconstruction
percentage of the proposed method is 100% with different
thresholds and iterative step-sizes. Therefore, we set the spar-
sity level as 20 and the range of measurement is from 40 to
130 in Figure 2. The others parameters are same with the
parameters in Figure 1.

From Figure 2, we can see that the reconstruction percent-
ages of the proposed method with t = 0.4, t = 0.45 and
t = 0.5 are very close, and are almost no difference, except

FIGURE 2. Reconstruction percentage of the proposed algorithms with
different measurements at different thresholds and step-sizes (K = 20,
N = 256).

FIGURE 3. The average αk of the proposed algorithms with different
iterations at different step-sizes (K = 20, N = 256, M = 130, t = 0.5,
Gaussian signal).

for t = 0.3 and t = 0.35. This means that the reconstruction
percentages of the proposed method with large thresholds are
almost the same for different sparsity levels. The proposed
method with larger thresholds has higher reconstruction per-
centage than with smaller threshold.

Based on the analysis of Figure 1 to Figure 2, we can con-
clude that, the reconstruction ability of proposed method with
larger thresholds is almost identical. Therefore, we randomly
select threshold t = 0.5 as the default threshold parameter of
the proposed algorithm in the following simulations.

Figure 3 shows the relationship between number of itera-
tion and αk with different step-sizes. In the Figure 1, it shows
that when the sparsity level is smaller than 20 and the number
ofmeasurement is equal to 130, the reconstruction percentage
of the proposed method is 100% for different thresholds
and iterative step-sizes. Therefore, we set the sparsity level,
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FIGURE 4. Reconstruction percentage of different algorithms with
different sparsity at SMV model (M = 130, N = 256, t = 0.5 Gaussian
signal).

number of measurements and threshold as 20, 130 and 0.5 in
the simulation of the Figure 3, respectively. From Figure 3,
we can clearly see that, the man range of threshold αk is
from 0.6 to 0.9. In particular, from detail views sub-figure
(a) in Figure 3, we can see that, when the number of iter-
ations 100 ≤ k ≤ 130, the average αk of the proposed
method is nearly identical for different iterations. Besides,
from Figure 3, we can see that, the average αk of the proposed
method has instability for different step-sizewhen the number
of iterations is from 1 to 100. This is attributing to the residual
instability of the proposed method in reconstruction process.
Based on the analysis of Figure 3, we can see that the mean
variable range of αk is 0.6 to 0.9. The explanation about αk is
in (12). It is just a ratio in the iterative procession, and is not
fixed value that we set.

In Figure 4, we compare the reconstruction percentage of
the proposed algorithm with the OMP [11], StOMP [12],
SP [14], CoSaMP [15], StoGradMP [16] and SAMP [17]
algorithms for different sparsity levels at the SMV model.
We set the length of signal, the number of measurement
and the range of sparsity level as N = 256, M = 130
and K ∈ [15 75], respectively. From Figure 4, we see that,
when the sparsity level K ≤ 20, all of the methods almost
achieve higher reconstruction percentages. When 20 ≤ K ≤
35, the reconstruction percentage of the OMP algorithm
begins to decline, from approximately 99.1% to 46.4%, while
other algorithms still have higher reconstruction percentages.
When 35 ≤ K , the reconstruction percentages of all algo-
rithms begin to decrease, except for the StoGradMP and the
proposed algorithm with s = 5 and s = 10. In particular,
for 35 ≤ K < 40, the proposed algorithm, SP and CoSaMP
algorithms begins to decline, which are from 99.8% to 99%,
99.6% to 98.7% and 99.7% to 98.4%, respectively. When
35 ≤ K ≤ 50, the SAMP method with s = 1 has higher
reconstruction percentage than proposed method with s = 1.
However,When 50 < K , the proposedmethodwith s = 1 has
higher reconstruction percentage than SAMP method with
s = 1. When 45 ≤ K ≤ 60, the SAMP with s = 5 has higher

FIGURE 5. Reconstruction percentage of different algorithms with
different measurements at SMV model (K = 20, N = 256t = 0.5 Gaussian
signal).

reconstruction percentage than proposed method with s = 5.
However,When 60 < K , the proposedmethodwith s = 5 has
higher reconstruction percentage than SAMP method with
s = 5. When 45 ≤ K ≤ 65, the SAMP with s = 10 has
higher reconstruction percentage than proposed method with
s = 10. However, When 60 < K , the proposed method with
s = 10 has higher reconstruction percentage than SAMP
method with s = 10. Therefore, we can approximatively
regard the performances in reconstruction percentage for the
proposed method and SAMP are same, and they have better
performances in reconstruction percentage than others.

In Figure 5, we compare the proposed methods with others
algorithms for different measurement values under the SMV
model. In Figure 4, we see that the reconstruction percentage
of all algorithms is 100% when the sparsity is 20. Therefore,
we set the sparsity level as 20 in the simulation of Figure 5,
and the length of the original signal is keep consistent with the
figure 4. From figure 5, we can see that, the proposed method
with s = 1 has a higher reconstruction percentage than other
methods for different measurement sizes, until all methods
have 100% reconstruction. From the detail views that are sub
figure (a) and sub figure (b) in figure 5, we can see that the
proposed method has higher reconstruction percentage than
SAMP method with same step size s and other methods.
Base on the analysis of figure 4 to figure 5, the proposed

method has better performance in reconstruction percentage
than others on the whole.
In Figure 6, we compare the average running time of the

proposed algorithms with the OMP, StOMP, SP, CoSaMP,
StoGradMP and SAMP algorithms for different sparsity lev-
els at the SMV model. In Figure 4 and Figure 5, we can
see that, when the number of the measurements is equal
to 130 and the sparsity level is less than or equal to 20,
the reconstruction percentage of the OMP algorithm is almost
approach to 100%. When the sparsity level K ≤ 40 and the
number of measurements is equal to 150, the reconstruction
percentage of the other algorithms are close to 100%. There-
fore, we set the sparsity range of the OMP algorithm and the
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FIGURE 6. The average runtime of different algorithms with different
sparsity levels at SMV model and fully reconstruction conditions
(M = 150, N = 256, t = 0.5, Gaussian signal).

other methods as [10 20] and [10 40] in the simulation of the
figure 6, and the number of measurements and samples of the
signal are 150 and 256, respectively.

