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ABSTRACT In recent years, the analysis of surface electromyography (SEMG) signals by feature engineer-
ing and machine learning has developed rapidly. However, when feature engineering is applied to feature
extraction of SEMG signals, important feature information in the signals will inevitably be omitted, which
will reduce the performance of signal analysis and recognition. Therefore, this paper proposes a method
to complete classification of SEMG hand movements based on convolutional neural network (CNN) and
stacking ensemble learning. In this method, a primary classifier based on CNN is designed to extract SEMG
data features, which avoid omission of important feature information. A secondary classifier based on the
stacking method is designed to integrate three primary classifiers trained with time domain, frequency
domain and time-frequency domain data of the SEMG signal respectively. Then, several experiments on
NinaPro DBS5 dataset is performed to evaluate the proposed models. When the window length is 200ms,
primary classifier is trained and tested with the SEMG signal data divided by the 80ms, 100ms, and 125ms
sliding length. The best accuracy can reach 71%. The primary classifier and the secondary classifier trained
and tested with SEMG signal data divided by window lengths of 200ms and 300ms in the case of a sliding
length of 100ms. When the window length is 200ms, the best primary classifier accuracy and the best
secondary classifier accuracy can be 70.92% and 72.09%, respectively. On the window length of 300ms,
the best primary classifier accuracy and the best secondary classifier accuracy can reach 75.02% and 76.02%,
respectively. Finally, the model designed is compared with Linear Discriminant Analysis (LDA), Long
Short Term Memory-CNN (LCNN), Support Vector Machine (SVM), and Random Forests. Under the same
conditions, the average accuracy of the secondary classifier is 11.5%, 13.6%. and 10.1% higher than LDA,
SVM, and LCNN, respectively. Also, the average accuracy rate is 3.05% higher than SVM and Random
Forests.

INDEX TERMS Surface electromyography, movements classification, convolutional neural network,

ensemble learning.

I. INTRODUCTION

Electromyography (EMG) is a superposition of bioelectrical
signals generated by the muscles of the human body. sSEMG
is a way to detect muscle activity from the surface of human
skin [1]. A considerable amount of studies have shown that

The associate editor coordinating the review of this manuscript and
approving it for publication was Qingxue Zhang.

VOLUME 7, 2019

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

SEMG can be used to detect the motional intention of the
body. A number of analytical systems have been developed
to understand human intent from sEMG signals and are
used in non-invasive human-computer interaction systems
such as hand prosthetic control, wheelchair control, exoskele-
ton, and virtual interaction [2]. With the maturity of SEMG
signal acquisition technology, the analysis and recognition
of SEMG signal has attracted the attention of researchers.
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The advantage of using SEMG for movements recognition
is that we can apply electrodes to any muscle area without
too many restrictions and can be applied to disabled people
with amputation. The disadvantage is that the identification is
more difficult and not very stable. However, we firmly believe
that deep learning can solve this problem.

At present, the feature engineering and machine learning
methods are used to analyze and identify sEMG signals.
Meattini et al. [3] proposed a robotic arm control system
based on eight fully differential SEMG sensors. The system
uses the surface electrode to collect the original SEMG of
the human body. It combines the embedded system to filter
the original signal, and uses the sliding window technology
to extract Root Mean Square (RMS) characteristic of the
signal. The feature data was trained and identified using
SVM Model, and 90% accuracy was achieved in the robotic
gripping task. Jose ef al. [4] used multiple SEMG sensors
to acquire SEMG signals from the biceps and triceps at a
sampling frequency of 10kHz, and selectively extracted inte-
gral electromyogram (iEMG) and Slope Sign Changes (SSC).
Multi-layer perceptron neural network and random forest
model are used to recognize the internal and external rotation
of the arm, and the accuracy is 91.6% and 97.7% respectively.
As above, a bit feature of SEMG data was applied to identify
fewer movements by using maching learning model.

There are also many studies on a large number of
hand movements recognition methods based on sEMG.
Kuzborskij et al. [5] analyzed and identified the SEMG signal
of the 52 hand movements in the NinaPro dataset. They
extracted various features of the multiple signals, includ-
ing Mean Absolute Value (MAV), histogram (HIST), Mul-
tidimensional Discrete Wavelet Transform (mDWT), and
Short-Time Fourier Transform (STFT), and used multi-
ple models for training and evaluation, for example, Non-
linear Support Vector Machines (SVM-BRF), Multilayer
Perceptron (MLP), k Nearest Neighbor (k-NN), Linear Sup-
port Vector Machine (SVM-linear), and LDA models. In
the experiment, they found that the correct recognition rate
of 52 types of hand motion can reach about 80% by combing
MAV features and SVM-BRF model.

