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ABSTRACT Electroencephalogram (EEG) signals have been used in the Brain-computer interface (BCI)
technology to implement direct communication between the human body and the outside world, which
has important application prospects in the fields of cognitive science and medical rehabilitation. In recent
years, deep learning technology has achieved remarkable results in the BCI system, especially the using of
convolutional neural networks (CNNs) frameworks for the identification and analysis of motor imagery
signals. However, practical applications are limited by the complex process of data representation, and
the end-to-end method will deteriorate the recognition results. In this paper, we propose a densely feature
fusion convolutional neural networks (DFFN). Combining the morphological information of EEG signals,
we propose two data representation methods with low complexity, then design and optimize the densely
feature fusion network framework for this form of inputs. DFFN considers the correlation between adjacent
layers and cross layer features, which reduces the information loss in the process of convolutional operation
and considers the local and global characteristics of the network. The simulation results showed that
our network improve classification results by 5% in the BCI competition IV-2a data set compare to the
ordinary CNNs framework. In order to verify the practical application of the densely feature fusion network
framework, we train an adaptive global model method. The results of average classification are close to the
baseline approach of the subject-dependent model and better than others.

INDEX TERMS Brain-computer interface (BCI), electroencephalogram (EEG), convolutional neural net-
works (CNNs), densely feature fusion convolutional neural networks (DFFN).

I. INTRODUCTION
Brain-computer interface (BCI) analyzes and studies brain
electrical activity by using non-invasive (scalp elec-
trodes) or invasive techniques (intracranial electrodes).
It establishes a non-muscle channel that facilitates direct com-
munication between the human body and external devices [1].
Electroencephalography (EEG) is a comprehensive reflection
of cellular activity in the brain, which reflects people’s phys-
iological and psychological activities [2]. The EEG-based
method is a commonly used non-invasive method. Because
of its good real-time performance and low operating cost,
it is widely used compared with non-invasive methods such
as FMRI, MEG, and PET. The BCI system can be used
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in a variety of fields, such as signal processing, cognitive
science, medicine and rehabilitation [3], [4]. From the EEG
signals [6], brain activity can be detected in several modes
which can determine the user’s intention, and be used for BCI
communication. One of the popular modes is motor imagery
(MI). Motor imagery (MI) means that subjects perform the
action by using their brain to imagine a certain part of body
(such as left hand, right hand, tongue and feet), rather than
moving it, meanwhile, the sensorimotor cortex of the brain
shows some oscillating activity corresponding to specific
imagination [7]. Machine learning technology is often used
to classify and identify these MI tasks [8], [9]. People can
use the MI-BCI system to control the operation of external
devices, such as wheelchair control or neural prosthesis for
disabled people, and help healthy people perform demanding
tasks, control devices [10], automatic driving [11], epilepsy

132720 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0001-7660-831X


D. Li et al.: Densely Feature Fusion Based on CNNs for MI EEG Classification

diagnosis [12] and so on. The low cost, high availability, and
the need for any manual assistance of EEG signals have made
the intelligent machines built by motor imagery BCI systems
increasingly powerful. Therefore, improving the decoding
and classification of EEG signals are very important for the
future development of artificial intelligence.

The EEG signal motor imagery process has an energy
change, represented by a transient and persistent amplitude
attenuation and enhancement [13], which is known as event-
related desynchronization/event-related synchronization
(ERD/ERS) [14]. Currently, BCIs based on ERD/ERS has
been attracted wide attention due to its potential application
in sports rehabilitation and assistance [15], [16]. However,
the ERD/ERS pattern varies in signal pattern, frequency range
and location according to individual characteristics [17], [18].
In order to avoid the main problem of this inherent difference,
a common spatial pattern (CSP) is proposed and widely
applied to MI-BCI [19], [20]. This algorithm tries to find
the best spatial filter to maximize the projection scattering
difference between two kinds of EEG signals. However,
CSP is highly dependent on the covariance of frequency
bands and samples, so the filter bank common spatial pattern
(FBCSP) [21], discriminant filter bank public space model
(DFBCSP) [22] and RCSP [4] are proposed to overcome
these problems. At the same time, several excellent CSP
variants [23]–[34] have been proposed in the literatures.
These methods calculated the relative energy of the filtered
channel as the representation of data. This representation
form of high-dimensional EEG data can be easily input into
linear classifier, such as support vector machine (SVM) and
extreme learning machine (ELM). However, most of the
above methods only consider two types of information in the
space, frequency and time domain of EEG signals. Among
the data representation methods, the existing MI-BCI feature
extraction methods mainly focus on the extraction of static
energy features [35], [36], while ignoring the dynamic nature
of signals in the process of motion imagination. Therefore,
valuable MI information will be lost in this process, and
computational cost will be increased.