From figure 6, the running time of the StoGradMP algo-
rithm is longest, and the next is followed by the SAMP with
s = 1, the proposed method with s = 1 and CoSaMP
method. The StOMP method has the shortest running time.
The proposed method has shorter running time than SAMP
method for the same step-size s. However, the running times
of SP, SAMP with s = 5 and s = 10, proposed method with
s = 5 and s = 10, and OMP method have little difference
and are almost the same. Besides, for the proposed method,
when s = 10 the running time is the shortest, and the next
is s = 5 and s = 1. This means that the larger step-size can
reduce the running time of the proposed algorithm with the
same sparsity level setting when the original signal is fully
reconstructed.

In Figure 7, we compare the average running time of
different algorithms for different measurements under the
SMV model. From figure 4 and figure 5, we see that the
reconstruction percentage is 100% when the sparsity is equal
to 20 and the number of the measurements is greater than or
equal to 150. Therefore, we set the range of the measurements
as [150 200] and sparsity level as 20 in the simulation of the
figure 7. The other parameters are consistent with the figure 5.

From figure 7, we can see that the StOMP method has the
shortest running time, and the next is followed by is proposed
method with s = 10 and the SAMP with s = 10 and
SP method. The StoGradMP has the longest running time.
The proposed method has shorter running time than SAMP
method for the same step size s. Besides, for the proposed
method, when s = 10 the running time is the shortest, and
the next is s = 5 and s = 1.
Base on the analysis of figure 6 and 7, the proposedmethod

with s = 10 has shorter running time than other methods
except for the StOMP. The the proposedmethods have shorter
running time than SAMP with same step size.

FIGURE 7. The average runtime of different algorithms with different
measurements at SMV model (K = 20, N = 256, Gaussian signal).

FIGURE 8. The average approximation error of different algorithms with
different sparsity at SMV model (M = 130, N = 256, Gaussian signal).

In Figure 8, we compared the average approximation error
of different algorithm with different sparsity levels under
the SMV model. In Figure 4, we regard the reconstruction
percentage that is higher than 95% as the higher probability
reconstruction stage for SMV model. Otherwise, we regard
as the lower reconstruction probability stage. The simulation
parameters in figure 8 are same in figure 4.

From the sub-figure (a) in figure 8, we can see that, when
15 ≤ K ≤ 20, the average approximation error of the
proposed method with s = 1 is smaller than other algo-
rithms in higher reconstruction probability stage. The average
approximation error of the StOMP algorithm is the maxi-
mum, which means that the reconstruction accuracy is lower
than other algorithms. It attribute to the inaccuracy of the
atomic selection in the StOMP algorithm. Besides, in terms
of the proposed method, we can see that the reconstruction
error of the proposed with s = 1 is the lowest, the next
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FIGURE 9. The average approximation error of different algorithms with
different measurements at SMV model (K = 20, N = 256, Gaussian
signal).

are the proposed method with s = 5 and the proposed
method with s = 10. This indicates that the reconstruction
accuracy of the proposed method with smaller step-size is
higher than the proposed method with larger step-size. This is
mainly because that the smaller step-size can more accurately
approach the real sparsity of original signal than the larger
step-size, which makes the proposed algorithm have higher
reconstruction accuracy. When the sparsity level than 40, all
methods cannot reconstruct the signal that can be seen from
figure 4, it is no reason to compare the error. Therefore,
the proposed method with s = 1 has better performance in
error than others. The proposed methods with s = 5 and
s = 10 have worse performance in error than SAMP and
OMP, and better than the others except for proposed method
with s = 1.

In Figure 9, we compared the average approximation error
of different algorithmswith different measurements under the
SMV model. The simulation parameters in figure 9 are same
in figure 5. From Figure 9, we can see that the proposed
method with s = 1 has smaller average approximation error
than other algorithms. From the sub-figure (a) in figure 10,
we can see that, when 74.8 ≤ m ≤ 75.6, the reconstruction
error of the proposed with s = 1 is the smallest, followed
by the proposed with s = 5, the proposed with s = 10 and
the StoGradMP algorithm, respectively. This means that the
reconstruction accuracy the proposed method with smaller
step-size is higher than the other algorithms and the proposed
method with larger step-size. With the increasing of measure-
ments, the average approximation errors are almost the same
for proposed method with s = 5, SAMP and OMP, and are
higher than the proposed method with s = 10.
Based on the analysis of the figure 8 and 9, the proposed

method with s = 1 has smaller error than other meth-
ods for different sparsity level and measurements. Although
OMP has smaller error than proposed method with s = 10,
it requires larger number of measurements at the same spar-
sity level. The SAMP methods with different s have almost

FIGURE 10. The Mean square error (MSE) of different algorithms with
different SNR levels (K = 20, N = 256, M = 150, t = 0.5, Gaussian signal).

the same error with proposed method with s = 5, and has
smaller error with s = 10 than proposed method with s =
10 for lager measurements, but SAMP with s = 10 has
larger error than the proposed method with s = 10 when
75 ≤ M ≤ 80.