Gijsberts et al. [6] classified the 6 DOF force activation
in the NinaPro dataset and the SEMG signals of 40 discrete
hand movements. They used RMS, HIST, mDWT and Kernel
Rule Least Squares (KRLS) algorithm to classify hand move-
ments. The accuracy of predicting 6-DOF force activation
was about 90% in 40 subjects and 80% in 40 discrete gesture
classifications. Pizzolato et al. [7] analyzed the sSEMG signal
data in the NinaPro DB1, DB2, DB4, DBS5. The sSEMG signals
in these data sets are collected by four different acquisition
devices. The author compared the SEMG signal data from the
time domain and the frequency domain, and expounds their
respective characteristics. The RMS, TD, HIST, and mDWT
features and random forest and SVM model were used to
classified 41 gestures. The results showed that the optimal
accuracy can reach about 74%.
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The sEMG signal recognition method based on feature
engineering and machine learning has a great dependence on
the quality of feature engineering. It requires considerable
consumption to extract and test features. In recent years, deep
learning, a new machine learning technology, is beginning to
be used for the analysis and recognition of SEMG signals.
Its motivation lies in the establishment and simulation of
the neural network for human brain analysis and learning.
When Deep Neural Network (DNN) used to extract the fea-
tures of SEMG signals, it can effectively avoid missing the
effective information in signals and improve the accuracy
of recognition. Xing et al. [8] used the CNN model with
five convolutional layer parallel architectures to extract and
classify sSEMG signals. The accuracy rate is 5.71% higher
than the random forest model and 4.06% higher than the
support vector machine model. Atzori et al. [9] used a convo-
lutional network to classify an average of 50 hand movements
of 67 intact subjects and 11 transradial amputees. The results
show that the recognition accuracy is higher than the tradi-
tional machine learning method. X. Zhai et al. [10] proposed
a self-recalibrating classifier. It can automatically calibrates
the original classifier. The results showed that the accuracy of
calibrated classifier would be 10.18% (intact, 50 movement
types) and 2.99% (amputee, 10 movement types) higher than
uncalibrated classifier.

He et al. [11] combined long-short-term memory networks
and multi-layer perceptrons to classify sEMG signal in
NinaPro DB1 dataset. Approximately 75% accuracy was
achieved in the classification of 52 types of hand movements
in 27 subjects. Hu et al. [12] proposed a hybrid CNN and
RNN model based on attention, which was tested on the
databases, which are NinaProDB 1, NinaProDB2, BioPatRec
subdatabase, CapgMyo subdatabase and csl-hdemg database.
The accuracy of the model were 87.0%, 82.2%, 94.1%,
99.7% and 94.5%, respectively. And they were 9.2%,
3.5%, 1.2%, 0.2% and 5.2% higher than the state at that
time. Y.Wu et al. [13] proposed the LCNN model. The
pre-processed SEMG signal can directly be input into the net-
work for the dynamic recognition of gestures. The evaluation
is based on NinaPro DBS using standard test method, and the
accuracy of Exercise A and Exercise B on gesture data was
71.66% and 61.4%, respectively.

As stated above, it is obviously that the deep learning
method can overcome the limitation of the feature engineer-
ing requiring better feature quality. And many works have
shown that the accuracy of classifying sSEMG signals using
DNN is generally higher. However, at this stage, the SEMG
signal recognition based on deep learning model is hopeful
to be improved in terms of the accuracy and the feature
engineering complexity.

In this paper, we propose a multi-channel sEMG signal
recognition model based on convolutional network (CNN)
and Stacking ensemble learning. In the model, the primary
classifier is formed using the Sequeeze-and-Excitation Block,
Inception Block and fully connected network, in which the
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features of SEMG signals are extracted using CNN to avoid
missing important feature information. Three different pri-
mary classifiers are trained using the representation data
of the time domain, frequency domain and time frequency
domain of the sEMG signal, respectively. The secondary
classifier uses the Stacking method to generate the final clas-
sification result by integrating three different primary classi-
fiers, which can further improve the classification accuracy.
In order to verify the performance of the model, we compare
the model designed with the current mainstream methods on
the classification accuracy.

This article is divided into four main parts. Section I
mainly introduces the research background and related work
on sEMG movements recognition. Multi-channel sEMG
movements recognition model we designed is described in
section II. Section III verifies the performance of the model
applied on the NinaPro DBS5 data set. Section IV summarizes
this paper.