Traditional machine learning techniques are combined
with the above methods to extract meaningful information
from EEG signals. The traditional machine learning method
is widely used in the fields of EEG signals, but its per-
formance and accuracy in EEG signals processing are not
satisfactory. To improve this situation, researchers began to
study the potential of using various deep learning models in
the EEG signals analysis [37]. Deep learning model, espe-
cially convolutional neural network (CNN), can extract fea-
tures with higher discrimination and robustness [38]. Other
models such as recurrent neural network (RNN) [39], LSTM
[40], automatic encoder SAE [41], deep belief network
(DBN) are particularly useful in applications with time series.
Researches show that deep learning technology has achieved
good results in the field of EEG [42], which indicates that fea-
tures extracted automatically are better than those extracted
manually. EEG signals contains artifact, high dimension,

channel correlation and other problems. Therefore, there are
still many problems in the classification and recognition of
MI EEG signals by using deep learning, the establishment
of a framework based on deep learning is a complex and
challenging task.

Vernon j. Lawhern et al. [43] studied a compact CNN:
EEGNet, which encapsulated various methods for feature
extraction of EEG signals for BCI system and constructed
a unified standard. Cuntai Sakhavi et al. [44] studied the
data representation by introducing FBCSP algorithm, and
then used the optimized CNN structure for classification.
They also discussed and analyzed three types of convolu-
tions method that can be selected for each layer of the net-
work when designing the network: time convolution, channel
convolution, and two-dimensional convolution. Brenda E.
Olivas-Padilla et al. [45] proposed two motor imagery clas-
sification methods. Both of the methods introduce variants
of DFBCSP to represent the data, and finally compare the
classification effects of the modular expert CNNs network
and CNN framework. Bashivan et al. [46] transformed EEG
signals into topological map by using fast Fourier transform
(FFT) over a specific time intervals, and then input them into
CNN and LSTM frameworks for classification These meth-
ods consider the characteristics of the three dimensions of
EEG signals, and the classification effect has been improved,
but the complex data representationmethod and deep learning
framework increase the computational cost at the same time.

In order to reduce the time and computational burden of
data representation, Hauke Dose et al. [47] proposed an end-
to-end learning model, and used the CNN framework to learn
generalized features and dimensionality reduction, while the
traditional fully connected layer (FC) was used for classifi-
cation. This method can learn from the original data with
a minimum amount of preprocessing. Current EEG-based
BCI systems often extremely depend on subject before they
can be used for new users. Zhang et al. [48], considered the
practicability of BCI system, then established a global model
by using transfer learning, and applied the well-trained model
directly to new users without specifying the environment.
Although these methods solve the corresponding problems,
they reduce the classification accuracy.

Recent studies have shown that if convolutional neural
networks are used in the field of EEG, multi-layer feature
fusion has better performance than models using only the last
layer feature. By adding the method of feature fusion [49],
the results will be more accurate and effective. Yuan et al.
[50], proposed the concept of multi-view learning and fusion
of multi-view features of EEG signal channel. However, these
networks have some shortcomings: First, there are many
manually selected modules in the network structure, and the
adjusting parameters are complex. Second, the continuous
convolutional process of traditional CNN loses the significant
information of the input or gradient as the number of lay-
ers increases. Finally, the features learned from the shallow
framework will be affected by the redundant information of
the data set, resulting in low learning efficiency.
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Based on the above problems, this paper proposes a novel
densely feature fusion network structure. The main content is
as follows:

1) In the data representation stage, considering the differ-
ence of data distribution and space-frequency characteristics,
we propose two time-domain signal representation methods
with low complexity to obtain dynamic related information
of EEG signals.