In Figure 10, we compared the average square error (MSE)
of different algorithms with different signal-noise ratio (SNR)
levels at SMV model. From figure 4 and figure 5 we can see
that, when the sparsity level is equal to 20 and the number of
measurements is greater than or equal to 150, all of algorithms
can achieve fully reconstruction. This is mainly originate
from the reconstruction error of the algorithm is unstable
during incomplete reconstruction stage, which will affect the
reconstruction error of the algorithm in the noise condition.
Therefore, we set the sparsity level and the number of mea-
surements as 20 and 150, respectively. We used Gaussian
white noise as the noise signal. The range of the SNR level
is from 10dB to 30dB.

In figure 10, the OMP has the lowest MSE, followed
by other methods except for the proposed methods and
SAMP methods with different step size. The proposed meth-
ods have lower MSE than SAMP methods. These mean
that the OMP, StoGradMP, SP, CoSaMP and StOMP have
stronger capability against noise disturbance than proposed
methods and SAMPmethods, and the proposedmethods have
stronger capability against noise disturbance than SAMP
methods. The proposed method with smaller step size has
stronger capability against noise disturbance than with larger
step size. The reason for proposedmethod and SAMPmethod
have weaker capability against noise disturbance than other
methods, is mainly because that the presence of the noise
causes the inaccuracy of the sparsity estimation, which affects
the reconstruction accuracy of the proposed algorithm. How-
ever, in terms of the practical application of the algorithm,
the proposed method is undoubtedly more advantageous. It is
because that, except for the SAMP, the other algorithms both
requires the sparsity of the original as the prior information.
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However, this prior information is unknown in practical appli-
cation. Although the OMP algorithm can also achieve the
reconstruction in an unknown sparsity environment, the num-
ber of iteration is equal to the numerical value of the sparsity
level. That is the number of iteration of the OMP algorithm
is constrained by sparsity level. If we set the iteration stop
condition of the OMP algorithm to that when the residual is
less than the iteration stop threshold, the iteration is stopped.
This may cause an increase in the number of OMP algorithm
cycles and the size of the support set, which affects the
computational complexity and reconstruction accuracy of the
algorithm.

According to the analysis in the section A, on the whole,
the proposed method has higher reconstruction percentage.
The proposed method with s = 1 has smaller error than the
others. Although the SAMP method has smaller error than
proposed method with s = 5 and s = 10, the proposed
method with s = 1 has smaller error than SAMP. The
difference is about 1 × 10−14 and is very small and can
be ignored. Therefore, we can regard they have the same
error. In the aspect of running time, the proposed method
and SAMP method have longer running time than some
methods. This is because that the proposed method and
SAMP method require estimating sparsity, it will consume
much time. There is a difference between the estimated
sparsity and real sparsity, it also will affect the conver-
gence time. In the noise condition, the proposed method and
SAMP method has larger error than other methods. This is
because the noise affects the accuracy of estimated sparsity.
Besides, the errors are also large in lower SNR for other
methods, all method have not realized successfully recon-
struction. This is because that the normal compress sens-
ing method has weaker capability against noise disturbance.
Therefore, we can conclude that the proposed method have
better performance in reconstruction and weaker capabil-
ity against noise than others for SMV model and practical
application.

B. JOINT SPARSE SIGNAL RECONSTRUCTION FOR MMV
MODEL
In this subsection, we use the random signal with K -sparse
and Gaussian distribution as original signal. The number of
original signal is equal to l = 4, and the size of the source
signal is N × l = 256 × 4, which also can be regard as a
matrix with 256× 4. In addition, we ensure that the position
of the non-zeros elements of the source signal is the same,
that is , the rows of matrix is sparse, and the number of the
non-zeros rows are equal to K . The measurement matrix is
randomly generated with a Gaussian distribution. We set the
iteration step-size of the proposed and SAMP algorithm as
s = 1, 5, 10. The reconstruction error of all algorithms is
1× e−6. Besides, we set the double iterative halt error of the
proposed algorithm as ε2 = 1 × e−5 and ε2 = 1 × e−7,
respectively. It is also noted that these errors are obtained
using Frobenius norm operation on the reconstruction error
matrix and residual matrix, respectively.

FIGURE 11. Reconstruction percentage of the proposed algorithms with
different measurements under the different thresholds and step-sizes
(M = 120, N = 256, l = 4, Joint sparse random Gaussian signal).

In Figure 11, we compare the reconstruction percentage of
the proposed algorithm with different sparsity under the dif-
ferent thresholds and step-sizes conditions. In MMV model,
the range of the sparsity levels is from 20 to 90. The threshold
set and the iterative step-size of the proposed algorithm are
stills set as t ∈ [0.3 0.5] and s ∈ [1, 5, 10], respectively.
Besides, we set the number of measurements asM = 120.

From the figure 11 an figure 12, we can see that the
proposed methods with thresholds t = 0.4, 0.45 and 0.5 have
higher reconstruction percentage than with threshold t = 0.3
and 0.35 under the same sparsity level, measurement and
step-size s. Due to that proposed methods with thresholds t =
0.4, 0.45 and 0.5 have little difference in the performance of
reconstruction percentage, we randomly select the threshold
t = 0.5 as the threshold used in MMV model. The selected
threshold is the same with threshold that is used in SMV
model.

In Figure 12, we compare the reconstruction percentage
of the proposed algorithm with different measurements in
different thresholds and step-sizes conditions. We set the
sparsity level and the number ofmeasurements asK = 20 and
M ∈ [35 100], respectively. The other experiment parameters
are same with the figure 12.

