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ABSTRACT Multi-pass synthetic aperture radar interferometry (InSAR) stack data denoising is a significant
prerequisite for extracting geophysical parameters. InSAR stack data can be considered as a third-order
tensor in the complex domain, and the process of tensor decomposition to acquire the low-rank tensor
has been employed as an effective interferometric phase filter for InSAR stack data. It is noted that the
definition of tensor rank is the core of tensor-based filter. In this paper, we investigate the properties of
Tucker rank, CANDECAMP/PARAFAC (CP) rank and Kronecker Basis Representation (KBR) in InSAR
stack data, and then we found that it is suitable to extend KBR, as a hybrid tensor rank representation,
into InSAR tensor filtering. Firstly, an improved InSAR phase tensor model is utilized to represent the
phenomenon of interferometric phase, which perceives the observed InSAR phase tensor as the combination
of low-rank, sparse noise and Gaussian noise tensors. Based on the principle of KBR, then the novel phase
filtering method, named as KBR-InSAR, is proposed to decompose the complex InSAR tensor supported
by the improved InSAR phase tensor model. With the comparison of other tensor filters, i.e. HoRPCA and
WHoRPCA and the widespread traditional filters operating on a single interferometric pair, e.g. Goldstein,
NL-SAR, NL-InSAR and InSAR-BM3D, it can be proved that the KBR-InSAR can efficiently reduce the
noise with superior fringes preservation in the experiments on the simulated and real InSAR stack data
collected from Sentinel-1B.

INDEX TERMS Synthetic aperture radar (SAR), SAR interferometry (InSAR), tensor decomposition, KBR,
phase filtering.

I. INTRODUCTION
Multi-pass synthetic aperture radar interferometry (InSAR)
technique has gained a great achievement on elevation inver-
sion [1] and deformationmonitoring [2] by processing InSAR
stack data. The elimination of noise in InSAR stack data is
a significant prerequisite for extracting geophysical parame-
ters. There are some straightforward approaches, still popular
among researchers, focus on filtering on a single interfer-
ometric pair. The first attempt to remove phase noise sim-
ply averages a fixed-size sliding window (boxcar filter) [3]
which has caused an unavoidable loss of resolution. The
adaptive filters [4]–[6] are often used in two-dimensional
image processing. In fact, in the field of interferometric phase
filtering, there are also some adaptive methods. Goldstein
filter [7], characterized by construction in frequency domain,
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adaptively adjust based on local fringes, but it has the dete-
riorated performance at the region of dense fringes or high
noise intensity [8]. The non-local filter method averages
the similar pixels not only around the center pixel but also
going through the entire image, including SAR images [9]
and polarimetric images [10]. Based on non-local means
(NL-means) [11], some filters for interferograms have been
proposed with appropriate phase-oriented method, e.g. Non-
local InSAR (NL-InSAR) [12]. Furthermore, in order to
enhance the robustness of non-local algorithms, a denois-
ing framework for (In)SAR called as Nonlocal SAR
(NL-SAR) [13] is proposed to handle the various fringe
patterns with adaptive selection of filter parameters, e.g. the
size of search window. An improved version of NL-means is
proposed relying on the combination of non-local conception
and Wiener filter, called as non-local block-matching 3-D
(i.e. BM3D) [14]. Researchers extend BM3D to filter the
noise in interferogram, which is called as InSAR-BM3D [15],
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and that has a good performance in most cases. In general,
non-local filters guarantee a good preservation of fringes in
phase slowly-changing areas.

Recently, the phase filtering approaches based on tensor
decomposition effectively restore the interferograms by using
the entire InSAR stack data [16], [17]. In fact, multi-baseline
and multi-temporal InSAR stack data is third-dimensional,
where the first and second dimension are spatial distribu-
tion of an interferogram, and the third dimension denotes
the temporal variation of the interferograms, i.e. the num-
ber of interferometric pairs. Therefore, InSAR stack data
conforms to the mathematical representation of tensor and
it has a low rank structure. Although principal component
analysis (PCA) [18] can extract this low rank structure,
the results obtained by PCA obviously deteriorate because
of the existence of the outliers in different interferograms.
In order to handle the outliers, robust PCA (RPCA) [19] is
proposed to decompose the observed two-dimensional matrix
into a low rank matrix and an outlier matrix, however, it
destroys the original structure of high-dimensional data, espe-
cially for InSAR stack data. In recent years, higher order sin-
gular value decomposition (HoSVD) [20] constructs a certain
mathematical foundation for the analysis of high-dimensional
data. Based on that, higher order RPCA (HoRPCA) which is
the promotion of RPCA and HoSVD [21] is proposed and
have a great success in image restoration. HoRPCA is first
applied to interferometric phase filtering by Kang et al. [16],
as an effective denoising step in the framework of ground
displacement time-series recovery. In this method, InSAR
stack data modeled as a tensor can be decomposed into low
rank tensor and outlier tensor (i.e. noise in InSAR stack
data). Further improvements are proposed in [17], where
weighted HoRPCA (WHoRPCA) outperforms by reweight-
ing the low-rank and outlier tensors compared to NL-InSAR
and HoRPCA.