2) In the stage of feature extraction and classification,
we propose a new feature fusion network. Feature fusion
network considers the relevant features of each CNN layer.
These features not only contain important information of
their own input data, but also integrate information from all
previous layers. This network learns the correlate features
between the adjacent layer and cross-layer, while reducing
the information loss in the process of convolutional opera-
tion, and considers the local and global characteristics of the
network.

3) Finally, the global model of feature fusion network is
trained and adaptive method is added to improve the accu-
racy of classification. This data representation method and
fusion network structure improves the performance of the
traditional CNN framework and significantly improves the
average accuracy on the BCI competition IV-2a data set [51].

This paper is divided into the following sections.
Section 2 describes the used data sets. Section 3 mainly intro-
duces the data representation method and the basic structure
of the DFFN. Section 4 compares the performance of the
DFFN with other frameworks. Then we verifies the practica-
bility of the DFFN, and finally analyzes the learning results
of the network. The conclusions are discussed in Section 5.

II. DATA
In this paper, we use the 2008 BCI competition IV-2a EEG
data set recorded from 22 Ag/AgCl electrodes with a 250-Hz
sampling rate and band-pass filtered between 0.5 and 100 Hz
from 9 subjects. It consists of four different motor imagery
tasks including the left hand (class 1), right hand (class 2),
both feet (class 3), and tongue (class 4). The timing scheme
consists of a fixed 2 seconds, a reminder time of 1.25 seconds,
followed by a period of a MI of 4 s. The imagined tasks
consist of thinking to move both hands and feet and the
tongue. The data set consists of two sessions of data, training
data and evaluation data. Each session has 288 trials for each
of the training and evaluation data (72 trials per class).

Data preprocessing can restore the original appearance of
data as much as possible, and will not interfere with the
method proposed in this paper due to noise, null value and
other problems. The data preprocessing is as follows.

1) We use the half period of MI (0 to 2 s) as the time
segment. According to [51], We eliminated the data of the
wrong experiment. For the problem of null value, we chose
linear interpolation to fill in the missing value.

2) The EEG signals from all recorded channels are filtered
using a filter bank with bandpass filters (8-30 HZ).

III. METHOD
In this paper, the main process of data representation is based
on CSP, which is the most common methods used in the field
of EEG. In Section A, we will review the highlights of the
CSP algorithm. And discuss the EEG representation based
on CSP. In Section B, we introduce the basic framework and
principles of Densely Connected Convolutional Networks
(Densenets) [52]. In Section C, we propose a densely feature
fusion network based on Densenets and explain the selection
of network parameters.

A. EEG REPRESENTATION BASED ON CSP
The CSP algorithm [14], is effective in discriminating two
classes of EEG data by maximizing the variance of one
class while minimizing the variance of the other class, which
is viewed as a spatial filtering algorithm. At present, CSP
method and its improvement method occupy a certain propor-
tion in the field of EEG signal classification, and the effect is
obvious. The mathematical expression of the CSP function is
as follows:

J (w) =
wTXTXw
wTY TYw

=
wTChw
wTCf w

where w is the spatial filter learned by the eigenvectors
extracted. Ci is the covariance matrix of the two categories.
We use CSP algorithm to extraction a coefficient vector of
a spatial filter Wcsp, and chose the first and last N rows of
CSP projection matrix Wcsp, then the EEG signals is pro-
jected as Z = W TX . The features can be obtained as f =

log
(

L∑
t=0

Z (t)2
)
. However, the CSP algorithm is primarily

used to differentiate two categories of data, so in the case of
multiple categories, the one-versus-rest strategy needs to be
chosen.

we extract the target spatial characteristics as the input of
the network. The steps are shown below:

1) After using the one-versus-rest strategy and the CSP
algorithm for each class, we get projected EEG signals. Select
the first and last N = 2 rows of spatial filters Wcsp and the
number of filter groups Nw = 4 are selected (the number of
filter groups is related to the classification category), so the
size of the projected EEG signal data is 16∗500. (Instead of
taking a one-vs-rest strategy for classification, we vertically
concatenate the four categories of features to form a signal
matrix.)