Il. METHODS

A. FRAMEWORK

The framework of the proposed multi-channel SEMG move-
ments recognition is shown in Fig. 1 This framework is
divided into the DATA PROCESSING module and the
CLASSIFIER module. In the DATA PROCESSING section,
the SEMG is transformed and normalized to the time domain,
frequency domain and time-frequency domain data of the sig-
nal. The CLASSIFIER section is composed of Primary clas-
sifier and Secondary classifier. The primary classifier based
on CNN is mainly used for the feature extraction and the

sEMG Raw Data

DATA
PROCESSING

Data Processing
+ v

Time Domain Frequency Time-frequency :
Data Domain Data Domain Data |

Primary Primary
Classifier-2 Classifier-3

| |

Concatenation

Secondary
Classifier

CLASSIFIER

|
|
|
|
|
|
|
|
|
: Primary
| Classifier-1
|
|
|
|
|
|
|
|
|
|

FIGURE 1. Framework of multi-channel SEMG movements recognition.
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movements classification of SEMG signals. The secondary
classifier integrate three primary classifiers through Stacking
method, which is trained by time domain, frequency domain
and time-frequency domain data. The classification results
of the three primary classifiers are combined and applied
as feature vectors to train the secondary classifier. These
modules will be described in detail as follows.

B. DATA PROCESSING

Generally, SEMG is processed through sliding windows. For
real-time prosthetic control using SEMG, input delay is an
important factor to be considered. Hudgins ef al. [14] pro-
posed a maximum allowable delay of 300 ms. In this paper,
we select the sliding window of 200ms and the incremental
window of 100ms to divide the SEMG signal of each chan-
nel into a window sequence. Fig. 2 shows how to segment
single-channel SEMG signal by sliding window.

Window 1

AW LA RAR VAL
Stride

Window 2

Sequence n U\ W

Sequence 2

W

FIGURE 2. Single channel signal windowing.

Sequence 1

The sEMG signal data segmented can meet the require-
ments of real-time recognition. And to satisfy the require-
ments of model input, the data is aligned to a fixed length.
Next, in order to train the three primary classifiers, we per-
form Discrete Fourier Transform (DFT) and Discrete Wavelet
Packet Transform (DWPT) on the windowed sEMG sig-
nal to obtain the frequency domain representation and the
time-frequency domain representation of the sSEMG.

When performing DFT, assuming that the sequence length
of the current SEMG signal is N, we extend the length of
the sequence to 2N by adding O at the end.The extended
sequence is subjected to DFT, and the first N amplitude data
of the transformed sequence is taken as a frequency domain
representation of the signal.

Discrete Wavelet Packet Transform (DWPT) is an exten-
sion of Discrete Wavelet Transform (DWT), which can
perform time-frequency analysis and can analyze the
low frequency and high frequency coefficients of the
signal [15], [16]. Fig. 3 shows the decomposition process
of DWPT for sSEMG. Low-pass and high-pass filtering are
performed on the SEMG signals with the frequency range of
0~F Hz. The low-pass and high-pass filtering of the sSEMG
signal is downsampled, and the signal subsequence of the
first-order decomposition is obtained. Then, the subsequence
generated can be further decomposed for n times. And the
subsequences of different frequency bands are generated
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FIGURE 3. DWPT on windowed sEMG.

by the n-level wavelet packet transform. The wavelet type
used for wavelet packet decomposition and the number of
decomposition stages can be selected arbitrarily. In this paper,
we apply db7 wavelet and performed level 2 decomposition.
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FIGURE 4. sEMG image representation method.

Through the above processing, the SEMG signal data are
divided into time domain data, frequency domain data and
time-frequency domain data. Since the sSEMG data of dif-
ferent systems are collected by different analog-to-digital
converters, their values range is different. we performed
min-max normalization on the time domain, frequency
domain and time-frequency domain of sEMG. After the
normalization, we represent the time domain, frequency
domain and time-frequency domain data by images shown
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in Fig. 4. The time domain or frequency domain data of
the SEMG can be represented as an image of length X,
width M, and channel number 1, where M is the number of
acquisition channels of SEMG, and X is the number of sam-
pling points of each subsequence after the segmentation of
SEMG signal data by windowing. The time-frequency domain
data of the SEMG can be represented as an image of length Y,
width M, and channel number N, where M is also the number
of acquisition channels of SEMG. And Y is the length of each
subsequence after wavelet packet decomposition for SEMG
which has been segmented by the windowing method. N is
the number of subsequences obtained after wavelet decom-
position. These subsequences belong to different frequency
bands, so they are placed in different channels of the image.

C. CNN BASED PRIMARY CLASSIFIER

Inception Block is an important module of the primary classi-
fier and its structure is shown in Fig. 5. In module firstly, three
different types of convolution operations are used to extract
the different scale features of the input data. Then, a convo-
lution operation is performed on the connected multi-scale
feature data for the purpose of feature fusion and dimen-
sionality reduction. If the original data [H, W, 1] with the
length H, the width W, and the number of channel 1, the scale
of each type of feature datais [H, W, Filters] after performing
three types of convolution operations. Each type of feature
data is connected on the channel to obtain feature data with
[H, W, 3*Filters] size.Then perform a convolution operation
on the feature data to obtain output data of [H, W, leters]
size. The module can be expressed as Eq. 1, where y( is the
jth type output of the ith sample.Fon(x, [m, 1, filters]) is a
convolution operation on a sample using a convolution kernel
of size [m, n, filters].Concat(x1, x2, ...) is the operation of

[HW.1]
[H, W, Filters] Y [H, W, Filters]

1*1*Filters 1*3*Filters 1*3*Filters

stride 1 stride 1 stride 1

[H, W, Filters]
A

1*3*Filters

stride 1

[H, W, Filters]

[H,W,3*Filters]

1*1*Filters
stride 1

[H, W, Filters]

FIGURE 5. Inception block.
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FIGURE 6. SE block.

connecting to the input samples. yg) is the output of the
ith sample.

