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ABSTRACT Pleural effusion is the pathologic accumulation of body fluids around the unilateral or bilateral
lungs that is primarily caused by heart disease. A chest radiograph is a rapid examination technique used to
provide a preliminary diagnosis of lung and heart diseases. Computer-aided diagnosis with the digitalized
image is an automated approach that addresses the drawbacks of manual inspection. In this study, two corner
detectors along with a two-dimensional convolution process are used to enhance the chest X-ray image for
an accurate extrapolation of the bilateral lung cavities. Based on bounding box pixel analysis, the pixel
ratios of the lung anatomy between normal and abnormal conditions can be estimated to identify the pleural
effusion size. Next, a smart drainage monitoring system is developed to improve the current functions of
the traditional drainage tool and confirm the drainage safety, including (a) drainage volume and required
time detection, (b) unplanned removal warning, and (c) physiological status monitoring. The experimental
result will be used to determine the feasibility of the proposed effusion volume estimation algorithm and
the efficiency of the smart drainage monitoring prototyping tool. The proposed smart drainage monitoring
system and the computer-aided method with digitalized images can be further applied in real clinical practice
in the intensive care unit.

INDEX TERMS Pleural effusion, corner detector, bounding box pixel analysis, smart drainage monitoring
system.

I. INTRODUCTION
Peural effusion is the pathologic symptom of the accumu-
lation of body fluids in the chest cavity surrounding the
lungs and can be divided into several types as follows:
edema and hemothorax (exudates and exuded), chylothorax,
and biliothorax. This abnormal condition is caused by heart
disease, pneumonia, pulmonary hypertension, pleuropul-
monary malignancy, trauma, and chest surgery (open heart
surgery) [1]–[3]. Among these diseases, pleural effusion is
generally caused by heart diseases or chest surgery, and pleu-
ral drainage is the most commonly performed procedure in
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the intensive care unit (ICU) after vascular catheterization and
tracheal intubation. It has been reported that 41% of patients
admitted to the ICU have pleural effusion [4], [5]. When
the effusion volume is in excess of 1,000–1,500 mL, this
pathologic condition will affect breathing by limiting the lung
expansion, resulting in interference with atelectasis, dyspnea,
and arrhythmias [6], [7]. Pleural effusion can be detected
during physical examinations using a stethoscope and imaged
examinations using chest ultrasound, chest computed tomog-
raphy (CT) scan, and upright chest X-ray techniques [6]–[10].
CT is considered as the gold standard, but it is expensive and
not easy to perform on ICU patients. Pleural effusion can be
easily detected by a chest ultrasound to visualize effusion and
to distinguish between different types with the best sensitivity
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FIGURE 1. Negative pressure chest bottle and smart drainage monitoring
system.

and specificity. Plain chest X-ray has long been the reference
examination for lung images, and it is possible only in the
anterior–posterior manner in the ICU [11]. When clinical
examination suggests pleural effusion sizes, pleural drainage
will be performed via a catheter (chest tube or pigtail catheter)
inserted through the thoracic wall to a negative pressure chest
bottle. Before pleural effusion drainage, estimation of the
adequate drainage volume is required to prevent the occur-
rence of reexpansion pulmonary edema (RPE) [12], [13].

In clinical procedure, after estimations of the pleural effu-
sion volume and site, the principle of negative pressure will
be applied to drain the pleural effusion into the chest bottle,
as seen in Figure 1. However, current drainage devices and
techniques are not equipped with automatic warning sen-
sors for monitoring, such as the following: (1) no warning
function when the target drainage volume is achieved;
(2) a warning function when drainage did not achieve an
desired duration, which might indicate that there is obstruc-
tion in the drainage catheter; (3) no heart rate monitoring
during drainage; and (4) a function to monitor unplanned
removal of drainage catheters (self-removal or accidental
removal) in patients during drainage. In view of the above
statements, it is necessary to establish an assistive method
to rapidly estimate the effusion volume for further fluid
drainage. In addition, we also intend to establish a smart
drainagemonitoring system formonitoring physiological sig-
nals, drainage volume, and safety confirmation during the
pleural drainage treatment.

In visualization examination, inspection of a digitized
medical image is a straightforward approach used by clini-
cians to rapidly diagnose lung abnormalities. A chest X-ray
image reveals pleural effusions as black portions in air spaces,
as shown in Figure 2(a). In chest X-ray image examination,
posteroanterior and lateral image views can show the fluid
volume within the pleural space. As shown in the right-hand
side in the X-ray image, under normal condition, an obvious
sharp angle (red circle) is present at the lower thoracic cavity.
The bilateral thoracic cavity can hold 2,000–3,000 mL in
volume [14], [15]. During the occurrence of pleural effusion,