2) we consider two possible representations for the EEG:
a) F1: Hilbert transform [53] is used to extract the envelope

of each feature channel, which gives the analytic form of a
signal that is complex-valued. Hilbert transform of the filtered
EEG signal Z(t) is expressed as Y (t), construct analytic
signal C (t) = Z (t) + jY (t). The envelope is calculated
from the amplitude of the analytic form. Finally, the envelope
is selected as the representation of EEG signal: a (t) =√
Z (t)2 + Y (t)2;
b) F2: We used the logarithmic transformation method

in the last step of CSP algorithm, but we did not sum the
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FIGURE 1. This is a five-layer dense block module, which is a mode of connection in Densenets. Each layer fusing with the
characteristics of all previous layers.

information at all time points, and changed the formula:
f = log

(
Z (t)2

)
. Due to the influence of environmental

factors, the EEG signal distribution of the subjects will cause
complex signal fluctuations during the collect process. There
presentation method of logarithmic transformation can make
the fluctuation relatively stable.

In the preliminary processing of the input data, the data
representation methods with low complexity is used. There-
fore, the input data matrix is only the spatial feature obtained
by shallow learning, without considering the time-domain
feature. Finally, we put this set of feature matrices into the
deep learning framework, and conducted in-depth mining and
analysis of spatial and temporal features.

B. FEATURE FUSION IN DENSENETS
The architecture of convolutional neural network consists
of basic ‘‘components’’ such as input layer, convolution
layer, pooling layer, full connection layer, and most architec-
tures follow this process. However, the difference between
networks is that, in order to make the network train
faster or avoid over-fitting of the network, the network will
add linear correction unit Relu, dropout, batch normalization
and other methods to change the network architecture.

In this paper, we improve the framework of Densenets to
make it more suitable for feature extraction and recognition
of EEG signals. We will first explain the basic concepts of
Densenets. Then we describe the choice of architecture for
Densely Connected Convolutional Networks.

The fusion of features involved in Densenets architecture
is a simple connection pattern. In order to ensure maximum
information flow between layers of the network, the network
directly connects the output feature maps of all layers. Each
layer receives additional input from all previous layers and
passes its own feature-maps to all subsequent layers, so
that the network maintains feedforward characteristics. Fig-
ure 1 illustrates this architecture schematically. Traditional
convolutional networks have L layers, and Densenets connect
each layer together in a feedforward manner. The l th layer
has l inputs, it is composed of feature maps of all previous
convolution blocks to ensure that features are spliced before
being transferred to the next layer. At the same time, the

feature-maps of this layer are passed to all subsequent layers
of L−l, which is used as the input of all subsequent layers.
Finally, new L (L + 1) /2 connections are introduced into the
L-layer network of traditional convolutional networks. The
process of feature fusion is to split the feature map together
in a certain dimension. At the same time, [52] also observed
that dense connection has regularization effect, reducing the
over-fitting of small sample data. The proposed deep learning
network of EEG signals is rarely targeted at small sample
data, so the Densenets-based structure is suitable for EEG
signals. Densenets architecture is mainly composed of the
dense block layer and the transition layer. Figure 2 illustrates
the framework structure of the Densenets network. We will
introduce them as flow:

1) DENSE BLOCK
In the dense block, the input of the block is assumed
to be X0. The block has a total of L dense block lay-
ers, in which there is a composite algorithm of nonlin-
ear transformation between each layer, defined as H (·):
BN−ReLU−Conv (1× 1)−dropout− BN−ReLU− Conv
(3× 3), of which the (1× 1) convolution layer before each
(3× 3) convolution to reduce the number of input feature-
maps. Layer l receives feature maps from all preceding layers
X0, . . . ,Xl−1, as input:

Xl = Hl ([X0,X1, . . . ,Xl−1]) ,

where [X0, . . . ,Xl−1] refers to the concatenation of the
feature-maps produced in layers 0, . . . , l − 1.