Figure 13 shows the relationship between number of iter-
ation and αk with different step-sizes. From figure 11 and
figure 12, we can see that when the sparsity level is smaller or
equal to 20 and the number of measurements is greater than
or equal to 100, the proposed method with different step-sizes
can achieve the fully reconstruction. Besides, we also dis-
cover that the reconstruction percentage of the proposed
with lager step-sizes is very identical. Therefore, we set the
sparsity level, number of measurements and threshold as 20,
100 and 0.5 in the simulation of the figure 13.

From Figure 13, we can clearly see that, the variable
range of αk is from 0.6 to 0.95. In particular, from detail
views sub-figure (a) in figure 13, we can see that, when the
number of iteration 60 ≤ k ≤ 100, the average αk of the
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FIGURE 12. Reconstruction percentage of the proposed algorithms with
different measurements under the different thresholds and step-sizes
(K = 20, N = 256, l = 4, Joint sparse random Gaussian signal).

FIGURE 13. The average αk of the proposed algorithms with different
step-sizes at different iterations (K = 20, l = 4, N = 256, M = 130,
t = 0.5, Gaussian signal).

proposed method is nearly identical for different iterations.
Besides, from figure 13, we can see that, the average αk of the
proposed method has some instability for different step-size
before convergence. This is attributing to the residual insta-
bility of the proposed method in reconstruction process.

Based on the analysis of figure 11 and figure 12, we can
conclude that, the reconstruction ability of proposed method
with larger thresholds is almost identical. Therefore, we ran-
domly select threshold t = 0.5 as the default threshold
parameter of the proposed algorithm in the following simula-
tions. Based on the analysis of figure 13, we can see that the
mean variable range of αk is 0.6 to 0.95 in MMV model. The
explanation about αk is in (33). It is just a ratio in the iterative
procession, and is not fixed value that we set.

In Figure 14, we compare the reconstruction percent-
age of different algorithms with different sparsity levels for
the MMV model. From figure 14, we can see that, when
K < 20, all of the algorithms almost can achieve higher

FIGURE 14. Reconstruction percentage of different algorithms with
different sparsity levels at the MMV model (M = 120, N = 256, l = 4,
t = 0.5, Joint sparse random Gaussian signal).

reconstruction percentages. When 20 ≤ K ≤ 35, the recon-
struction percentage of the SAMP algorithm with s = 1
begins to reduce from approximately 99.9% to 92.4%. When
35 ≤ K , the reconstruction percentage of all algorithm begins
to reduce except for the StoGradMP, CoSaMP and the pro-
posed algorithms. When 40 ≤ K ≤ 65, all algorithm begins
to decline, except for the proposed algorithm with s = 5 and
s = 10. When 40 ≤ K ≤ 50, the reconstruction percentage
of proposed method with s = 1 reduces from 100% to 97.3%,
but its reconstruction percentage is stills higher than the other
algorithms, except for the SP and the proposed method with
s = 5 and s = 10. Besides, for 50 ≤ K ≤ 65, although the
reconstruction percentage of the SAMP with lager step-sizes
(s = 5 and s = 10) is higher than the proposed algorithmwith
smaller step-size (s = 1), but reconstruction percentage of the
proposed method with lager step-sizes is stills higher than
the SAMP algorithm with different step-sizes and the other
greedy algorithms. When 80 ≤ K ≤ 90, the reconstruction
percentage of the other algorithms is almost approach to 0%,
that is to say, their algorithms are not complete reconstruc-
tion of signal. However, the proposed method with larger
step-size is still can achieve the reconstruction of signal.
Furthermore, in terms of proposed algorithm, we can see that,
the reconstruction percentage of the proposed method with
larger step-size is higher than the smaller step-sizes under
the same sparsity and measurement condition. This means
that the proposed method with lager step-size have a better
reconstruction capacity than the other algorithms. Therefore,
we can conclude that the proposedmethodwith s = 5 and s =
10 has better performance in reconstruction percentage than
others with the same measurements and different sparsity
levels.

In figure 15, we compared the reconstruction percentage
of different algorithms with different measurements at the
MMV model. From figure 14, we can see that the recon-
struction percentage of all algorithms can achieve the fully
reconstruction when the sparsity level and the number of
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FIGURE 15. Reconstruction percentage of different algorithms with
different measurements with the MMV model (K = 20, N = 256, l = 4,
t = 0.5, Joint sparse random Gaussian signal).

measurements are equal to 20 and 120, respectively. There-
fore, we set the sparsity level and the maximum number of
measurement as 20 and 120 in the simulation of figure 15,
respectively. The other simulation parameters of figure 15 are
same with figure 14.

In figure 15, it shows that the proposed method with s = 5
has the highest reconstruction percentage, followed by pro-
posed method with s = 10, SAMP with s = 5, proposed
method with s = 1 and others. We can also see that, when the
number of measurements is greater than 80, all algorithms
can achieve the fully reconstruction, while the SAMP with
s = 1 is still not complete the fully reconstruction, and until
the number of measurements is greater than 120, the SAMP
with s = 1 can achieve the fully reconstruction. It shows
that the SAMP with s = 1 requires more measurements
to complete the higher probability reconstruction. Therefore,
we can conclude that the proposedmethodwith s = 5 and s =
10 has better performance in reconstruction percentage than
others with the same sparsity and different measurements.

Base on the analysis of figure 14 and figure 15, the pro-
posed method with s = 5 and s = 10 has higher reconstruc-
tion percentage than others under the same condition.

In Figure 16, we compare the average runtime of the pro-
posed algorithmwith the other greedy algorithms for different
sparsity levels under the completed reconstruction environ-
ments. From figure 14, we can see that, when the number
of measurement is equal to 120 and the sparsity level are
less or equal to 20, 35, 40, 45, 60 and 65, the reconstruction
percentage of the SAMP with s = 1, the SAMP with s = 5
and StOMP algorithms, the OMP, StoGradMP and SAMP
algorithms with s = 10, the proposed with s = 1 and
CoSaMP algorithms, the SP algorithm, and the proposed
method with s = 5 and s = 10 are almost to approach 100%,
respectively. That is, these algorithms can achieve the fully
reconstruction. Therefore, we set the different sparsity range
to measure the average runtime of different algorithms. The
detailed sparsity range can be seen in figure 16.