the chest X-ray method can provide estimates of small, mod-
erate, and severe effusion sizes. CT scans can construct the
chest inside and outside image and provide more detailed
images of many types of tissue, such as lungs, bones, and
blood vessels. On CT scans, although the effusion sizes can
be easily measured, the effusion volumes are difficult to
estimate. The possible effusion volume must be quantified
via linear regression analysis with dimension parameters
(effusion heights and depths) and application software and is
dependent on clinician experiences [16]. An ultrasound probe
can also create images of the inside of the thoracic cavity
to locate the position of the effusion. Hence, clinicians can
further obtain a fluid sample for analysis and determine the
location to insert a catheter into the thoracic cavity between
the patient’s ribs. The abovementioned imaging examinations
provide promising results for estimating the effusion size.
However, the patient’s position has a significant impact on
the estimation of pleural effusion volume, with a high mean
prediction error. An adequate estimation of the effusion vol-
ume is a major challenge due to certain reasons such as
thoracic cavity area determi- nation, diaphragm position, and
diaphragmatic hernia [17]. Hence, a plain chest X-ray can be
used to directly categorize the effusion sizes or the abnormal
conditions through anteroposterior and lateral views, such as
lung diseases or pleural effusion. However, there is a lack of
an automatic method to estimate the pleural effusion volume.
Pattern recognition is performed using manual inspection and
has some limitations, such as the following: (1) although it
can identify the effusion sizes, it cannot estimate the effusion
volumes; (2) poor-quality X-ray images must be enhanced
to visualize the lung contour using the image enhancement
method; (3) the diagnostic results depend on the radiolo-
gists’ interpretations and experiences, and (4) much time is
required to perform the inspections. Hence, the computer-
aided method with digitalized medical images is proposed
to automatically bind the highlighted area on the chest
X-ray images so that clinicians can pay more attention to
these specific areas (bounding box) in real clinical practice,
such as pleural effusion and pneumonia [18].

For an automated screening method, computer-aided
examination can rapidly identify the desired object region
by preanalyzing medical images. Firstly, the image enhance-
ment process is employed to modify the gray- scale values
and readjust the image contrast using nonlinear inten-
sity transformation functions, such as gradation function,
histogram equalization, Fourier filtering, and convolution
process [19]–[23]. Next, the contour algorithm and object
localization algorithm [24], [25] use the modified gray gra-
dient information to identify the boundaries of the desired
objects within an image. As a result, the desired objects
(subimages) can be extracted and further applied to pattern
recognition or classification application. Hence, both image
enhancement and segmentation processes are important for
feature extraction in automatic digital image processes.
However, traditional intensity transformation functions are
sensitive to noise and cannot easily detect the boundary in

VOLUME 7, 2019 135193



P.-Y. Chen et al.: Smart Pleural Effusion Drainage Monitoring System Establishment

FIGURE 2. Digitized medical image examination and functions of smart drainage monitoring system. (a) Chest X-ray image, (b) Unplanned removal
and drainage volume detection using Hall sensor and non-contact liquid level sensor, (c) Heart rate monitor using optical sensor.

poor-quality images, such as a Sobel operator or a Laplacian
operator. In this study, a Harris corner detector [26]–[29] is
applied for image enhancement and segmentation applica-
tions. A corner detector is also a convolution process method.
The method involves performing a local operation with
a 2 × 2 mask matrix to transform intensity into a feature
map through sliding the mask window over the image. In this
study, two- dimensional (2D) image processing involving
two Harris mask matrices (horizontal and vertical masks)
are applied based on Gaussian windows to enhance the
bilateral lung contours. Based on the shape of the bilateral
lung contours, bounding box pixel analysis, as an automated
inspection method, is employed to estimate the effusion
volumes according to the following ranges: small effusion
size (< 500 mL), moderate effusion size (500-1,000 mL),
and large effusion size (>1,000 mL). Through experimental
tests, we will demonstrate the feasibility of the automated
2D digital image process to enhance lung contours, result-
ing in the desired subimages used to estimate the effusion
volumes.

Furthermore, as shown in Figure 2(b), the principle of
negative pressure is used to drain the effusion in the body
to a pair of chest bottles, as it is important to be used for
pneumothorax. In the ICU, physiological status can be con-
tinuously monitored using an optical sensor during drainage
treatment, such as heart rhythms, blood pressures, and saline
replenishment. These parameters are available on the mon-
itor in the ICU. However, there is no sensor available that
can automatically monitor the drainage volume and rate
and provide warning information when the drainage tubes
are removed. According to the annual data of the Taiwan
Patient Safety Reporting System, drainage catheter abnor-
malities account for 5% of hospital tubing events in Taiwan.
These abnormalities include tubing dislodgment, obstruction,
and misconnections, among which dislodgment events are

classified as self-removal and accidental detachment, the
so-called unplanned tubing removal. Approximately 70%
of these events are unplanned tubing removal events that
often occur because of physiological and depressive symp-
toms in the patients. Rapid drainage or a large drainage
volume may cause cardiac load and lead to bilateral
RPE symptom [12], [13]. In order to prevent the above
abnormalities, a smart drainage monitoring system must be
used during drainage, as shown in Figures 2(b) and 2(c).
When any abnormality occurs during drainage, a warn-
ing notification can be sent to the nurses. The smart
drainage monitoring system developed in this study includes
the following: (1) drainage volume and speed estimation;
(2) physiological status monitoring; and (3) safety confirma-
tion. We integrate the Hall sensor, liquid-level sensor, and
optical sensor to implement the smart drainage monitoring
system’s warning functions regarding drainage volume, heart
rate, and safety confirmation.