2) TRANSITION LAYER
In order to avoid excessive computation, transition layer is
added into Densenets architecture to reduce the number of
feature maps and make the network structure more compact.
In order to solve the problem of compatibility of feature
fusion and computing efficiency, Densenets modularized the
dense layer and divided several dense connection modules.
Transition layer is added between modules for connection.
This layer is formed by BN-Relu-conv (1× 1)-dropout-
pooling. If each functionHl produces k feature-maps, (θ × k)
operation is added before the convolution operation in the
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FIGURE 2. This is the basic structure of Densenets network used in this paper. It consists of two groups of Dense blocks,
transition layer, and finally two fully connected layers.

transition layer, where 0 <θ ≤ 1 is called the compression
factor, and the number of feature splicing per time can be
changed by changing the size of θ .

C. DESIGNING THE FEATURE FUSION NETWORK
ARCHITECTURE
For designing the network, we need to consider the nature
of the input. In terms of spatial features, each feature channel
has a unique spatial filter (based on the selected eigenvalues in
the CSP algorithm) to distinguish one class from others. Since
the input of the network is a 2D signal after spatial filtering,
and it is already a linear combination feature of the original
EEG electrode channels. But usually the EEG channels at this
stage have no interaction, and the order in the input matrix
does not affect the classification. So we choose a 1D spatial
filter whose kernel size is the number of input channels to
fuse the information of each channel, instead of small size
convolution of channels.

In terms of time-frequency domain features, the data con-
tains 500 sample points, including the main information of
EEG signals. Convoluting across time domain sample points
will deeply learn morphology hidden in EEG signals. In this
paper, time domain convolution is realized by improved
Densenets. Densenet has several advantages: they alleviate
the vanishing-gradient problem, avoid excessive loss of infor-
mation in the convolution process, enhance feature propaga-
tion, and encourage feature reuse. The two 1D convolution
calculation respectively realizes the overall 2D convolution
method, which is relatively independent in space and time,
and increases the network changes at the same time.

As shown in Figure 2, the input of network first passes the
convolution of channels, and then put them into the modified
Densenets. In each dense block, there are a certain number
of dense block layers. They are responsible for fusing the
features of EEG signals at each learning stage, and splicing
the learned morphological features of EEG signals together.
Then the fusion features are transferred to the transition layer,
and the size of the fusion feature-maps are controlled by
weight θ , this operation is to avoid excessive fusion data

volume and parameter explosion. After repeating this phase,
the feature map is sent to the last two fully connected layers
of the network for classification of motor imagery. In the fea-
ture fusion framework, each part, such as convolution, dense
block and transition layer, selects corresponding parameters
through cross validation, and finally displays and discusses
in the results.

Compared with the traditional network architecture,
the frame parameters we choose can be applicable to each
subject and will not cause too much deviation of the maxi-
mum accuracy due to individual differences. We only need to
adjust the variables θ and m to ensure accurate classification.
(m is the variable that controls the number of convolution
filters in the first layer, in order to increase the feature-maps of
channel fusion). When the sample size of input data becomes
large, we just need to adjust the number of the dense block to
deepen the network.

The training of the networks is performed with the follow-
ing configurations.

1) Adam algorithm is selected as the optimizer algorithm
of the network, and the parameter is set as the initial value.

2) the loss function algorithm chooses the cross entropy.
3) The learning rate is set as 10e-5.
4) Dropout is added between convolution operations in the

compound algorithm H (·) and before the average pooling
layer, and the parameter is set to 0.1.

IV. RESULTS
For experiments, the data preprocessing and signal represen-
tation that we carried out in Matlab 2017b environment, and
we used the 16GB RAM CPU of Intel(R) Core i7-7700hq
2.80Ghz. For deep learning, we used the GeForce GTX
1080 GPU with 8GB of RAM, feature fusion network was
implemented using Tensorflow deep learning framework.

A. ARCHITECTURE PARAMETER SELECTION
Due to the differences between individuals, we first selected
key parameters for each subject, such as the size and number
of the kernel in the dense block layer, the number of the
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TABLE 1. Structure of feature fusion network model.

dense block layer, the number of the dense block, and the
size and stride of the kernel in the pooling layer. Then, under
the overall relatively stable framework, we fine-tune the vari-
able parameters, channel convolution kernel multiples, and θ
value.