The low rank reflects not only the linear correlation within
the data, but also the measurement of data sparsity. The clean
InSAR stack data is a low-rank tensor, which is because the
number of major factors which lead to variation in InSAR
stack data is relatively small, and it has been proved in [17].
Therefore, the key to tensor filtering is estimating the low
rank tensor. However, due to the correlation between tensor
modes, it is a major challenge to define tensor rank in order
to obtain low-rank tensor [22]. The main definitions of tensor
rank include Tucker rank [20], CANDECAMP/PARAFAC
(CP) rank [20] and Kronecker basis representation (KBR)
[23] proposed recently. Tucker rank refers to the vector con-
taining the ranks of each mode unfolding of tensor, and it
can be relaxed to the sum of the kernel norms of each mode
unfolding of tensor for computational convenience, i.e. the
sum of nuclear norms [24]. The effectiveness of the relaxation
is verified in [25] and [26]. As stated in [16], HoRPCA
based on Tucker rank is used for tensor decomposition to
obtain the low rank tensor, and this denoising method based
on HoRPCA improves the accuracy of extracted geophysical
parameters. WHoRPCA in [17] utilizes the same tensor rank

by iterative re-weighting to further improve the estimation
accuracy of low rank tensor.

CP decomposition method can decompose a tensor into
the sum of Kronecker bases, where the number of Kro-
necker bases is CP rank. It is worthy to note that CP rank
should be predetermined before CP decomposition, which is
a challenge for the computation of appropriate CP rank [27].
KBR is composed of two parts: one is the L0 norm of the
core tensor obtained by HoSVD and the other is the product
of the ranks of each mode unfolding of tensor. Considering
that no published studies using CP rank or KBR to measure
the sparsity of InSAR tensor, a sparsity measure of InSAR
tensor is analyzed in this paper according to the different
definitions of tensor rank, and it is suitable to extend KBR,
as a hybrid tensor rank representation, into InSAR tensor
filtering.

The previous InSAR phase tensor model in [16], [17]
only decomposes a tensor into the low rank tensor and the
outlier tensor, the outlier tensor here represents noise in
InSAR stack data, and the low rank tensor represents the
noise-free interferometric phase. In fact, the interferogram
is not only corrupted by the isolated phase jump points
caused by spatial under-sampling but also contains addi-
tive Gaussian noise (e.g. system thermal noise) [28], [29].
These two types of phase noise have different distribution
properties. Therefore, in this paper, firstly, an improved
InSAR phase tensor model is utilized to represent the real-
ity of interferometric phase, which perceives the observed
InSAR phase tensor as the combination of low-rank, sparse
noise and Gaussian noise tensors. Based on the principle
of KBR, then the novel phase filtering method, named as
KBR-InSAR, is proposed to decompose the complex InSAR
tensor supported by the improved InSAR phase tensor model.
In our method, KBR is performed separately on real and
imaginary parts of InSAR tensor, and iterative optimiza-
tion with a proper constraint obviously promotes the filter
performance.

It can not only prove that KBR-InSAR performs better
than other tensor-based filter methods in most cases, but also
illustrate that KBR-InSAR has a better preservation of fringes
than the filter methods performing on a single interferometric
pair in the case of phase with fast-changing by the experi-
ments on the simulated and real InSAR stack data collected
from Sentinel-1B.

The rest of this paper is organized as follows. Section II
presents some mathematical notations of tensor and pre-
liminaries. Section III briefly introduces Tucker rank and
its tensor decomposition method applied in InSAR ten-
sor. Section IV describes CP rank and the limitations of
its application in InSAR tensor. Section V elaborates an
improved InSAR phase tensor model, and the proposed
KBR-InSAR algorithm in detail. Section VI provides experi-
mental results by using the simulated and real data to eval-
uate the filter performance. Discussions about our method
present in Section VII. The conclusion is given in the final
part.
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II. NOTIONS AND PRELIMINARIES
A. TENSOR
Tensor is the extension of the concept of vector and
matrix in multi-dimensional space, which corresponds to
a multi-dimensional array. We use boldface capital letters
to represent a matrix, e.g. A, and boldface Euler script let-
ters represent a tensor, e.g. A. A tensor can be written as
A ∈ RI1×I2×···×IN , where N represents the order of tensor,
and In (n = 1, 2, · · · ,N ) is the size of nth order. Mode-n
unfolding of tensor A is the process of rearranging tensor
to a matrix, i.e. A(n) ∈ RIn×(I1×···×In−1×In+1×I ···×IN ). For
example, assuming that A ∈ RI1×I2×I3 , and then mode-1
unfolding of tensor A is A(1) ∈ RI1×I2I3 .
For A1,A2 ∈ RI1×I2×···×IN , the inner product of A1 and