The remainder of this article is organized as fol-
lows: Section II describes the methodology, including
the Harris corner detector, drainage volume estimation,
and smart drainage monitoring system implementation.
Sections III and IV presents the experimental results and
conclusions.

II. METHODOLOGY
A. HARRIS CORNER DETECTOR
A corner in an image is a point whose local neighborhood
stands in two dominant or different edge directions. These
corners are regions in the image with large variation in
intensity in all directions. These corners also contain the
most important feature or information that can be used to
minimize the amount of processed data for motion tracking,
image stitching, building mosaics, stereo vision, and image
representations in computer vision applications. The Harris
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corner detector [21]–[24] is a rapid method to identify the
differences in intensity for a displacement of (1x, 1y) in all
directions in an image. Given a 2-dimensional (2D) image,
the sum of squared differences between (x, y) and (x + 1x,
y+1y) can be expressed as

E(x, y) =
∑

(x,y)∈w(x,y)

[I (x +1x, y+1y)− I (x, y)]2 (1)

Shifted Intensity : I (x +1x, y+1y) is the shifted

intensity at the sliding window(x +1x, y+1y)

Intensity : I (x, y) is the intensity at pixel (x, y)

where w(x, y) is the sliding window and can be defined as a
rectangular window or a Gaussian window that gives weights
to the pixels underneath. Let Ix and Iy be the partial derivatives
of I , I (x + 1x, y + 1y) can be approximated by Taylor
expansion as

I (x +1x, y+1y)

≈ I (x, y)+ Ix(x, y)1x + Iy(x, y)1y (2)

Thus, equation (1) can be modified as

E(x, y) ≈
∑

(x,y)∈w(x,y)

[Ix(x, y)1x + Iy(x, y)1y]2 (3)

Equation (3) can also be expressed in matrix form:

E(x, y) ≈ (1x,1y)M
(
1x
1y

)
, (4)

M =
∑

(x,y)∈w(x,y)

[
I2x IxIy
IxIy I2x

]
(5)

where Ix and Iy are the gradients at pixel (x, y); matrix M
is the structure tensor of a pixel, which is a characterization
of information of all pixels within the sliding window. Equa-
tion (4) can be written as

E(x, y) = AI2x + CIxIy + BI
2
y

= [1x 1y]
[
A C
C B

] [
1x
1y

]
, (6)

A = I2x ⊗ w, B = I2y ⊗ w, C = IxIy ⊗ w (7)

where we can assign the elements A, B, and C of matrix M
to determine if the sliding window corresponds to a corner as
follows:
• if A ≈ 0, B ≈ 0, and C = 0, then the pixel (x, y) has no
feature of interest,

• if A = 0, B is the large positive value, and C = 0, then
an edge can be found,

• if A and B are the large positive values and C = 0, then
a corner can be found.

According to equation (5), the structure tensor M is a
covariance matrix of gradients for pixels around the pixel
investigated within the sliding window. For corners, the dis-
tribution ranges of derivatives Ix and Iy are large. Hence,
the corner is characterized by a large variation of E(x, y) in all
directions of the vector (x, y). By analyzing the eigenvalues

of M , matrix M should have two large positive values for
an interest point, as satisfying A and B are the large positive
values (A = B) and C = 0. Eigenvalues measure the
variances of interest points along the eigenvectors. To avoid
computing the eigenvalues (computational expensive), in this
study, an enhancement mask as a sliding window can be
implemented using a 2× 2maskmatrix, which can be defined
as a Gaussian window,

M =
[
A C
C B

]
=

 e
−λ1

σ 0

0 e

−λ2

σ

 (8)

where λ1 and λ2 are the eigenvalues, and σ is a scaling
parameter for tuning the elements A and B. At the pixel
location (x, y), if both eigenvalues are large, then this location
is at a corner; one large and one small eigenvalue identifies a
step edge; and two small eigenvalues identify a low-contrast
region.