YW = Feom®, [1, 1, filters])

W = Feom(?, [1,3, filters))

W = Feon(Feom(@?, 1, 3, filters1), [1, 3, filters])

Y = Feom(Concar3\, y, y)). (1, 1, filters]) (1)

The Sequeeze-and-Excitation (SE Block) module is another
important module in the primary classifier. Fig. 6 shows the
structure of the module. SE Block is considered to improve
network performance at the feature channel level. The struc-
ture can automatically acquire the importance of each fea-
ture channel by learning. It can enhance useful features and
suppress the features that are less useful for current tasks
according to this importance.

First, the input data of the length and width and the number
of feature channels [H, W, C] are compressed along the
spatial dimension into data of the scale [1, 1, C]. This is to
turn each two-dimensional feature channel into a real number
which has a global receptive field to some extent. And the
dimension of the output data matches the number of feature
channels of the input data. Then, the weight of each channel
is generated by parameters that can be learned, and each
weight value is normalized between 0~1. Finally, the input
feature data is weighted layer by layer, and the original fea-
tures are recalibrated in the channel dimension. The pseudo
code for the Sequeeze-and-Excitation module is shown in
Algorithm 1 [17].

This paper combines Inception Block and SE Block to
design the sSEMG signal the feature extraction layer of the pri-
mary classifier, named IMS Layer which is shown in Fig. 7.
First, the data is extracted by Inception Block for multi-scale

VOLUME 7, 2019

Algorithm 1 Sequeeze-and-Excitation
Input: Feature data X and X € R xWx0)
Output: X' ¢ RA*WxC)
C C
Initialize: W; € R©€*7) W, ¢ Rt *©)
Where k is an integer greater than 0, taken 4 in this

paper.
Sequeeze: Calculate Z € R1*©):

2 = gy Dimt Dyt Xeli.])

Where x.(i, j) is the feature data of the (i, j)
position of the cth channel of the input data and z. is
converted by the cth channel.

Excitation: Calculate S € RU*©):

S=48(c(ZW1)W2)

Where o is the ReLU function and § is the
Sigmoid function.

Scale: Calculate X’ € RH*WxC).

Xl (@, J) = xc (i, ) X ze

Where x./(i, j) is the feature data of the (i, j)
position of the cth channel of the output data.

Return: X’

Inception Block
Filters: N
Activation: f

v

Max Pooling
Pool size: [H, V]

feature extraction. Then, the data is dimensioned through the
Max Pooling layer. Finally, it is recalibrated by the impor-
tance of each feature channel of SE Block. In the Inception
Block, N is the number of filters used for convolution. And
f represents the activation function applied for the output.
In Max Pooling, H and W are the length and width of the
pooled core, respectively.

The primary classifier designed consists mainly of the
Input Layer, IMS Layer, Fully-connected (FC) Layer and
output layer, which is shown in Fig. 8. In this network,
the SEMG signal processed can be directly input, and the
feature of the sSEMG signal can be automatically extracted.
The pre-processed SEMG signal will be input to the four-layer
IMS Layer for multi-scale feature extraction. Next, the multi-
channel feature data is transformed into a one-dimensional
feature vector, and the three-layer fully connected layer is
applied for movements classification.

The selection of network parameters and activation func-
tions for each layer is given in TABLE 1. It is worth noting
that CRelu function is selected as the activation function for

FIGURE 7. IMS layer.
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FIGURE 8. Structure of CNN-based primary classifier network.

TABLE 1. Network parameters and activation functions selected in this
paper .

Name Number Parameters Activation

1 Filters:32 Pool size:[1, 2]
2 Filters:32 Pool size:[1, 2]

IMS Layer
3 Filters:64 Pool size:[1, 2]
4 Filters:64 Pool size:[1, 5] CRelu
1 Units:1024

FC Layer 2 Units:512
3 Units: 128

Output Layer N/A Units:40 Softmax

both IMS Layer and FC Layer in the network. CRelu is an
improved form of the Relu function. If the output variable
is x, the output is activated by the CRelu function is [Relu(x),
Relu(-x)]. When Relu is used for activation, the negative
information extracted by the network will be erased and
result in network redundancy, which can be solved using
CRelu [18]. Moreover, when tested with CRelu, the accuracy
rate is about 1% higher than that with Relu. Droupout is added
between FC layers to prevent overfitting.