A2 is defined as

〈A1,A2〉 =
∑
i1

∑
i2

· · ·

∑
iN

A1(i1, i2, · · · , iN )

A2(i1, i2, · · · , iN ) (1)

Some norms appear in the following sections, and their
definitions are shown as follows. The nuclear norm of a
second-order tensor (i.e. a matrix) refers to the sum of the
singular values of the matrix, that is

‖A‖∗ =
∑

i
σi(A) (2)

where σi(A) is ith singular value of A. The L0 norm of a
tensor refers to the number of non-zero elements in the tensor,
i.e. ‖A‖0. For convenience of calculations, the L0 norm is
always relaxed as the L1 norm, which denotes as the sum of
absolute values of all elements, it is defined as

‖A‖1 =
∑
i1

∑
i2

· · ·

∑
iN

|ai1,i2,··· ,iN | (3)

where ai1,i2,··· ,iN is the element in N -order tensor A. The
Frobenius norm refers to the square root of the sum of all
tensor elements squares, and is defined as

‖A‖F =

∑
i1

∑
i2

· · ·

∑
iN

|ai1,i2,··· ,iN |
2

1/2

(4)

Some symbols used in the paper are explained as follows.
� denotes element-wise product. ◦ denotes the vector outer
product. ×n denotes n-mode product, which represents the
product of tensor and matrix.

B. InSAR TENSOR MODEL
InSAR stack data is a typical third-order tensor in com-
plex domain [16], and written as T ∈ CI1×I2×I3 , where
I1, I2 represent the spatial distribution of an interferogram,
and I3 denotes the temporal variation of the interferogram,
i.e. the number of interferometric pairs.

The noisy InSAR tensor is decomposed into low-rank
(information) tensor and outlier tensor (noise). Therefore,
the mathematical expression of InSAR phase tensor model
is written as

T = L+ E (5)

where T is the observed InSAR tensor, L is the low rank
tensor and E is the outlier tensor. Here, E reflects the phase
noise in InSAR stack data.

III. InSAR TENSOR FILTER METHOD BASED ON
TUCKER RANK
A. TUCKER RANK
InSAR tensor T ∈ CI1×I2×I3 can be decomposed by
HoSVD [20] as (6):

T = S ×1 U(1) ×2 U(2) ×3 U(3) (6)

where S ∈ CP1×P2×P3 (Pn < In, n = 1, 2, 3) is named as
core tensor, U(n) ∈ CPn×In is an orthogonal factor matrix
on the mode-n of T . The low-dimensional approximation
of S can be acquired by the SVD as (7):

S(n) = U(n)6(n)VH
(n) (7)

where 6(n) is a diagonal matrix composed of singular values.
V(n) is a column-wise orthonormal matrix, and (·)H is the
conjugate transpose.

It is noted that HoSVD, also known as Tucker decom-
position, is influenced by the existence of outliers [21],
which unfortunately is a frequent noise in InSAR stack
data. Therefore, a series of effective convex optimization
frameworks [21], [22] are proposed to handle the outliers by
taking the tensor rank as a reference. Tucker rank, used in
these frameworks, is a representative method to definite the
tensor rank, as shown in (8):

Trank(T ) = (r1, r2, r3)

rn = rank(T(n)) (8)

where Trank(·) represents Tucker rank of tensor T .
In singleton model, Tucker rank corresponds to the sum

of the nuclear norms of all unfolding matrices along all
modes, which is successfully used to recover low-rank tensor
from noisy tensor in [16], [21] and [30]. Tucker rank can be
rewritten as

Trank(T ) =
3∑

n=1

∥∥T(n)
∥∥
∗

(9)

The singular value, acquired by the decomposition of
matrices whether in real or complex domain, is non-negative
and real, and thus Tucker rank of InSAR tensor can be directly
calculated by (9).

In order to investigate the property of Tucker rank when
applied as the InSAR tensor rank, some noise-free complex
InSAR tensors are simulated with the same elevation and
deformation model but different ranges of spatial baseline
from 50m to 250m, and regarded as tensor group 1 (TG1).
The range of spatial baseline is 50m, denoted as the baseline
for one interferogram in InSAR tensor randomly distributed
in [−50, 50] m. Finally, TG1 contains 9 InSAR tensors.