FIGURE 16. Average runtime of different algorithms with different
sparsity levels under the fully reconstruction environment (M = 120,
N = 256, l = 4, Joint sparse random Gaussian signal).

FIGURE 17. Average runtime of different algorithms with different
measurements under the fully reconstruction environment (K = 20,
N = 256, l = 4, Joint sparse random Gaussian signal).

In figure 17, we compared the average runtime of dif-
ferent greedy algorithms with different measurements under
the completed reconstruction environments. From figure 15,
we can see that, when the sparsity level is equal to 20 and
the number of measurements is greater than 120, the recon-
struction percentages of all algorithms can achieve the fully
reconstruction. Therefore, we set the sparsity levels and the
range of measurements as 20 and [120 200] in the simulation
of the figure 17, respectively.

From figure 16 and figure 17, we can see that the proposed
method with s = 10 has shorter running time than other
methods except for SP, StOMP and CoSaMP methods. The
proposed method also has lower running time than SAMP
methods with the same step size s. We can also see that,
the average runtime of the proposed method with s = 1 is the

VOLUME 7, 2019 144115



H. Yunfeng, Z. Liquan: Fuzzy Selection Compressive Sampling MP Algorithm for Its Practical Application

FIGURE 18. The average approximation error of different algorithms with
different sparsity levels under the MMV model (K = 20, N = 256, l = 4,
Joint sparse random Gaussian signal).

FIGURE 19. The average approximation error of different algorithms with
different measurements under the MMV model(K = 20, N = 256, l = 4,
Gaussian signal).

longest, the next is with s = 5 and s = 10, respectively. It is
indicated that the computation complexity of the proposed
with smaller step-size is higher than the proposed with lager
step-size under the completed reconstruction condition.

In Figure 18, we compare the average approximation error
of different algorithms with different sparsity levels in multi-
plemeasurement vectors (MMV)model. Here, we also regard
the reconstruction percentage that is higher than 95% as
the higher probability reconstruction stage for MMV model.
Otherwise, we regard it as the lower probability reconstruc-
tion stage. The simulation parameters are the same with the
parameters in figure 14. In Figure 19, we compare the average
approximation error of different algorithms with different
measurements inMMVmodel.We set the experiment param-
eters of the figure 19 same as in figure 15.

From figure 18 and 19, when they have smaller error that
means they have higher reconstruction percentage, we can see

FIGURE 20. Reconstruction percentage of different algorithms with
different measurements under the MMV model (K = 20, N = 256, l = 4,
M = 120, t = 0.5 Joint sparse random Gaussian signal).

that the proposed method with s = 1 has smaller error than
other methods except for the StoGradMP method, and the
proposed with s = 5 has almost the same error with CoSaMP.
The proposed methods with different step size have smaller
error than SAMP methods with different step size.

In Figure 20, we compare themean square error of different
algorithmswith different SNR levels inmultiplemeasurement
vectors (MMV) model. From figure 14 and figure 15, we can
see that, when the sparsity level is equal to 20 and the num-
ber of measurements is greater than or equal to 120, all of
algorithms can achieve fully reconstruction. Therefore, we set
the sparsity level and the number of measurements as 20 and
120, respectively. We used Gaussian white noise as the noise
signal. The range of the SNR level is from 10 to 30, and the
sample gap is 2.

From Figure 20, we can see that proposed method with
different step size has smaller error than SAMP method with
different step size, and they have larger error than other meth-
ods for different SNR. That means that the proposed method
and SAMP method have weaker capability against noise dis-
turbance than others. The reason is that the other methods
suppose the sparsity level is known and do not require to
estimate sparsity. However, the proposed method and SAMP
need estimate sparsity and the noise causes the inaccuracy
of the sparsity estimation, which affects the reconstruction
accuracy of the proposed algorithm and SAMP method.

According to the analysis in the section B, the proposed
method with s = 5 and s = 10 has higher reconstruction
percentage than others under the same sparsity level or mea-
surement, and they require smaller number of measurements
to realize 100% reconstruction than the others. Although
the StOMP method has smaller error than proposed method,
the mean difference between the StOMP method and pro-
posed method with s = 5 and s = 10 is just about 2× 10−15.
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The difference is very small and can be ignored. Beside, the
difference in reconstruction percentage between the proposed
method with s = 5 and s = 10 and StOMP is very large, and
the StOMP almost has the lower reconstruction percentage
than other methods. In the aspect of running time, the SP,
StOMP andCoSaMPmethods have smaller running time than
proposed methods and SAMP methods with different step
size, and the proposed method has smaller running time than
SAMP method. This is because that the proposed method
and SAMP method require to estimate sparsity, it will con-
sume much time. There is a difference between the estimated
sparsity and real sparsity, it also will affect the convergence
time. In the noise condition, the proposed method and SAMP
method has larger error than other methods. This is because
the noise affects the accuracy of estimated sparsity. Besides,
the errors are also large in lower SNR for other methods, all
method have not realized successfully reconstruction. This is
because that the normal compress sensing method has weaker
capability against noise disturbance. Therefore, we can con-
clude that the proposed method with s = 10 and s = 5 have
better performance in reconstruction and weaker capability
against noise disturbance than others for MMV model.