D. STACKING BASED SECONDARY CLASSIFIER

Stacking ensemble method, an integrated learning method,
combines multiple classification or regression models
through a meta-classifier or a meta-regressor. The base layer
model is trained on the complete training data set and the
outputs will be applied for new model training. Algorithm 2
shows the general algorithmic process of Stacking [19].

We use DFT and DWPT to obtain the frequency domain
and time-frequency domain data of the sSEMG signal.The
time domain, frequency domain and time-frequency domain
data are used to train the primary classifier to obtain three
different classifiers.Stacking method is applied to integrate
the results of the three different primary classifiers to improve
performance.

Fig. 9 shows the network structure of our secondary clas-
sifier based on the Stacking method. The three inputs of
the secondary classifier, Outputs-1, Outputs-2, and Outputs-
3, are the results of three primary classifiers (trained by
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Algorithm 2 Stacking
Input: Training data D = {x;, y;}]"
Output: Ensemble classifier H
Step 1: Learn base-level classifiers
Fort =1t T do
learn h; based on D
end for
Step 2: Construct new data set of predictions
Fori=1tomdo
Dy, = {x], yi} where x; = {h1(x1), ..., hr (x;)}
end for
Step 3: Learn a meta-classifier
Learn H based on Dy,
Return: H

data in time domain, frequency domain, and time-frequency
domain, respectively). We form a three-channel feature map
that is recalibrated by SE Block for the importance of these
primary classification results, highlighting important primary
classification results and suppressing less important primary
classification results. The calibrated feature map is stretched
into a one-dimensional feature vector, and the classification
result is output through two layers of droupout fully con-
nected layers.

E. LOSS AND OPTIMIZATION

The primary classifier and the secondary classifier designed
in this paper are all multi-classifiers. Cross Entropy is used as
the loss function in the form Eq. 2. Where M is the batch size
of the training sample, N is the number of classifications of
the output, y/(.’) is the probability that the sample j is actually

the ith class, and )A)J(.') is the probability value of the ith class
for the sample j prediction.

M

N
1 4 .
(ORPRPN()
loss = E E Yj logyj 2)

j=1i=1

The Adam optimization method combines the advantages of
both the AdaGrad and RMSProp optimization algorithms.
The first moment estimation (mean of the gradient) and
the second moment estimation (gradient uncentered vari-
ance) are comprehensively considered to calculate update
step size [20]. In general, the Adam method is a better opti-
mization method in most cases. Therefore, Adam was chosen
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FIGURE 9. Structure of stacking-based secondary classifier network.

as the optimization method for the primary classifier and the
secondary classifier.

lll. RESULTS

A. DATA SET

NinaPro [21] is an open source project that aims to help
EMG prosthetics research through the open sEMG dataset.
NinaPro DBS5 dataset is applied for the model’s train and
evaluation in this work. It mainly contains SEMG signal data
for 52 different hand movements of 10 subject in DB5 dataset
and some examples of hand movements are listed in Fig. 10.
In DBS, 52 different types of hand movements are divided
into three parts [22], [23]: Basic movement of the fin-
ger (Exercise A), Isometric, isotonic hand configurations
and basic wrist movements (Exercise B), Grasping and

FIGURE 10. Some movements in NinaPro DB5.
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TABLE 2. Subject basic information.

Subject Laterality Gender Age Height Weight
01 Right Handed Male 23 187cm 67kg
02 Right Handed Male 28 187cm 75kg
03 Right Handed Male 28 170cm 63kg
04 Right Handed  Female 22 156cm 52kg
05 Right Handed ~ Female 28 160cm 61kg
06 Right Handed Male 24 170cm 65kg
07 Right Handed Male 32 172cm 78kg
08 Right Handed Male 31 170cm 74kg
09 Right Handed Male 34 176¢cm 68kg
10 Right Handed Male 30 173cm 83kg

functional movements (Exercise C). Basic information for
10 subjects is listed in TABLE 2, including: Laterality, Gen-
der, Age, Height, and Weight. According to the prompts on
the computer screen, each subject finished the designated
movement. For each movement, it required repeating 6 times,
with 5s for action span as well as 3s for relaxation span in each
time.

The acquisition device used in the DB5 dataset is a double
MYO bracelet that is worn on the arm of the human body
and staggered by 22.5° between the two bracelets. Each
MYO bracelet has eight sets of acquisition electrodes that
capture the sSEMG signal at a 200Hz sampling frequency with
a built-in ADC resolution of 8bit. Therefore, the DB5 data
set is 16 channels of sEMG signal data, and its value is
between -128 and 128.