In the 2D spatial domain, the corner detector by convolving
both horizontal and vertical directions can be expressed as

1) HORIZONTAL DIRECTION

Gxs(x, y) =
1∑
i=0

1∑
j=0

M (i, j)s(x + i, y+ j) (9)

2) VERTICAL DIRECTION

Gys(x, y) =
1∑
j=0

1∑
i=0

M (j, i)s(x + j, y+ i) (10)

whereM (i, j) = M (j, i) is the element in the mask matrix;
s(x, y) is the gray-scale value at pixel (x, y), s ∈ [0, 255];

x = 1, 2, 3, . . . , p and y = 1, 2, 3, . . . , q are the image width
and height, respectively. The gray gradient can be defined as

∇s(x, y) = Gxs(x, y)+ jGys(x, y) (11)

|∇s(x, y)| =
√
(Gx)2 + (Gy)2 ≈ |Gx | + |Gy|,

|∇s| =
|Gx | + |Gy|

255
(12)

Using the Gx and Gy, we can convolve the original image to
obtain the gray gradient. Depending on the variations of the
gray-scale value s(x, y), the gray gradient can enhance the
visibility of the intensity matter variations (image contrast)
using the corner detector (λ1 = λ2 = 0.5, σ = 0.6 − 1.0)
while convolving both horizontal and vertical directions and
can detect the image edge, as shown the moderate and severe
effusions in Figures 3(c) and 3(d). After the image enhance-
ment processes, the active contour (snakes) algorithm and the
gradient vector flow (GVF) method [24], [25] are generally
used to locate the object boundaries in computer vision and
image processing applications. The GVF method is com-
puted as a diffusion of gradient vectors of gray-level form
an image. Hence, both Harris corner and GVF snake can
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FIGURE 3. Digital image process using the corner detector.
(a) and (b) Original images for moderate and severe effusions,
(c) and (d) Detected image edge for moderate and severe effusions,
(e) and (f) Contour label text for left and right lungs.

be applied to segment the left and right lung regions in a
chest X-ray image. Based on the edge-detected gradients,
the desired object region of a distinguishable feature can be
located in the image, as shown in the right and left lungs
in Figures 3(e) and 3(f).

Figures 3(e) and 3(f) show the isolines of normalized gray
gradients for the right and left contour regions in a 2D image.
The values of the contour levels can be determined based
on the minimum and maximum gray gradients. For example,
the minimum values of the contour levels are 0.5499 and
0.8692 to interpret the bilateral lung regions (two subimages)
for moderate and severe effusions analysis, as highlighted by
the yellow dotted line. For the threshold values, θR and θL ,
the numbers of minimum values of the right and left regions
are computed via bounding box pixel analysis as{

sumR = sum(∇sR(x, y))for∇sR(x, y) < θR × 1.1
sumL = sum(∇sL(x, y))for∇sL(x, y) < θL × 1.1

(13)

where ∇sR(x, y) and ∇sL(x, y) are the gray gradients within
the right and left lung regions, respectively, sumR(·) and

sumL(·) are accumulators to count the pixel numbers of
the minimum gradients, and θR× 1.1 and θL× 1.1 are the
threshold values for right and left lung regions, respectively.
Thus, the pixel numbers of minimum gradients can be rapidly
counted within the bilateral bounding right and left lung
regions.

B. DRAINAGE VOLUME QANTIFICATION
According to the bounding regions, the total lung capacity
(TLC) for the bilateral lungs, TLCR,est and TLCL,est , can be
estimated as

TLCR,est =
TLCRsumR
sumR,nor

(14)

TLCL,est =
TLCLsumL
sumL,nor

(15)

where TLCR and TLCL are the bilateral TLCs under normal
conditions, and sumR,nor and sumL,nor are the pixel numbers
of the minimum gradient under normal conditions. These two
indexes, sumR,nor and sumL,nor , were the total of the pixel
numbers of theminimum gradients, whichwere counted from
the right and left lung regions, where sumL,nor≈sumR,nor -
sumHeart ; sumHeart is the total of the pixel number of the
heart-occupied regions. The mean of the pixel number was
obtained from healthy subjects (at least 20 male adults and
20 female adults, respectively). TLC is the maximum amount
of air that can fill the right and left lungs and can be set
as TLC≈6,000 mL [14], [30]. The average lung volumes in
healthy female and male adults are 5,800 and 4,200 mL [14],
respectively. Hence, we can estimate the fluid-filled volume
that accumulates in the chest cavity; the fluid-filled volume
of a single chest cavity is approximately 2,800 and 2,100 mL
in female and male adults, respectively. The pleural effusion
volume (PEV) can be estimated as
• female adult:

PEVR ≈ 2100− TLCR,est (mL) (16)

PEVL ≈ 2100− TLCL,est (mL) (17)

• male adult:

PEVR ≈ 2800− TLCR,est (mL) (18)

PEVL ≈ 2800− TLCL,est (mL) (19)

Hence, the sizes of the chest cavity can be quantified to
estimate the fluid-filled volumes and can be divided into three
levels of small, moderate, and large effusion sizes as follows:
• small effusion size: approximately 20% of the fluid-
filled volume corresponding to < 500 mL;

• moderate effusion size: approximately 20%−50% of the
fluid-filled volume, corresponding to 500–1,000 mL;

• large effusion size: approximately > 50% of the fluid-
filled volume, corresponding to > 1,000 mL.