C. 2-D IMAGE SIGNAL RECONSTRUCTION FOR SMV
MODEL
In this subsection, we use two test images of size 256× 256
as the original images. We regard the image signal as the
two-dimensional signal. The test images include the follow-
ing: Peppers and Cameraman. The sparse basis is a wavelet
basis with sparse representation capability, and the size is
256 × 256. The measurement matrix is randomly generated
with a Gaussian distribution, and the size is 180×256. Addi-
tionally, we assume that the numerical value of the sparsity
level is equal to 30. The iteration halt error of the algorithm
set as 1×e−4. The maximum number of iterations is set as the
numerical value of the sparsity level, that is, 30. The iteration
step-size of the proposed method set as s = 1, 5, 10. We use
the same threshold that is used in the other simulations, and
the ratio of compression is δ = 0.7.
According to the relevant literatures, such as [18]–[22],

we can known that when we used the MMV model, we must
ensure that the position of the non-zeros elements of joint
sparse original signal are the same. The number of the non-
zeros rows and its positions are identical in joint sparse signal.
However, in the two dimensional image signals, we cannot
guarantee the position of the sparse coefficients is the same
after the original image signal is sparse represented by sparse
basis or over-completed dictionary. Therefore, in this section,
we stills use the SMV model to reconstruction 2-D image
signal.

We use the Peak Signal toNoise RatioPSNR as an indicator
to evaluate the reconstruction quality, which can be expressed
as follows:

ME =
1

M × N

M−1∑
i=0

N−1∑
j=0

∣∣x̂ (i, j)− x (i, j)∣∣2 (55)

FIGURE 21. The average PSNR of proposed algorithm with different
thresholds and step-sizes for pepper image (N = 256, K = M/6).

PSNR = 10× lg10

(
MAX2

x̂

ME

)
= 20× lg10

(
MAXx̂
√
ME

)
(56)

where M = N = 256, x̂ (i, j) and x (i, j) represents the
reconstruction value and original value of the correspondence
position,MSE is the mean square error andMAXx̂ represents
the maximum value of the color of the image point. In this
paper, because each sample point is represented by 8 bits,
MAXx̂ = 255. The larger the PSNR, the higher the recon-
struction image quality.

In Figure 21 and Figure 22, we compared the average
PSNR of the proposed algorithm with different thresholds
and step-sizes under the noiseless condition and SMVmodel.
We used the Pepper and Cameraman images as the 2-D orig-
inal image signal, respectively. We still set the thresholds as
t ∈ [0.3 0.5]. The iterative step-sizes were set as s ∈ [1 5 10].
Besides, we used the size of δ to represent the number of
measurements. Here, we call the δ as the ratio of compression,
that is, the number of measurements vs. the length of original
signal. It is represented asM/N . We set the range of the ratio
of compression as δ ∈ [0.1 0.8] and the gap between of the
ratio compression is 0.1. The size of the sparsity level was set
as the one-sixth of the number of measurements.

From Figures 21 and 22, we can see that the average PSNR
is almost the same for t ∈ [0.4 0.5], and the difference in
PSNR between them is very little under the same condition.
Therefore, we randomly select t = 0.5 as threshold in the
following experiments.

Figure 23 and figure 24 show that the original image,
reconstruction image by different algorithms, respectively.
From the figure 23 and figure 24, we can recognize the
original image from reconstruction image except for the sub
figure (h) and (1). This means that the SAMP with s = 5
and s = 10 are not successfully to reconstruct the orig-
inal image, and the others are effective for reconstructing
image
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FIGURE 22. The average PSNR of proposed algorithm with different
thresholds and step-sizes for cameraman image (N = 256, K = M/6).

TABLE 1. The average PSNR of different algorithms for different images
signal reconstruction.

In Table 1, we compare the average PSNR of the proposed
algorithm and other algorithms in different test images con-
ditions. From Table I, we can see that the proposed method
with s = 5 and s = 10 have higher PSNR than others for
Peppers and Cameraman images reconstruction. In particular,
the PSNR of the proposed method with s = 10 are higher
2dB and 2.8dB than SAMP algorithm with s = 1, and higher
3.6dB and 3.7dB than CoSaMP algorithm for Peppers and
Cameraman images, respectively.

In Table 2, we compare the average running time of dif-
ferent algorithms for Peppers and Cameraman images. From
Table 2, we can see that the proposed method with s = 10
has the smallest running time. The running time of SAMP
with s = 1 is seven times more than proposed method with
s = 10. The running time of CoSaMP is three times more
than proposed method with s = 10.

FIGURE 23. The reconstruction images of different algorithms under
Peppers image condition. (a) Original image; (b) OMP; (c) StOMP; (d) SP;
(e)CoSaMP; (f) StoGradMP; (g) SAMP, s = 1; (h) SAMP, s = 5; (i) SAMP,
s = 10; (j) Proposed, s = 1; (k) Proposed, s = 5; (l) Proposed, s = 10.

TABLE 2. The average runtime of different algorithms for different
images signal reconstruction.

Base on the analysis of Table 1 and Table 2, the proposed
method with s = 10 has the highest PSNR and small-
est running time than others. The proposed methods with
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FIGURE 24. Reconstruction images of different algorithms under
Cameraman image condition. (a) Original image; (b) OMP; (c) StOMP;
(d) SP; (e) CoSaMP; (f) StoGradMP; (g) SAMP, s = 1; (h) SAMP, s = 5;
(i) SAMP, s = 10; (j) Proposed, s = 1; (k) Proposed, s = 5; (l) Proposed,
s = 10.

different step sizes all can reconstruct the two images. How-
ever, the SAMP method with s = 10 and s = 5 cannot
reconstruct the two images. Therefore, this shows that the
propose method with s = 10 has better performance than
others for Peppers and Cameraman images reconstruction in
noiseless environment and SMV model.