The MYO bracelet is a wearable SEMG acquisition device.
Although the accuracy of the data collection is lower than
that of specialized medical acquisition equipment. But its low
cost is very suitable for large-scale use. Parallel wear of mul-
tiple MYO bracelets makes it easy to achieve multi-channel
extended acquisition. We believe that using this device as a
human-computer interaction interface to help people with dis-
abilities control prosthetics is of certain research significance.
Therefore, we designed a recognition model for the sSEMG
signals collected by such devices, and selected the DB5 data
set to test the performance of the model.

In this paper, the hand movements data in NinaPro DBS is
used for training and testing. Each movements in the data set
was repeated 6 times. We used the first 4 replicates as the
training set and the last 2 replicates as the test set. Fig. 11.
is the result for division of 40 movements data from subject 5,
which shows the proportion of each type of data in the
current collection. Most of the subsequent experiments were
performed using 40 movements in Exercise B and Exercise C
in DBS5, but a few of them also used Exercise A.

B. MODEL OPTIMIZATION AND FEATURE VISUALIZATION

Firstly, the primary classifier is trained and evaluated using
loss and accuracy as the criteria. Fig. 12 shows the train-
ing and evaluation of subject 5’s sEMG data (40 move-
ments including Exercise B and Exercise C).We use the time
domain, frequency domain and time-frequency domain data
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FIGURE 11. Subject 5's sEMG data of different hand movements is
divided into training set and testing set.

of the SEMG signal to train and evaluate three different
primary classifiers, respectively. The blue and red curves in
the figure are the accuracy and loss curves of three different
primary classifiers in training and evaluation.In this paper,
the method of batch training (the batch size is 500 samples
per time) is used to train the model. The accuracy and loss of
the training set and test set are recorded every 100 steps in the
training process. The horizontal axis in the figure represents
the number of steps of training, and the double vertical axis
represents accuracy and loss, respectively. When using the
time domain, frequency domain, and time-frequency domain
data for primary classifiers training, the accuracy before
500 steps rises sharply and the loss decreases sharply. After
500 steps, the upward trend of accuracy and the downward
trend of error will slow down and converge to a better
result. The three different classifiers which is trained by time
domain, frequency domain and time-frequency domain data
respectively can reach test accuracy 76%, 75% and 75%.
Then, the secondary classifier is trained and evaluated.
The outputs of the three primary classifiers trained in the
time domain, frequency domain, and time-frequency domain
are used as features for the training of the secondary clas-
sifier. Fig. 13 also shows the accuracy and loss curves for
the secondary classifiers trained and evaluated on subject 5
data (40 movements including Exercise B and Exercise C).
Before 200 steps, the error dropped sharply and the accuracy
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FIGURE 12. Three primary classifiers’ accuracy and loss curve which is
trianed and evaluated by using time domain, frequency domain and
time-frequency, respectively.
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FIGURE 13. Secondary classifier's accuracy and loss curve.

also rose linearly. At approximately 1000 steps of training,
the accuracy on the training set and test set is near optimal.
Three primary classifiers trained in the data from subject 5 are
integrated by secondary classifier can reach 77% accuracy.
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FIGURE 14. Three gesture feature map visualization of subject 5.

We also takes the three actions of subject 5 as an example
making visualization of feature extracted by primary classi-
fier in Fig. 14. The feature is generated by the last SE Block
of the primary classifier, with a size of 16%1*128. It can
represent 128 features of 16-channel sSEMG data extracted
by the primary classifier. We convert it into a 16*128 two-
dimensional matrix and visualize it using images. White
frames on the three feature maps show the differences that
can be distinguished by the naked eye. But the feature of
extracting signal data applying convolution operation is not
as easy to understand as the feature extracted from image.

C. COMPARISON OF DIFFERENT WINDOW LENGTHS

AND SLIDING LENGTHS

Different sliding lengths and different window lengths are
used to perform sliding segmentation on SEMG signal data.
TABLE 3, TABLE 4, TABLE 5 are the results of primary
classifiers training and testing using data (40 movements of
Exercise B and Exercise C) generated by different sliding
lengths. TABLE 3 is the accuracy tested with time domain
data. TABLE 4 is the accuracy tested with frequency domain
data. TABLE 5 is the accuracy tested with time-frequency
domain data. We performed the experiments using data from
10 subjects and obtain the mean of the accuracy.

TABLE 3. Results of training on time domain data using different sliding
lengths.

Windowing/Sliding ~ 200ms/80ms ~ 200ms/100ms ~ 200ms/125ms
1 70.58% 70.47% 70.15%
2 73.92% 72.92% 71.43%
3 77.58% 76.17% 75.99%
4 65.81% 64.61% 64.08%
5 76.53% 76.16% 74.94%
6 70.45% 70.98% 68.44%
7 62.79% 63.37% 62.41%
8 64.47% 64.03% 62.22%
9 73.51% 73.45% 72.54%
10 74.31% 74.93% 75.90%

avg 71.00% 70.71% 69.81%
std 5.13% 5.01% 5.36%

Fig. 15 shows comparison of the accuracy of differ-
ent primary classifiers which are trained by data splitting

VOLUME 7, 2019

TABLE 4. Results of training on frequency domain data using different
sliding lengths.