The decision support system is implemented in a computer-
assisted application program for PEV estimation, as shown
in Figure 4. The image enhancement, image contour, and
drainage volume estimation algorithms can be established
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FIGURE 4. Decision support system for drainage volume estimation.

using the high-level graphical and text- based programming
language in LabVIEWprogramming software (NITM, Austin,
TX, USA) and MATLAB workspace (1994-2019, The Math-
Works, Inc. USA). Usually, at most, 1,500 to 2,000 mL can
be drained from one side; however, this is also dependent on
the patient’s condition. After the possible effusion volume is
estimated, approximately 800 mL of pleural effusion will be
drained each time; this volume may increase to 1,000 mL as
the number of sessions increases.

C. SMART DRAINAGE MONITORING SYSTEM IMPLEMENT
As shown in Figure 5, the smart drainage monitoring sys-
tem is implemented to automatically monitor the drainage
effusion volume and physiological signal and also provide
warning information when the drainage catheters or tubes
are removed by patients themselves. In order to prevent
the unplanned tube / catheter removal in patients, a chest-
belt warning sensor with Hall detector is designed to be
worn on the patient’s chest, as shown in Figure 5(a). When
the drainage needle is removed by the individual, a warn-
ing notification can be sent to the nursing staff. As shown
in Figure 5(b), an optical sensor integrating red light source
and light receiver [31], [32] is designed as a wristband to be
worn on the wrist that is employed to monitor pulse signals
(seen in Figure 2(c)) and then calculate the heart rate. The
heart rate is estimated every 10 seconds on average, which
can be used to monitor sudden life-threatening events, such
as RPE during drainage.

With regards to the automatic monitoring of the drainage
volume and the drainage speed, the bottoms of these chest

FIGURE 5. Implementation of the smart drainage monitoring system.
(a) Detection of unplanned tubing removal, (b) monitoring the heart rate
(physiological signal), and (c) estimation of effusion volume.

bottles are designed in the form of regular shapes, such as
circles, squares, or rectangles. This study uses a circular base
container as an example for calculation of the desired liquid
height, H (cm), of the drainage volume sensor:

Vdrained = AVH , H =
Vdrained
AV

, (20)

AV =

{
Circle Area = πr21
Quadrangle Area = LW

(21)

where Vdrained is the effusion volume (mL) to be drained and
can be estimated using equations (16) and (17) for a female
adult and (18) and (19) for a male adult. The radius of the
circle is r1(cm); the L(cm) and W (cm) are the length and
width of square / rectangular bases, respectively; and H is
the height of the liquid-level sensor, as shown in Figure 5(c).
In this study, a noncontact liquid-level sensor is employed
to detect the desired liquid height. This technique uses the
principle of changes in the coupling capacitance distribution
and does not require contact with the liquid to sense the liquid
height in the chest bottle. The noncontact method will not
be affected by pus, blood, and debris in the drainage liquid
and has high accuracy. In addition, we can also estimate the
required time t (min) for achieving the drainage volume based
on the flow rate Q (mL/min):

Qt = AVH , t =
AVH
Q
=
Vdrained
Q

(22)
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where Q is the flow rate, which can be measured by a dig-
ital flowmeter. As shown in Figure 5(c), this function can
monitor the desired drainage volume, Vdrained , and thereby
estimate the time requirement, t , for drainage possible to be
completed. When drainage exceeds the expected duration,
this situation indicates the drainage tubingmay be obstructed.
In practice, the nursing staff must perform manual inspec-
tions periodically check the patients’ physiological status,
including heart rhythms, blood pressures, or respiratory rates.
Our smart drainage monitoring system enables to evaluate the
specified time requirement to achieve the pre-set height and
determine if drainage is exceedingly fast or slow and can be
combined with heart rate monitoring and be used to remind
nursing staff to perform transfusion (fluid / blood) during
drainage.

The smart drainagemonitoring systemwas implemented in
theArduino R©prototyping platform (Uno, Atmel 8-bit CMOS
microcontroller 32K bytes self-programmable mechanism,
6 analog inputs, 14 digital inputs / outputs, DI / DO). The
platform integrated detection signals from multiple warn-
ing sensors and could be used to acquire analog signals to
perform 10-bit analog-to-digital conversion at the maximum
acquisition rate of 10,000 times/s. The detection algorithms
were designed by the C / C++ programming language in
the Arduino R©circuit board (as seen Figure 11 in Appendix).
Therefore, in clinical applications, when any monitored value
reached a specified threshold value, such as the desired liquid
height, H , the drained time requirement, t , the occurrence of
power interruption at the belt sensor, and heart rate abnor-
malities, a warning signal could directly trigger the light-
emitting diode (LED, warning light) and buzzer (alarm) to
provide a warning message, thereby alerting the nursing staff
to implement the appropriate treatment as soon as possible.