In fact, due to time and computational constraints, we did
not choose a complex optimization algorithm to optimize
parameters in the parameter space. However, we used cross
validation for parameter selection. We choose the size and
number of convolution kernel according to the characteristics
of input data and the requirement that convolution output
is an integer. Too much receptive field leads to inaccurate
morphological learning, while too little field leads to too
much local information learning. We propose the following
points based on the above to select parameters:

1) We chose the size of 2n as the number of kernel and
the maximum size was 128. The number of kernel in channel
convolution is m× 2n.

2) As the amount of data is small sample, we chose the
maximum number of dense block layer up to 5 and the
maximum number of dense block up to 3.

3) The size and stride of the pooling layer select the limit
of maximum 25.

4) 2n up to 2048 nodes and 4 nodes are selected as output
of the two fully connected layers respectively. The regular-
ization method selects gradient clipping to prevent gradient

explosion by controlling the maximum L2 normal form of
gradient. Other parameters are initial parameters.

The specific parameters of each part of the Feature Fusion
Network are shown in Table 1. Parameters are determined
by the above method. The number of convolution kernel
is determined by the growth_rate and variable parameters,
where growth_rate = 64. θ and m in the Table 1 are vari-
able parameters. θ = 0.8 and m = 4 are selected in the
example. Each conv layer shown in the Table 1 corresponds
to a sequence: BN-Relu-Conv. Take the Dense Block1 as an
example. This layer contains three convolution layers. The
size of convolution kernel is 1∗25, the sliding step is 1∗1,
and the number of convolution kernel is growth_rate. Finally,
the output contains 448 feature maps which size is 1∗500.

B. EXPERIMENTAL RESULTS AND COMPARISON OF
BASELINE
In the BCI contest IV dataset 2a, each subject had two ses-
sions, one of which is training data and the other is test data.
We preprocessed the data as the representation of EEG signals
by the above methods. Finally, the densely feature fusion net-
work framework is used for deep learning and classification,
and the results are shown in TABLE 2. We evaluated the
performance of the proposed method, and compared with the
base linemethod in TABLE 2, the accuracy results is obtained
through cross-validation experiments.

TABLE 2. Accuracy for baseline methods and our method.
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TABLE 3. Variable parameters.

TABLE 4. Cross-validation accuracy results of the global model.

We use the FBCSP feature extraction algorithm and its
derivative methods as baseline. The classification results in
the Table 2 are from the original FBCSP paper. In TABLE 2,
we also selected the papers that used deep learning method
to solve the motor imagery recognition in the field of EEG
signals. Including the results of the paper [44], they pro-
posed a new temporal representation of the data, and then
used the CNN network framework for classification, and
achieved excellent results. Both the Monolithic network and
the Modular network [45] use an optimized convolutional
neural network that extract features from spectral and spatial
domain data by the DFBCSP method. We used the same
database and compared the results from the paper with ours.

The classification results of the feature fusion network
proposed in this paper are shown in TABLE 2, and the average
accuracy is better than the previous methods. The accuracy
values of subjects 4 and 7 in the table are slightly less than
the baseline method, but overall the accuracy of the other
subjects has improved. The results of the two columns on the
right are obtained by using different data representations of
the same network. It is obvious that the data representation of
F2 is more effective. The first four methods of table all use
the data representation method of FBCSP, while we choose
the basic CSP method as the data representation. Therefore,
compared with the previous four methods, DFFN method
does not carry out complex manual preprocessing of data
at the early stage, but the classification effect of network is
obviously higher than them. It indicates that the feature fusion
network retains more complete features of EEG signals, does
not lose too much intermediate information, and learns more
morphologic features. Compared with end-to-end learning
network, the classification effect of feature fusion network is
more prominent. Monolithic network and Modular network,
these two methods are most prominent for the classification
of subject4, 5, and 6. However, the online processing of
these two methods is cumbersome. In contrast, the DFFN
approach is similar to the end-to-end processing and is not
very complicated, but the end result is considerable overall.
At the same time, the correct rate of the DFFN method in
subjects 4, 5, and 6 is slightly improved compared with the
conventional method and the deep learning framework.