Then Gaussian noise is added to each tensor in TG1 with
the SNR of 5dB, and the outlier ratio is 10%, which
means 10% of pixels in each interferogram of tensors
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FIGURE 1. Tucker rank of simulated tensor group (TG) 1, 2 and 3. TG1 is a
collection of noise-free simulated tensors with different baseline ranges.
Spatial baseline range equals x m, denoted that the baseline of an
interferogram in InSAR tensor is randomly distributed in [−x, x] m. TG2 is
TG1 added 5 dB Gaussian noise and 10% outliers. TG3 is TG1 added 5 dB
Gaussian noise and 30% outliers.

in TG1 are randomly set as −π or π , and regarded as tensor
group 2 (TG2). Tensor group 3 (TG3) is obtained when the
outlier ratio is up to 30%. The Tucker rank of each tensor in
these TGs is calculated by (9) and shown in Fig. 1.

It can be observed that when Tucker rank is used as the
sparsity measure of tensor, the rank of clean InSAR tensor
is lower than that of noisy tensor, and it can be inferred
that estimating the low rank tensor by Tucker decomposition
can achieve the purpose of denoising. In addition, because
the correlation for each interferometric pair in InSAR tensor
decreases, the Tucker ranks of all TGs increase when the span
of spatial baseline grows.

B. HORPCA FOR InSAR TENSOR FILTERING
Based on the model in (5) and Tucker rank, HoRPCA [21],
as a classic tensor decomposition method, is introduced to
estimate the low rank tensorL in InSAR tensor. The low-rank
problem of tensor decomposition can be modeled as

{L̂, Ê} = argmin
L,E

Trank (L)+ λ ‖E‖0 , s.t. T = L+ E

(10)

where λ is a regularization coefficient.
The problem in (10) is relaxed as follows, and the effec-

tiveness of the relaxation is verified in [16],

{L̂, Ê} = argmin
L,E

3∑
n=1

∥∥L(n)
∥∥
∗
+ λ ‖E‖1 , s.t.T = L+ E

(11)

The augmented Lagrangian function of (11) is shown as:

{L̂, Ê} = argmin
3∑

n=1

∥∥L(n)
∥∥
∗
+λ ‖E‖1

+ (
µ

2
‖L+ E − T ‖2F − 〈M,L+ E − T 〉) (12)

where M is the Lagrangian multiplier updated literately.
µ and λ are regularization coefficients. The low-rank tensor

FIGURE 2. The Tucker rank of the clean InSAR tensor, and the filtered
InSAR tensors acquired by HoRPCA and WHoRPCA.

can be obtained by solving (12) and using alternating direc-
tion multiplier method (ADMM) [31].

Because that the sparsity of each mode of InSAR
tensor is considered in the relaxation of Tucker rank,
HoRPCA balances the preservation of fringes and the elimi-
nation of noise. However, in some cases, its performance has
a serious deterioration, for example, the excessive smoothing
will occur when outlier ratio is high.

In order to investigate the property of HoRPCA affected by
various outlier ratios in InSAR tensor, one noise-free complex
InSAR tensor in TG1 with the spatial baseline range equaled
to 250 m is selected, and then the selected InSAR tensor is
added Gaussian noise with the SNR of 5dB and different
outlier ratios varying from 10% to 45%. The approach to sim-
ulate outlier is same as the method used in generating TG2.
The Tucker rank of clean InSAR tensor and filtered results
acquired by HoRPCA and WHoRPCA is shown in Fig. 2.

As shown in Fig. 2, the Tucker rank of InSAR ten-
sor filtered by HoRPCA decreases continuously when the
InSAR tensor is imposed with a higher outlier ratio. However,
HoRPCA will be over-smoothed when fringes are dense,
which leads to a lower Tucker rank of filtering result than
the noise-free InSAR tensor.

C. WHORPCA FOR InSAR TENSOR FILTERING
The convex optimization algorithm in HoRPCA satisfies the
requirement of low-rank tensor recovery under most circum-
stances, but it is subject to the existence of high outlier ratio
in the observed InSAR tensor. Therefore, the methods of
reweighted low-rank matrix [32] and outlier tensor [33] are
utilized to improve the performance of HoRPCA [17], here,
the optimization expression is rewritten as

{L̂, Ê} = argmin
L,E

3∑
n=1

∑
j

∣∣wnjσj(L(n))
∣∣
1 + λ ‖WE � E‖1

s.t. T = L+ E (13)

where wnj is the weight value assigned to the jth singular
values of L(n),WE denotes the weight tensor imposed on the
outlier tensor.
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FIGURE 3. MSE between the ideal reference and filtered tensor acquired
by WHoRPCA when the parameter pair adjusts. WHoRPCA processes the
simulated noisy InSAR tensor with 5 dB Gaussian noise (left) and 10 dB
Gaussian noise (right) with different parameters settings.

Eq. (13) is transformed into its augmented Lagrangian
function, which can be solved by alternating direction mul-
tiplier method (ADMM) [31] to obtain the low rank tensor.
The weights can be updated by (14)

wnj =
1

σj(T(n))+ ε1

WE =
1

|E | + ε2
(14)

where ε1 and ε2 are predetermined positive constants and set
to prevent denominator from zero.