III. EXPERIMENTAL RESULTS AND DISCUSSION
A. PLEURAL EFFUSION VOLUME ESTIMATION
The proposed image preprocessing algorithms were designed
on a tablet PC using LabVIEW programming software
(NITM, USA), as displayed in the graphical user interface
shown in Figure 4. The anterior–posterior chest X-ray images
were collected from the NIH chest X-ray database (NIH
Clinical Center) [33]. This NIH database was available in
the following DICOM (digital imaging and communication
in a medicine format) store hierarchy in Cloud Healthcare
API (application programming interface). The chest X-ray
images were converted from DICOM format into a tagged
image file (TIF) format. The TIF format is a lossless image,
the processing of which could take less computation time
for routine examinations. Each digital X-ray image was
specified in a 409 (image width)× 500 (image length) pixel-
sized image, 8 bites/pixel, with 0–255 gray-scale values.
In 2D convolution processes, the Harris corner detector and
fractional-order enhancement mask were used to perform a
local operation to enhance the images. With the appropriate
parameters, the 2D convolution operations could highlight the
bilateral lung structures, as shown in Figures 6(a) and 6(b).

Image enhancement in Figure 6(a) was obtained using the
Harris corner detector with eigenvalues, λ1 = λ2 = 0.5,
and scaling parameters, σ ≤ 0.2 and 0.2 – 0.9.
As shown in Figure 6(b), digital image enhancement was
obtained using the fractional-order parameters, 0.10 – 0.95.
The fractional-order enhancement mask [21], [22] could
be constructed on the 4 symmetric directions with three
coefficients, 1, (−v), and (−v)(−v+1)/2, as described
(Figure 10) in the Appendix. The parameters of the Harris
corner detector and the fractional-order mask could not fit
all X-ray images. Obviously, appropriate scaling param-
eters, σ = 0.6 – 1.0, and fractional-order parameters,
v = 0.70 – 0.99 (parameter v subject to 0 < v < 1 [21], [22],
[34]), were used to assign the mask elements in this study.
The image enhancement processes improved the visibility of
gradient intensity for further segmentation of the right and
left lung cavity structures.

Next, the contour search and object localization
algorithms [24], [25] applied the gray gradient changes to
determine the boundaries of the bilateral lung contours,
as shown in Figure 3. As indicated by the green bounding
box in Figure 4, we could obtain the right and left individual
images via the bounding box as a 190 (width)× 350 (length)
object region. Hence, the minimum gray gradient θR =
θL = 0.5499 could be determined as the threshold value
to count the pixel numbers of the minimum gray gradients
using equation (13) within the right and left lung cavity
regions. For the case study shown in Figure 6, using the 2D
convolution operations, an average threshold value of 0.60
(threshold value≈ θR× 1.1 = θL ×1.1) was used to separate
the minimum gray gradients from the higher gradients in
the bilateral bounding box regions, as shown in the blue
and green regions in Figures 7(a) and 7(b), respectively,
where the blue region indicating the gray gradients was
less than the threshold value (0.60); otherwise, the gray
gradients were greater than the threshold value for the green
region. Therefore, the pleural effusion could be quantified by
bounding box pixel analysis using equations (14) and (15),
and then the effusion volumes could also be esti-
mated using equations (16)–(19) for female adult and
male adult patients. The experimental results with cor-
ner convolution and fractional-order convolution are shown
in Figure 8(a) and 8(b), respectively.

The experimental results indicated the enhanced image to
be similar and stable from the fractional-order parameters,
v = 0.80 to 0.99, using the fractional-order convolutions.
The left and right lung effusion volumes were in the ranges
of 1,810.2 – 1,817.6 mL and 490.6 – 501.8 mL, respectively.
Using theHarris corner convolutionswith scaling parameters,
σ = 0.6 – 0.7, the experimental results showed left and right
lung effusion volumes in the ranges of 1575.6 – 1748.5 mL
and 70.8 – 409.0 mL, respectively. The large effusion size
at the left lung cavity could be identified for a case study.
In contrast to fractional-order convolution [34], Harris corner
convolution also allowed us to rapidly estimate the effusion
volumes and took an average CPU time of 1.1544 s to
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FIGURE 6. Results of image enhancement processes using the 2D convolution processes. (a) Image enhancement using a Harris corner detector
(eigenvalues: λ1 = λ2 = 0.5, scaling parameters: σ ≤ 0.2–0.9); (b) image enhancement using fractional-order masks (fractional-order
parameter = 0.10–0.95).

complete the decision-making process. In addition, to fit all
chest X-ray images, the Harris corner detector with eigenval-
ues, λ1 = λ2 = 0.5, and scaling parameter σ = 0.7 was
assigned for all experiments in this study. Satisfying A = B
with the appropriate large positive values and C = 0, the cor-
ner detector could easily detect the differences in intensities
(gray gradients) to find the boundaries of desired objects
within an image. Next, the contour algorithm was employed
to search discontinuities and to indicate the isolines for image
segmentation, data extraction, and bounding box pixel anal-
ysis in specific areas. In addition, the corner detector was
used to easily assign the parameters of the enhancement
mask and the fractional-order mask. Therefore, 2D corner
convolution also is able to provide promising results in image
enhancement and estimating the PEV.