C. VARIABLE PARAMETER
Due to individual differences, each subject is not necessarily
applicable to the same network framework, and affecting
the optimal classification accuracy of each subject. In order
to solve this problem and improve the network variability
and robustness, we finally added variable parameters to the
main part of the network framework. In table 3, the principal
framework parameters of each subject are uniform, but the
ultimate optimal classification accuracy rate is obtained by
adjusting variable parameters. In this way, the limitations
of network framework caused by individual differences are
avoided, the workload of tuning parameters is reduced, and
the variability and robustness of the network are increased.
Meanwhile, the structure of the network is approximately
modular. The number of dense block layer can be adjusted
according to experience for the different number of data.

D. GLOBAL MODEL AND ADAPTIVE MODEL
In general, EEG signals are dynamic, the feature extrac-
tion performance of motor imagery tasks also have highly
subject -dependent characteristics, with which it differs
within the same subject and with other subjects. However,
the experimental results presented in TABLE 4 show that it
is still a promising method to train a unified feature extrac-
tor/classifier for different subjects using the proposed frame-
work in practical application, although the effect is reduced.

We use the leave-one-subject-out approach, using one set
of subject data from the source data as tests and other subjects
as training sets to train a global model. The learned knowl-
edge is then transferred to the subject under test for category
recognition. This is a method of transfer learning, which
can reduce the problem of small sample data and individual
differences. In this study, we used the feature fusion network
framework, and then selected the eight groups of subjects as
the training data of the global model, and the other subject
as the test object. The global model accuracy values in the
table are 13% lower on average than the classification rate
dependent on subject, but the model is more practical. The
proposed model is compared with the recently published
CRAM, which extracted spatio-temporal features of EEG
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FIGURE 3. Training process of Subject-Dependent model and adaptive global model.

signals sliced at different times, and finally classified and
identified them by using the convolution recursive attention
model (CRAM), and achieved excellent results compared
with end-to-end EEG-Net methods. The end-to-end approach
is superior in complexity to our feature fusion network, but
loses nearly 10% accuracy. In our algorithm of input EEG
data representation, in order to minimize the complexity,
the basic algorithm CSP is selected, and finally the accuracy
is improved.

The method of transferring learning can avoid retraining
the new subject data for a long time, but the results of the
experiment will be worse due to the inevitable differences in
the data obtained from the experiment. To solve this problem,
we use a small sample set for adaptive fine-tuning of the
model on the basis of transfer learning. As can be seen
from the table, the fine-tuned global model shows a good
improvement in classification accuracy and a slight improve-
ment over the baseline method, although the effect is lower
than that of the subject-dependent method. Although MI
EEG signals have highly subject-dependent characteristics,
variable parameters in the model can improve this. In general,
the feature fusion network using theme adaptation technol-
ogy has achieved good results. There are many practical
ways to improve the accuracy of classification. For example,
the method based on transfer learning is adopted to transfer
data sets with similar data distribution, making the global
model more accurate.

E. ANALYSIS RESULTS AND FEATURE VISUALIZATION
To analyze the classification results of our proposed model,
we selected the global model and the subject-dependent
model of subject9. As shown in Figure 3, we draw the loss
of two models of Subject9 and the variation of accuracy of
the training process, two kinds of loss converges to 0, but
the subject-dependent model converges quickly and oscillates
little, the global model do opposite. As subjects have different
perceptions of motor imagery, data differences are caused,
so the global model loss osillates seriously. Although the

oscillation occurs in the training process, the convergence is
finally successful. In the 2000 iterations, adaptive adjustment
is added to the training, loss and training accuracy have a
mutation process, which quickly re-converge in subsequent
learning.