However, as the initialization step, the setting of these two
predetermined parameters limits the accuracy ofWHoRPCA.
A simulated InSAR tensor in TG1 is selected as experimental
data to analyze the influence of the initialization parameters.
The outlier ratio is set to be 30%. Gaussian noise is added
to this simulated InSAR tensor with SNR of 5dB and 10dB,
respectively.

The Mean Square Error (MSE) is calculated between the
recovered InSAR tensor and the clean one to evaluate the
filter performance, i.e. MSE(angle(T0 � conj(L))), where
T0 is the clean complex InSAR stack data, L is the filtered
result of the noisy complex InSAR tensor T . conj(·) is com-
plex conjugate operator. MSE mentioned in later obeys this
calculation method.

The result is shown in Fig. 3 with respect to different pairs
of ε1 and ε2. Considering that the appropriate parameters
depend on SNR and other variables, when the improper
parameters are selected, it produces the unsatisfactory results
that deteriorate MSE. Therefore, the setting of these two
parameters is challenging for the application of WHoRPCA,
leading to the worse robustness than HoRPCA.

By introducing the weight strategy into HoRPCA, the flex-
ibility of tensor decomposition has been improved, and its
performance has been verified by simulated and real data in
related research [17]. As shown in Fig. 2, the Tucker rank
of low rank tensor obtained by WHoRPCA is higher than
that of HoRPCA, which indicates that WHoRPCA has a
better ability to estimate the low rank tensor. Although exces-
sively smoothing caused by HoRPCA has been modified
by WHoRPCA, more predetermined parameters are

FIGURE 4. MSE between the clean reference and filtered InSAR tensor
acquired by CP decomposition, when the different CP ranks are
predetermined. The most suitable CP rank of InSAR tensor is influenced
by different spatial baseline ranges, represented by the dotted lines with
different colors.

introduced into the algorithm, and it is difficult to set the
suitable parameters when the condition of noise varies.

IV. ANALYSIS OF InSAR TENSOR FILTER ON CP RANK
In CP decomposition, InSAR tensor T ∈ CI1×I2×I3 can be
decomposed to the sum of outer products of vectors shown
as (15).

T =
R∑
p=1

(ξpa(1)p ◦ a
(2)
p ◦ a

(3)
p ) (15)

where a(1)p , a(2)p and a(3)p are three orthogonal vectors, called as
Kronecker basis, ξp ∈ R is a coefficient of the pth Kronecker
basis, and R represents CP rank, corresponded to the high
order extension of the matrix rank.

CP rank should be predetermined before CP decomposi-
tion, which is challenging for the computation of appropriate
CP rank [27], and its convex relaxation is intractable. The
common strategy is to iterate CP rank from 1 until a better
result is achieved. To assess the performance of CP rank used
as InSAR tensor rank, a set of InSAR tensors in TG3 has been
selected as experimental data. As shown in Fig. 4, the MSE is
calculated when CP rank is predetermined to different values.

According to Fig. 4, the noisy InSAR tensor is well
recovered by CP decomposition with an appropriate CP
rank. For example, when the value of CP rank is 250,
the MSE of the filtered tensor with the spatial baseline range
of 250 m is around 0.90, which is more accurate to the same
noisy tensor filtered by HoRPCA. On the contrary, some
noise will be remained in the filtered interferogram with
higher CP rank, or over smoothing will occur in the case
of lower CP rank. Obviously, MSE is a good indicator of
selecting CP rank, however, there is no clean (or ideal) refer-
ence in reality, so it is difficult to set a suitable CP rank before
CP decomposition. When choosing the appropriate CP rank
according to the number of residuals remaining in the filtered
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FIGURE 5. The simplified InSAR phase tensor model (above) and its
improved form (below).

interferogram, the reduction of residuals may be caused by
excessive smoothing.

In summary, CP decomposition is based on the defini-
tion of tensor rank considering the entire tensor rather than
each mode of tensor. Although InSAR tensor recovery with
CP rank is still challenging, this definition of tensor rank
offers a good idea to measure the sparsity of InSAR tensor.

V. InSAR TENSOR FILTER METHOD BASED ON KBR
A. IMPROVED InSAR TENSOR MODEL
According to the Persistent Scatters InSAR (PSI)
model [28], [29], the decorrelation noise is additive in inter-
ferometric phase, and it contains both isolated phase jump-
points caused by spatial under-sampling and the Gaussian
noise, i.e. system thermal noise, dispersed throughout the
interferogram. However, the previous InSAR tensor model
assumes that the Gaussian noise and the isolated phase
jump-points will be extracted as an entire outlier tensor
(shown in Eq. (5)).