In figure 25 and figure 26, we compare the performance
of different algorithms with different SNR levels in single
measurement vector (SMV) model and noise environment.
We use Gaussian white noise as the noise signal. The range
of the SNR level is from 10 to 30. The other parameters are
the same with the parameters in figure 23 and 24.

From figure 25, we can see that the proposed method with
s = 1 has larger PSNR than other methods except StOMP
and OMP method when the SNR is lower than 22dB. When
SNR is higher than 22 dB, the proposed method with s = 1
has the highest PSRN. From figure 26, we can see that,
the proposed method with s = 1 has larger PSNR than other
methods except StOMP, CoSaMP, andOMPmethodwhen the
SNR is lower than 20dB. When SNR is higher than 20 dB,
the proposed method with s = 1 has the highest PSRN.
From the two figures, we can also see that proposed method
with s = 10 and s = 5 have smaller PSNR than others with

FIGURE 25. Reconstruction percentage of different algorithms with
different measurements under the Peppers image condition (N = 256,
t = 0.5, δ = M/N = 0.7, K = M/6).

FIGURE 26. Reconstruction percentage of different algorithms with
different measurements under the Cameraman image condition (N = 256,
t = 0.5, δ = M/N = 0.7, K = M/6).

smaller SNR. However, the proposed method with different
step size has faster increase in PSNR than other methods with
the increase of SNR. In figure 25, when the SNR is 30dB, the
difference in PSNR between proposed method with different
step size and StoMP, SAMP with s = 1 and CoSaMP is very
little. In figure 23, when the SNR is 30dB, the difference in
PSNR between proposed method with different step size and
StoMP and SAMP with s = 1 and is very little.

Base on the analysis of figure 25 and 26, the proposed
method with s = 1 has better performance in error than other
methods except for the StOMP, CoSaMP, andOMPmethod in
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FIGURE 27. Reconstruction percentage of proposed algorithm both with
the fuzzy threshold and double threshold, proposed algorithm only with
fuzzy threshold and proposed algorithm only with double threshold for
different sparsities in the SMV model (M = 130, N = 256, and t = 0.5,
Gaussian signal).

FIGURE 28. Reconstruction percentage of proposed algorithm both with
the fuzzy threshold and double threshold, proposed algorithm only with
fuzzy threshold and proposed algorithm only with double threshold for
different measurements in the SMV model (K = 20, N = 256, t = 0.5
Gaussian signal).

lower SNR, and has the best performance in error than others
in higher SNR. The reason that the proposed method has not
better performance in lower SNR, is the estimated sparsity
is easily affected by the noise. The other methods except
for the SMAP method suppose the sparsity is known, they
do not require estimated the sparsity. However, the sparsity
prior information is unknown in practical application. The
proposed method is more suitable for practical application.

D. COMPARISON OF PROPOSED METHOD ONLY WITH
FUZZY THRESHOLD AND ONLY WITH DOUBLE
THRESHOLD
In figure 27 and figure 28, we compare the reconstruction
percentage of the proposed algorithm both with the fuzzy
threshold and double threshold, proposed algorithm only with

FIGURE 29. The average runtime of proposed algorithm both with the
fuzzy threshold and double threshold, proposed algorithm only with fuzzy
threshold and proposed algorithm only with double threshold for
different sparsity levels in the SMV model under the successful
reconstruction environment (M = 130, N = 256, t = 0.5, Gaussian signal).

fuzzy threshold and proposed algorithm only with double
threshold in the SMV model, for different sparsity levels and
measurements respectively. We set the length of the random
signal, the number of measurements and the range of sparsity
levels as N = 256, M = 130 and sparsity from 10 to 75,
respectively.

From figure 27 and figure 28, we can see that the proposed
method only with fuzzy threshold has higher reconstruction
percentage than only with double threshold, and the proposed
method both with fuzzy threshold and double threshold has
the highest in reconstruction percentage, under the same con-
dition. These show that the fuzzy threshold method has larger
contribution in improving reconstruction percentage than the
double threshold method in the SMV model.

In figure 29 and figure 30, we compare the average running
time of the of the proposed algorithm both with the fuzzy
threshold and double threshold, proposed algorithm only with
fuzzy threshold and proposed algorithm only with double
threshold in the SMV model, for different sparsity levels and
measurements respectively.

From the figure 29 and figure 30, we can see that the
proposed method only with fuzzy threshold has smallest
running time than others. If we only use the double threshold
method, it will consume more time to convergence and it
cannot reconstruct the original signal successfully when the
sparsity is larger than 30 under the conditions that are used
in figure 29. These show that the fuzzy threshold method can
reduce the computation time and improve the reconstruction
performance in the SMV model.These show that the fuzzy
threshold method has larger contribution in improving recon-
struction percentage than the double threshold method.

In figure 31 and figure 32, we compare the reconstruction
percentage of the proposed algorithm both with the fuzzy
threshold and double threshold, proposed algorithm only with
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FIGURE 30. The average runtime of proposed algorithm both with the
fuzzy threshold and double threshold, proposed algorithm only with fuzzy
threshold and proposed algorithm only with double threshold for
different measurements in the SMV model under the successful
reconstruction environment (K = 20, M = [130 200], N = 256, Gaussian
signal).

FIGURE 31. Reconstruction percentage of proposed algorithm both with
the fuzzy threshold and double threshold, proposed algorithm only with
fuzzy threshold and proposed algorithm only with double threshold for
different sparsity levels in the MMV model (M = 120, N = 256, l = 4,
K ∈ [10 90], t = 0.5, joint sparse random Gaussian signal).

fuzzy threshold and proposed algorithm only with double
threshold in the MMV model, for different sparsity levels
and measurements respectively. In figure 33 and figure 34,
we compare the running time of the proposed algorithm
both with the fuzzy threshold and double threshold, proposed
algorithm only with fuzzy threshold and proposed algorithm
only with double threshold in the MMV model, for different
sparsity levels and measurements respectively.