Windowing/Sliding ~ 200ms/80ms ~ 200ms/100ms ~ 200ms/125ms
1 68.41% 68.96% 68.69%
2 72.54% 71.04% 71.83%
3 73.49% 73.56% 74.42%
4 63.03% 65.65% 64.53%
5 74.63% 73.78% 74.41%
6 68.12% 69.19% 68.20%
7 63.47% 62.90% 62.24%
8 62.62% 62.76% 62.16%
9 71.07% 72.59% 73.49%
10 74.91% 74.21% 74.16%

avg 69.23% 69.46% 69.41%
std 4.84% 4.39% 5.00%

TABLE 5. Results of training on time-frequency domain data using
different sliding lengths.

Windowing/Sliding ~ 200ms/80ms ~ 200ms/100ms ~ 200ms/125ms
1 69.42% 70.41% 69.81%
2 71.63% 71.45% 71.57%
3 74.03% 75.37% 73.78%
4 64.14% 65.69% 63.29%
5 74.50% 74.78% 74.55%
6 69.71% 69.00% 68.64%
7 62.01% 62.07% 61.11%
8 62.34% 62.52% 61.68%
9 72.67% 73.93% 72.16%
10 74.19% 74.11% 74.56%

avg 69.46% 69.93% 69.12%
std 4.92% 5.00% 5.27%

with different sliding lengths. Regardless of using time
domain, frequency domain or time-frequency domain data,
the performance of models trained utilizing data segmentated
with 80ms sliding length or 100ms sliding length is better
than 125ms. The performance of the models trained with data
splitting using 80ms or 100ms sliding length is almost the
same. Therefore, a system with very high latency require-
ments should use a sliding length of 80 ms or less for SEMG
data segmentation. But this has also led to an increase in
training data. The following comparative experiments in this
paper are all divided by the sliding length of 100ms.

Based on the 100ms sliding length, primary classifier
and secondary classifier are trained and evaluated using
SEMG data (40 movements of Exercise B and Exercise C)
segmented with window lengths of 200ms and 300ms.
TABLE 6 and TABLE 7 are the accuracy of models which
are trained by using data splitted with window lengths
of 200ms and 300ms. We also performed the experiment
on the sSEMG data of 10 subjects and obtained the average
accuracy. Three different primary classifiers trained by the
data segmented with 200ms window length can achieve an
accuracy of 70.92%=+9.95% (time domain), 69.66%=9.67%
(frequency domain), and 69.79%+9.80% (time-frequency
domain). Accuracy with secondary classifier integration can
reach 72.09%=+10.11% (stacking). Three different primary
classifiers trained by the data segmented with 300ms win-
dow length can achieve an accuracy of 75.02%=9.78%
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FIGURE 15. Comparison of accuracy with different sliding lengths.

TABLE 6. Results of training using 200ms window length and 100ms
sliding length segmentation.

Model Time Frequency  Time-frequency  Stacking
1 71.09% 69.23% 69.03% 72.65%
2 73.14% 71.34% 71.38% 73.73%
3 76.62% 74.13% 75.22% 77.94%
4 65.04% 64.02% 64.12% 66.71%
5 76.60% 75.65% 75.58% 77.32%
6 71.05% 69.61% 69.03% 72.07%
7 63.33% 62.10% 62.10% 63.40%
8 64.07% 63.45% 63.86% 65.59%
9 73.04% 72.36% 73.41% 74.87%
10 75.25% 74.71% 74.14% 76.64%

avg 70.92% 69.66% 69.79% 72.09%
std 5.08% 4.94% 5.00% 5.16%

TABLE 7. Results of training using 300ms window length and 100ms
sliding length segmentation.

Model Time Frequency  Time-frequency  Stacking
1 74.87% 71.93% 74.05% 75.71%
2 77.10% 74.68% 76.01% 78.16%
3 80.61% 77.88% 78.64% 81.01%
4 71.15% 69.73% 69.92% 72.49%
5 80.30% 78.34% 80.06% 81.10%
6 75.51% 72.62% 73.28% 75.83%
7 66.16% 65.65% 67.12% 67.77%
8 68.58% 67.27% 67.23% 69.60%
9 75.88% 74.60% 76.66% 77.10%
10 80.00% 78.17% 78.35% 80.81%

avg 75.02% 73.09% 74.13% 76.02%
std 4.99% 4.51% 4.70% 4.75%

(time domain), 73.09%=+8.84% (frequency domain), and
74.13%+9.20% (time-frequency domain). Accuracy with
secondary classifier integration can reach 76.02%=+9.31%
(stacking). The above results were calculated with a con-
fidence level of 95%. The model trained by the data
segmentated with 300ms window length is more accurate
than segmentated with 200ms window length. As the number
of data points increases, the amount of useful information
that can be extracted increases, and the corresponding delay
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is also longer. Therefore, comprehensive consideration is
needed in practical applications.