It is noted that these two types of noise have different
distribution properties. The phase jump-points uniformly dis-
tribute in the interferogram, while the Gaussian noise sat-
isfies the normal distribution, which is caused by system
noise and several decoherent factors. Therefore, the observed
InSAR tensor consists of low rank tensor, phase jump-points
tensor and Gaussian noise tensor, which is shown in (16).

T = L+ E1 + E2 (16)

where E1 is the phase jump-points (sparse noise) tensor and
E2 is the Gaussian noise tensor. The comparison between two
models is more intuitively shown in Fig. 5.

B. KBR
As explained above, Tucker rank concerns the modes of the
tensor while CP rank considers the entire tensor, and both
definitions have limitations when they are applied to measure
the sparsity of InSAR tensor. As a result, KBR, as a recently
proposed definition of tensor rank, combines the advantages
of Tucker rank and CP rank by concerning the entire tensor
and its each mode. The KBR of a third-order tensor T can be

FIGURE 6. KBR of simulated tensor group (TG) 1 and 3. TG1 is a collection
of noise-free simulated tensors with different baseline ranges. Spatial
baseline range equals x m, denoted as the baseline for one interferogram
in InSAR tensor randomly distributed in [−x, x] m. TG3 is TG1 added 5 dB
Gaussian noise and 30% outlier.

calculated by (17).

f (T ) = t ‖S‖0 + (1− t)
3∏

n=1

rank(T(n)) (17)

where S is the core tensor of T calculated by HoSVD, t is a
predetermined coefficient between (0, 1).

The first term of (17) is required to be solved in sparse
non-negative tucker decomposition [34], while InSAR tensor
in complex domain is obviously a more complicated data.
The relaxation of KBR to simplify the computation is shown
in (18).

f ∗(T ) = t
∑
i

(log(|si| + δ)− log(δ))/(− log(δ))

+ (1− t)
3∏

n=1

(
∑
m

log(σm(T(n)))/(− log(δ))) (18)

where δ is a small positive number, |si| is ith nonzero element
of S.

The sparsity of the real part of complex InSAR tensors in
TG1 and TG3 are calculated by (18) and shown in Fig. 6.
In this figure, the KBR rank of the noisy InSAR tensor is
larger than the corresponding clean one. Consequently, it is
feasible to introduce KBR to construct low rank decom-
position and realize the InSAR tensor filtering. The com-
plex InSAR tensor can be addressed to real-valued pairs,
e.g. phase/amplitude or real/imaginary parts of tensor. How-
ever, considering the 2π-wrapping of interferometric phase,
KBR is applied to measure the rank of real/imaginary parts
of complex phase tensor separately in our work.

C. InSAR TENSOR DECOMPOSITION METHOD
BASED ON KBR
In this section, the proposed filter of multi-baseline and
multi-temporal InSAR stack data is demonstrated in details.
We first split the InSAR stack data into real and imaginary
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tensors, and the optimization algorithm of KBR-RPCA [35]
is utilized to decompose the real tensor and imaginary tensor,
respectively. The constraint is imported to the decomposition
because of the elimination of amplitude information, shown
in (19). Therefore, based on the principle of KBR, the novel
phase filtering method, named as KBR-InSAR, is proposed
as follows:

{L, E1, E2} = KBRRPCA(Treal)+ j ∗ KBRRPCA(Timag)
s.t. Treal � Treal + Timag � Timag = O (19)

where O is an all-1 tensor. Treal is the real part of InSAR
tensor T , and Timag is the imaginary part. KBRRPCA(·) rep-
resents the algorithm of KBR-RPCA [35].

The decomposition of complex InSAR tensor is sup-
ported by the improved InSAR phase tensor model. Taking
the solution of real part as an example, and shown in the
followings:

KBRRPCA(Treal)

= min
Ireal ,N1,N2

f ∗(Ireal)+ α ‖N1‖1 +
β

2
‖N2‖

2
F

s.t. Treal = Ireal +N1 +N2 (20)

where Ireal is the real part of information tensor L, N1 is
composed of isolated phase jump-points in Treal , and
N2 represents Gaussian noise in Treal .
We first convert the (20) to its augmented Lagrangian

function as follows:

KBRRPCA(Treal) = argmin
L,E,N

f ∗(Ireal)+ α ‖N1‖1

+
β

2
‖Ireal +N1 − Treal‖2F

+

3∑
n=1

〈Ireal −Mn,Pn〉

+

3∑
n=1

σ

2
‖Ireal −Mn‖

2
F

(Ireal = Sr ×1 Ur(1) ×2 Ur(2) ×3 Ur(3)) (21)

where Sr is the core tensor of Ireal , and Ur(n) is a mode-n
matrix of Ireal . Mn is an auxiliary tensor initialized as Treal
and updating with iterations. Pn is the Lagrange multiplier,
and σ is a regularization coefficient.
Then the low rank tensor Ireal is acquired as the fil-

tered result by using ADMM algorithm to solve the aug-
mented Lagrangian function in (21). The imaginary part of
InSAR tensor uses the similar optimization method as the
above-mentioned process. Finally, the error tensor R of fil-
tered tensor is calculated by

R =
O

Ireal � Ireal + Iimag � Iimag
(22)

where Iimag is the low rank tensor of Timag, and L =

Ireal + j · Iimag. The average value of all elements in R is
compared to a threshold to judge whether the normalized

FIGURE 7. The terrain models and deformation models of two simulated
InSAR tensors. A simulated continuous undulating topography is used to
represent natural terrain, and a flat terrain with several raised regular
squares represents the case of urban with buildings.