B. SMART DRAINAGE MONITORING SYSTEM TESTING
In clinical practice, analyzing chest X-ray images is a com-
mon method used to directly observe the anatomical posi-
tions, e.g., the height of the intercostal space could be used
to estimate the pleural effusion sizes. The adequate drainage
volume could be rapidly estimated using our proposed screen-
ing method. The proposed smart drainage monitoring sys-
tem was used to monitor the desired drainage volume,

physiological signals, and safety. The entire system could be
divided into two subsystems, as summarized below:
• the first subsystem with the chest-belt warning sensor
and the optical sensor was used to detect unplanned
tubing removal and monitor heart rate, as shown in
Figures 5(a) and 5(b),

• the second subsystem could detect the drainage vol-
ume and estimate the drainage duration, as shown
in Figure 5(c),

The functions and experimental results of these subsystems
are described as follows:
• unplanned tubing removal test: Figure 5(a) shows the
chest-belt warning sensor, in which a Hall sensor [14]
was employed to detect power interruption. During the
occurrence of an unplanned tubing removal, the pro-
posed detection algorithm could detect a low voltage
and then produce a high-voltage output to drive a buzzer
(alarm) and a LED (warning light) to notify nurses for
emergency management,

• heart rate monitoring test: in practice, the drainage
speed was extremely high, thus exacerbating cardiac
load or heart failure. Drainage of large effusion volumes
might result in RPE occurrence [12], [13]. If this event
is not immediately discovered and processed, then the
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FIGURE 7. Bilateral grey gradient distributions. (a) Grey gradient
distributions for the right lung cavity; (b) grey gradient
distributions for the left lung cavity.

contralateral lung can be affected, with the result-
ing complication progressing to bilateral lungs. Hence,
monitoring of the heart rate or respiration of patients
during drainage is required. As shown in Figure 5(b),
an optical sensor with reflectingmode (680 nm red light)
was used to detect pulse signals [31], [35]. To validate
the feasibility of the optical sensor, a total of seven
measurements were made. The average heart rate was
71.58 bpm, as shown in Figure 9,

• effusion volume and duration estimation: assuming that
the drained volume was 500 mL after a chest X-ray
image examination, the desired volume to be drained
could be entered using the keyboard, and then the height
of the liquid-level sensor was calculated using equa-
tions (20) and (21), for example, the estimated height,
H ≈ 6 cm (radius of bottom circle, r1 ≈ 5.15 cm)
in Figure 5(c). Next, the noncontact liquid-level sensor
(coupling capacitive sensor) was placed at the estimated
height H . Using a drainage volume of 500 mL and
a flow rate of 20 mL/min in the experimental model,
the drainage duration was estimated that a desired
drainage volume could be completed in t ≈ 25 min
according to equation (22), as shown in the LCD display
in Figure 5(c). This function could monitor whether the
drainage was overly fast or slow based on the drainage
speed.

FIGURE 8. The results of pleural effusion estimation. (a) Estimated
effusion volumes versus scaling parameters, σ = 0.5–1.0; (b) estimated
effusion volumes versus fractional-order parameters, v = 0.5–0.99.

FIGURE 9. Heart rate (bpm) monitoring results.

In general, the drainage volume must not exceed 1,000 mL
in each drainage duration, and continuous drainage should
not exceed 500 mL/Hr. After the administration of local
anesthesia and tube insertion (28- to 32-F chest tubes),
the drainage tubewas connected to the negative pressure chest
bottle. The proposed smart drainage monitoring system has
promising attributes, including: (1) the physiological status
could be continuously monitored by an optical sensor during
the drainage treatment, such as heart rhythms, blood pres-
sures, and saline replenishment, which avoids rapid drainage
of large effusion volume that would tend to cause RPE;
(2) before drainage, all interfaces should be secured using
tape to prevent patients from removing the chest tube on their
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own or accidental removal (pulling) events. The proposed
chest-belt warning sensor could detect the unplanned and
accidental removal events; (3) when the drainage volume
reaches a desired liquid height, the liquid-level sensor pro-
duces a high-voltage signal to trigger the yellow LED and
the buzzer as warning signals to inform nurses; and (4) the
drainage volume could be periodically monitored to deter-
mine the expected time for completing the task at any time
to determine whether the drainage is overly fast or slow. This
function could be combined with heart rate monitoring and
remind nurses to conduct transfusion (saline or blood) during
drainage; in addition, its function could also indicate whether
the tube is blocked.