From figure 31 and 32, we can see that the proposed
method only with fuzzy threshold has smaller contribution in
improving the reconstruction percentage in the MMVmodel.
From the figure 33 and 34, we can see that proposed method
only with fuzzy threshold has smallest running time than
others. If we only use the double threshold method, it will

FIGURE 32. Reconstruction percentage of proposed algorithm both with
the fuzzy threshold and double threshold, proposed algorithm only with
fuzzy threshold and proposed algorithm only with double threshold for
different measurements in the MMV model (K = 20, N = 256, l = 4,
M ∈ [35 80], t = 0.5, Joint sparse random Gaussian signal).

FIGURE 33. Average runtime of proposed algorithm both with the fuzzy
threshold and double threshold, proposed algorithm only with fuzzy
threshold and proposed algorithm only with double threshold for
different measurements under the successful reconstruction environment
(M = 130, N = 256, l = 4, K ∈ [10 70], joint sparse random Gaussian
signal).

consume more time to convergence. These show that the
fuzzy threshold method can reduce the computation time in
the MMV model.

In figure 35 and figure 36, we use the Peppers image as
original signal and compare the PSNR and running time of the
proposed algorithm both with the fuzzy threshold and double
threshold, proposed algorithm only with fuzzy threshold and
proposed algorithm only with double threshold, respectively.
From the figure 35, we can see that the proposed method
only with fuzzy threshold has higher PSNR than only with
double threshold, and the proposed method both with fuzzy
threshold and double threshold has the highest PSNR most
of the time. From the figure 36, we can see that the proposed
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FIGURE 34. Average runtime of proposed algorithm both with the fuzzy
threshold and double threshold, proposed algorithm only with fuzzy
threshold and proposed algorithm only with double threshold for
different measurements under the successful reconstruction environment
(K = 20, N = 256, l = 4, t = 0.5, M ∈ [80 160], joint sparse random
Gaussian signal).

FIGURE 35. The average PSNR of proposed algorithm both with the fuzzy
threshold and double threshold, proposed algorithm only with fuzzy
threshold and proposed algorithm only with double threshold for
different δ under the Peppers image and SMV model (N = 256, t = 0.5,
K = M/6).

method only with fuzzy threshold has smallest running time
than others. If we only use the double threshold method,
it will consume more time to convergence. These show that
the fuzzy threshold method can reduce the computation time
and improve the reconstruction performance for image.

Based on the analysis of section D, it shows that the fuzzy
method can reduce the computation time of proposedmethod.

E. COMPARISON OF ESTIMATED SPARSITY AND REAL
SPARSITY
In figure 27, when the sparsity level is smaller than 30, the
reconstruction percentages of proposed methods with differ-
ent step size are all 100%. Therefore, in figure 37, we only
compare the estimated sparsity of proposed method and real

FIGURE 36. The running time of proposed algorithm both with the fuzzy
threshold and double threshold, proposed algorithm only with fuzzy
threshold and proposed algorithm only with double threshold for
different δ under the Peppers image and SMV model (N = 256, t = 0.5,
K = M/6).

FIGURE 37. Estimated sparsity of proposed method and real sparsity with
the same measurements in the SMV model (M = 130, N = 256,
K ∈ [10 30], s ∈ [1 5 10], t = 0.5 Gaussian signal).

sparsity with the sparsity range that is 10 to 30. The other
parameters are the same with figure 27. For the same reason,
based on figure 32, we set the sparsity range that is 10 to
40 in figure 38, and the other parameters are the same with
figure 32.

Based on figure 37 and figure 38, we can see that the
difference between the estimated sparsity and real sparsity
increases with the increase of real sparsity for the same mea-
surements. The difference is smaller for the smaller sparsity.
This means the estimated sparsity is more close to the real
sparsity. When the value of sparsity is larger, the difference
is also larger. If we want to reduce the difference, we can
increase the value of measurement. When the measurement is
fixed, the larger sparsity is, the larger error is. This is proved
by the experiments in section A to section D.
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FIGURE 38. Estimated sparsity of proposed method and real sparsity with
the same measurements for MMV model (M = 120, N = 256, l = 4,
t = 0.5, joint sparse random Gaussian signal).

VI. CONCLUSION
In this study, an improved reconstruction method was pro-
posed. The proposed algorithm firstly utilizes the fuzzy
threshold method to improve the selections of atoms, avoid-
ing the blind enlargement of the preliminary atomic sets and
reducing the computational complexity of the final atomic
set selection, thereby improving the reconstruction precision.
In addition, the proposed algorithm adopts a double threshold
iterative method and a variable step-size method to con-
trol convergence condition and adjust the estimated sparsity,
which makes the algorithm more accurate to approximate
the signal sparsity. This effectively solves the sparsity eval-
uation problem, and improves the reconstruction precision.
Moreover, we extended the proposed method to the MMV
case for joint sparse signal reconstruction. The simulation
results show that the proposedmethod has better performance
in reconstruction percentage than other greedy methods and
does not require sparsity information in SMV and MMV
model.

However, the proposed methods will consume more run-
ning time than other methods except for SAMP. This is
because that the proposed method and SAMPmethod require
estimating and adjusting sparsity, it will consume much time.
There is a difference between the estimated sparsity and real
sparsity, it also will affect the convergence time. Although the
proposed method has weaker capability against noise distur-
bance, the errors are larger for all methods with lower SNR
and the original signal is not successfully reconstructed by all
methods. In the future, we will research how to improve the
capability against noise disturbance for compressed sensing.
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