FIGURE 8. Two simulated InSAR phase tensors (partial display).

InSAR tensor has been obtained through the current iteration.
If not, the optimization is repeated until the convergence
condition is satisfied. In summary, KBR-InSAR is presented
as Algorithm 1.

The optimization process of KBR-InSAR is mainly con-
sumed in KBR-RPCA algorithm and the update of error
tensor, the real and imaginary parts of InSAR tensor T .
In fact, updating Mn and Ur(n) is the main per-iteration cost
of KBR-RPCA, it needs to compute SVDs of In× (

∏
m6=n Im)

(m = 1, 2, 3) matrix and In × In matrix respectively, and
the time cost of a SVD of n × n matrix is O(n3). The
process of KBR-RPCA is terminated until the current devi-
ation of the low-rank tensor between iterations is smaller
than a preset threshold θ . Considering a third-order tensor,
i.e. T ∈ CI1×I2×I3 , is used as input for KBR-InSAR and
supposing the number of iterations is M , therefore, the time
complexity of the proposed algorithm is O(M × (log θ ×
(I31 + I32 + I33 ) + I1 × I2 × I3)), and its space complexity
is O(I1 × I2 × I3).
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FIGURE 9. The filtered results and their phase profiles crossing a raised square. The clean interferogram and its noisy version are shown in the upper left.
The pixels value (phase) in a local position of the filtered interferogram and its visual observation, which is selected from InSAR stack data 2, is used to
evaluate these filters, i.e., KBR-InSAR, HoRPCA, WHoRPCA, InSAR-BM3D, NL-InSAR, NL-SAR, Goldstein and Boxcar filter. Filters based on non-local, i.e.
InSAR-BM3D, NL-InSAR and NL-SAR, obtain the continuous phase values smoothly, which are not suitable for filtering the region with phase changed
rapidly.

Algorithm 1 Algorithm for KBR-InSAR
Input: InSAR Phase Tensor: T
1: initialize: Set threshold = 1.001
2: T = Treal + j ∗ Timag
3: while mean(R) > threshold do
4: Normalization Treal, Timag
5: Ireal = KBRRPCA(Treal)
6: Iimag = KBRRPCA(Timag)
7: Denormalization Ireal, Iimag
8: UpdateR by (22)
9: Update Treal by Treal = Ireal �

√
R

10: Update Timag by Timag = Iimag �
√
R

11: end while
12: T − Treal + Timag ∗ j
Output: phase = angle(T )

VI. RESULTS AND ANALYSIS
In this section, we present and analyze the quantitative and
qualitative results to prove the effectiveness of KBR-InSAR.

Experiments are performed on both simulated and real InSAR
stack data.

A. SIMULATED DATA
The first experiment is to compare the performance of tensor-
based filters (i.e. HoRPCA, WHoRPCA and KBR-InSAR).
The parameters of HoRPCA are set as the authors did in their
published papers. It is noted that the result of WHoRPCA is
greatly influenced by the initialization parameters. Therefore,
we select the best filtered results obtained during the process
of traversal parameters.

A complex InSAR tensor is generated as experimental
data with 25 interferograms, and each interferogram has
512 × 512 pixels. The range of spatial baseline is 250m,
which means the baselines of interferograms in the simu-
lated tensor are randomly distributed from-250m to 250m.
To sufficiently analyze the performance of these tensor-based
filters, the circular complex standard Gaussian noise with
SNR of 5dB, 7dB and 3dB are imported to the simulated
InSAR stack data, and partial pixels in each interferogram
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FIGURE 10. Filtered images (Bottom) and their error images (Top) generated by KBR-InSAR and other reference filters for the sparse fringes interferogram
in the simulated InSAR phase tensor with a natural terrain.

TABLE 1. Results on different tensor depth.

of InSAR stack data are randomly replaced by −π or π
according to the outlier ratio.

MSE is an effective evaluation applied to measure the
filtered results, and the evaluation results of MSE are shown
in Table 1 to 3. Especially, Table 1 proves that KBR-InSAR
maintains the accuracy when the tensor depth is relatively
small, where tensor depth is the number of interferograms
contained in the InSAR stack data. Based on the improved
InSAR phase tensor model, the noise in InSAR stack data is
further distinguished by KBR-InSAR. KBR-InSAR is supe-
rior to other tensor-based methods whether in the case of
strong Gaussian noise (see Table 3) or high outlier ratio

TABLE 2. Results on different outlier ratio.