As shown in Figure 4, the output of the last transition layer
from the DFFN is reduced in dimension and visualization by
t-SNE, t-SNE visualization can clearly show the clustering
situation of the results, so as to facilitate our analysis and
hypothesis of the results, and its scatter diagram is finally
drawn as shown. In order to prove the validity of the proposed
model, we analyze the final features of the proposed network
before fully connected layer for classification. For subject-
dependent model, as shown in Figure 4(a), the boundaries of
the four categories features are obvious, and the four clusters
of the same category are distributed together, which proves
that the network learns the morphological characteristics of
EEG signals and separates the data of different categories
well. For global model, as shown in Figure 4(b), the distri-
bution of feature clusters can be clearly observed, but the
fifth cluster contains 4 types of category features similar to
each other appears in the middle, which is the difference
between the classification results of the global model and
the subject-dependent model. However, for the two models,
the characteristic data of all category exists overlap, possibly
because the MI signals obtained in EEG experiments are
not obvious, and the features are not enough to distinguish
the movements of the foot and tongue. In the experiment,
the electrodes in the brain region were not comprehensive
enough to collect signals from the feet and tongue, leading
to a small difference between the two signals. As can be seen
from the figure, these four categories have different degrees
of overlap, which may be caused by the experimental process
and individual differences.

V. DISCUSSION
The deep learning algorithm has an important application
prospect in the field of EEG. Its unique learning method
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FIGURE 4. The t-SNE dimensionality reduction visualization of network characteristics in
subject-dependent model and adaptive global model.

and efficiency make it have a negligible position in the field
of EEG.

In this research, the first consideration is to simplify
the representation of network input data, which effectively
reduces the burden of data preparation. At the same time,
the characteristics of the spatial and temporal domains
of EEG signals are preserved, and the loss of informa-
tion is reduced. The representation method of logarithmic
transformation performs better in the subsequent network,
which makes the fluctuation of EEG signal relatively stable.
It avoids the influence of redundant morphological char-
acteristics on network learning, and increases the learning
efficiency.

Then this paper mainly proposes the application of feature
fusion deep learning network in EEG signals. The feature
fusion network does not learn the morphological features of
EEG signals from the depth and breadth of the architecture,
but strengthens the network through reusing or fusing feature.
The feature loss in each part of the network and the number
of parameters are reduced. The variable parameters in the
densely feature fusion network can increase the input changes
of the subsequent fusion layer and improve the learning
efficiency. The final experimental results also prove that the
feature fusion network framework can effectively distinguish
four categories of motor imagery by learning MI EEG sig-
nals. Compared to SVM and other CNN frameworks, we can
produce better results. Our analysis shows that our results do
learn something from the input EEG signals, demonstrating
that feature fusion structures make sense for MI EEG signals.
We observed the clustering effect of learning features after
t-SNE visualization and verified the above results.

In order to verify the applicability of the feature fusion
network, we study the global model. Most CNN frameworks
usually adopt intra-disciplinary classification. However, in
practice, the data of labeled subjects are very small, and the
training model of small samples is not accurate. Therefore, in
the actual problem, the global model of BCI system is always

the priority. In this study, we used a framework of feature
fusion networks to compare the two construction methods of
the global model. Adaptive of the model has better accuracy,
which can approach the accuracy of the subject-dependent
baseline method, while the accuracy of the interdisciplinary
transfer learning baseline method is difficult to reach 70%.
This shows that, unlike ordinary transfer learning, the adap-
tive model method can effectively overcome the above prob-
lems without losing time optimality.

The current framework of the network has three caveats.
Firstly, the representation of EEG signals and the optimiza-
tion of network structure are independent and not related to
each other. Secondly, the selection of network architecture
parameters for deep learning requires cross validation to
select the most appropriate results, which is a complicated
and tedious process. In addition, although the Densenet net-
work architecture has the advantage of reducing over-fitting,
using a small sample of each class to train a highly concen-
trated network will still have a problem of over-fitting. Later,
a large amount of relevant data can be selected for pre-training
to avoid this problem. If two independent algorithms can be
combined in the future and there is an excellent theoretical
support for parameter selection, the feature fusion network
will be more perfect.

In general, the deep learning framework of feature fusion
has great prospects in the application of MI-EEG signals,
which may have important applications in controlling the
prediction of brain-computer interface. In the future, we will
also apply the feature fusion method in other EEG studies to
verify the robustness of our method and finally improve the
feature fusion network.
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