The proposed smart system could improve the traditional
drainage system regarding the continuous monitoring physio-
logical status and safety confirmation. The application scope
of the proposed smart system could also be extended to
monitor drainage in the thoracic cavity and the abdominal
cavity (ascites drainage). This smart system has high feasi-
bility and potential commercialization [36]. The entire multi
edge sensors, hardware circuitry, and application software
could be integrated into an embedded system. In future work,
to the following will be performed: 1) assess the sensors and
hardware circuitry electrical safety (IEC 60601 series stan-
dard [37]) and the biocompatibility of the wearable device,
and the healthcare design [38]; 2) verify the relevant safety,
stability, and efficacy of the monitoring system, including the
detection algorithms and application software; and 3) ensure
the system conforms to skin irritation standards to ensure the
smart wearable device is suitable for the human body or the
medical setting after commercialization.

IV. CONCLUSION
Currently, drainage is a required process in chest surgery, sim-
ple chest aspiration/drainage, lung cancer surgery, or other
surgeries, among which, simple chest aspiration / drainage
accounts for the majority of the cases (55%), and chest
surgeries and other surgeries account for 45% of the cases.
Approximately fifty thousand people require drainage in
Taiwan per year. Approximately thirteen thousand people
develop malignant tumors in lung cancer every year in
Taiwan, and nine thousand people die of lung cancer. Patients
suffering lung cancer with pleural effusion also require
drainage. The proposed monitoring system could be used
in both pleural and ascites drainage. Hence, the innovative
design of the system in this study could fulfill the medical
device market demand for drainage systems. In the digi-
tal image process, 2D corner detector, contour search, and
object localization algorithms were employed to enhance the
bilateral lung cavity regions, thereby, enabling location of
the specific region for further bounding box pixel analysis.
The higher contrast image simplifies determination of a
proper threshold value. Depending on the selection of the
proper threshold value, the higher contrast image could be
used to rapidly segment the desired objects from a digitized
image. However, the proposed corner detector was found to

FIGURE 10. Two-dimensional convolution processes with fractional-order
masks and a Harris corner detector.

be limited in overall lung disease diagnosis because of the
lack of a set of finite chest X-ray images for each abnor-
mality and the medical diagnosis being dependent on the
radiologists. In this study, applying a 2D corner detector
and bounding box pixel analysis was validated as being
able to rapidly screen pleural effusion. Two corner detectors
with eigenvalues λ1 = λ2 = 0.5 and scaling parameter
σ = 0.7 was found to exhibit good performance in image
enhancement and segmentation in X-ray image processing.
For commercialization in clinical applications, it is required
to verify the biocompatibility, electrical safety, and effec-
tiveness (including the hardware, detection algorithms, and
application software design), and risk assessment, according
to the IEC 60601 series standard. The proposed smart moni-
toring system can further be implemented through a compact
embedded system without limiting the patient’s range of
motions in clinical applications.

APPENDIX
2D CONVOLUTION PROCESSES WITH
ENHANCEMENT MASKS
Figure 10 show the 2D convolution processes with
fractional- order masks and a Harris corner detector. The
fractional-order masks have rotation capability that are
rotated clockwise every 90 degrees (rotation invariant) and
mask in four directions. These fractional-order masks are
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FIGURE 11. Prototyping platform. (a) Arduino R©-based monitoring system
and programming language editor (b) Implementation of the smart
drainage monitoring system with the 3D printing technique.

used to describe the edges present and to remove noise.
In contrast to the fractional-order masks, the Harris cor-
ner detector is used to reduce image noise and aliasing
artifacts through convolution with the structure tensor, M .
By adjusting the eigenvalues of M , the characterization of
the corner detector can be easily determined for finding an
edge (λ1 ≈ 0 and λ2 has some large positive value) and a
corner (both λ1 and λ2 have large positive value) in computer
vision applications. Therefore, its method can be accurate in
distinguishing between edges and corners. It provides good
repeatability with changing rotation and illumination and is
used in image database retrieval and matching. In this study,
the Harris corner detector with the Gaussian function (using
a small standard deviation) was also used to enhance the
original image by convolving both horizontal and vertical
directions and reduce image noises.

ARDUINO R©PROTOTYPING PLATFORM (UNO):
Figure 11(a) shows the Arduino R©-based monitoring sys-
tem and programming language editor (C language). The
C programming language editor is used to implement the
detection algorithm in a microprocessor. With the multi-end
sensors, such as coupling capacitive sensor, optical sensor
(red light), and Hall sensor, the proposed monitoring system
can continuously monitor the drainage volume, physiological
signal, and safety. The 3D printing technique can also be used
to design the appearance of the monitoring system, as seen
in Figure 11(b), so that the hardware unit can be miniaturized
and operation will become simple. In addition, its applica-
tions have high feasibility and potential commercialization
to extend in both thoracic cavity and abdominal cavity.
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