D. COMPARISON OF DIFFERENT MODELS

Experiments were carried out applying the Exercise A and
Exercise B action groups of the DBS5 database in [13].
It describes the accuracy of hand movements classification
using the LDA model, SVM model and RMS, TD [24], HIST
and mDWT. The author also designed the LCNN model for
the classification of hand movements and conducted experi-
ments to determine the accuracy of the classification.We also
used the same experimental method as the one in [13] for the
model designed in this paper. Fig. 16 is the comparison on
accuracy between the primary classifier, secondary classifier
designed by us with the model in [13]. Three primary clas-
sifiers (which are trained by time domain, frequency domain
and time-frequency data) or secondary classifier performed
better than LDA, SVM, and LCNN. In the case of training
model applying Exercise A sSEMG data, our best primary
classifiers improved 5% over LCNN in accuracy. And sec-
ondary classifiers have an 7% improvement over LCNN.
In the case of Exercise B SEMG data, our best primary classi-
fiers improved 13% over LCNN in accuracy. And secondary
classifiers have an 14% improvement over LCNN.

100
Movements

s Exercise A
s Exercise B

LDA SVM LCNN Time  Frequency Time-Freq Stacking

(Primary classifier) (Secondary
classifier)

80

Accuracy(%)
2

5]

FIGURE 16. Comparison of training results on Exercise A and Exercise B.

The sEMG signal data of 40 hand movements is segmented
using 200ms window length and 100ms sliding length in [7].
Four features of RMS, TD, HIST and mDWT were extracted,
and SVM and Random Forests models were used for classi-
fication training. In this paper we use the same method to
segment the SEMG data of 40 movements from Exercise B
and Exercise C. And we apply the data processed at same to
train our models. Fig. 17 is a comparison between different
model classification accuracy. The best accuracy of SVM
or Random Forests which is trained on the data of DB5-1
(8-channel sEMG data collected on the MYO bracelet on the
upper side of the arm) is 55.31%. And the best accuracy in
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FIGURE 17. Comparison of training results on segmenting the
40 movements data of Exercise B and Exercise C using the 200ms window
length and 100ms sliding length.

three different primary classifiers which are trained by time
domain, frequency domain and time-frequency domain data
is 57.54%. The accuracy of secondary classifier increased to
58.74%. In the case of the DB5-2 (8-channel SEMG data col-
lected from the MYO bracelet under the arm), the best accu-
racy of SVM or Random Forests was 54.76%. And the best
accuracy in three different primary classifiers is 58.73%. The
accuracy of secondary classifier increased to 59.57%. In the
case of the DB5-AIl (16-channel sSEMG data collected from
double MYO bracelet), the best accuracy of SVM or Random
Forests was 69.04%. And the best accuracy in three different
primary classifiers is 70.92%. The accuracy of secondary
classifier increased to 72.09%. As a result, the accuracy of
the primary classifier and the secondary classifier designed
by us is better than SVM and Random Forests. Comparing
to SVM and Random Forests, the accuracy of the secondary
classifier we desgin increased by 3.43%, 4.74%, and 3.05%
on DB5-1, DB5-2, and DBS-AIL.

IV. CONCLUSION

The combination of CNN and Stacking ensemble learning is
used for SEMG hand movements classification, which can
overcome the limitation of the feature engineering requir-
ing better feature quality. Three different primary classifiers
based on CNN are trained using time domain, frequency
domain and time-frequency domain data of the SEMG sig-
nal. The primary classifier is mainly composed of Incep-
tion Block, SE Block and fully-connected layer, in order
to directly extract and classify the SEMG signals after pre-
processing. Based on the stacking ensemble learning algo-
rithm, a secondary classifier is designed to integrate the
three primary classifiers to further improve the accuracy of
SEMG hand movements classification. Secondary classifier
is trained using the feature data which is generated from three
primary classifiers. In the experiments, the primary classifier
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and the secondary classifier were trained and tested using the
subject 5’s SEMG data as an example firstly. Next, we per-
form the experiments on the data segmented by different slid-
ing lengths and different window lengths. Experiments were
performed on sEMG data of 10 subjects, respectively, and
the mean of the accuracy was obtained. Finally, the models
designed are trained and tested using the experimental meth-
ods in [7] and [13]. The experimental results demonstrate the
primary classifier and secondary classifier designed have a
better peformance compared with LDA, SVM, LCNN and
Random Forests.
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