TABLE 3. Results on different noise intensity.

(see Table 2). Since most of the obtained interferograms have
serious noise, it is proved that KBR is the best low-rank
approximation method for the InSAR tensor.

The second experiment aims to further compare the
results of proposed KBR-InSAR and other widespread filters
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FIGURE 11. Filtered images (Bottom) and their error images (Top) generated by KBR-InSAR and other reference filters for the dense fringes interferogram
in the simulated InSAR phase tensor with a natural terrain.

operating on a single interferometric pair in a certain noisy
condition. Two sets of InSAR stack data, containing 25 inter-
ferograms with 512 × 512 pixels for each, are generated:
One is a flat terrain with four squares raised as appeared in
urban area, and the other is a continuous natural topography
as shown in Fig. 7. The circular complex standard Gaussian
noise with SNR of 5dB is added to these simulated InSAR
stack data. 30% pixels in each interferogram are randomly
selected and replaced by −π or π . The simulated InSAR
tensor is partially shown in Fig. 8.

The comparative methods include five traditional filtering
methods, i.e. boxcar filter with the window of 5 × 5, Gold-
stein filter where the patch is 32 × 32 and α is 0.5, NL-SAR
with a 21 × 21 search window and its patch is set from 3 to
11, NL-InSAR where the search window is 21 × 21 and the
patch is 7× 7, and InSAR-BM3D, its parameters are the same
as the published study [15].

The average of MSEs calculated by all interferograms
in InSAR stack data objectively evaluates the performance
of these filtering methods, as shown in Table 4. Further-
more, the number of residues remaining in the filtered

interferograms is also used as an effective evaluation, as
shown in Table 5. The MSE in Table 4 is lower than that
in Table 1, 2 and 3, that is because the range of spatial
baseline used in second simulation experiment is decreasing,
and dense fringes rarely appear. KBR-InSAR outperforms
other filtering methods for processing two simulated InSAR
stack data in terms of the MSE result. According to the
residues in Table 5. HoRPCA filter provides the best result
sometimes because of over smoothing. Further verification is
shown in Fig. 9, and most details are lost in the filtered result
of HoRPCA.

Fig. 9 shows the global filtered results of eight different
filters for a selected interferogram, and the phase profileswith
a length of 30 pixels crossing the edge of a raised square
in this interferogram. The first and third rows of Fig. 9 are
phase profiles crossing the edge, and the black square rep-
resents the noise-free phase and the red circle represents the
filtered phase. It can be seen the boxcar filter generates a low-
resolution filtered result with losing many details in fringes.
The Goldstein filter provides an unsatisfactory performance
of noise suppression because of low SNR in our simulated
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FIGURE 12. The partial enlarged detail of the error images with
KBR-InSAR (left column) and WHoRPCA (right column). The error images
at top are [320:420, 300:400] of the simulated interferogram shown
in Fig.10, and the error images at bottom are [250:400, 150:250] of the
simulated interferogram shown in Fig.11.

FIGURE 13. The real InSAR phase tensor collected from Sentinel-1B
(partial display).

TABLE 4. MSE for proposed method and referenced methods.

data. It can be noticed that the methods based on nonlocal (i.e.
NL-InSAR, NL-SAR and InSAR-BM3D) present an obvious
error in the region of phase fast-changing, e.g. some edges of
the raised squares. Weighted averaging of the similar patches
or blocks, as an important step in these algorithms, results in
phase mutation, and the topographic details is reduced.

TABLE 5. Residues for proposed method and referenced methods.

TABLE 6. Evaluation of filtering results of the simulated InSAR tensor
with the complicated building.

The filter of HoRPCA has a good restoration in most of
the interferograms, but its performance deteriorates at the
edges of the raised squares, due to the over-smoothing caused
by the lower Tucker rank during the tensor decomposition.
On the contrary, KBR-InSAR provides a better performance
of removing noise meanwhile preserving the original fringes.

Fig. 10 and Fig. 11 present a filtered interferogram in
simulated InSAR stack data with natural terrain and its error
image (i.e. the difference between the filtered result and the
ground truth). The more correct pixels (black color) in these
figures, the better filtering results are obtained. Therefore,
according to the error images of different filtering methods,
KBR-InSAR obviously outperforms other filters whether the
fringes are dense or sparse.

The local comparison between WHoRPCA and KBR-
InSAR is shown in Fig. 12. The error images at top is
[320:420, 300:400] of the simulated interferogram shown
in Fig. 10, and the error images at bottom is [250:400,
150:250] of the simulated interferogram shown in Fig. 11.The
error pixels (white color) of KBR-InSAR are smaller in num-
ber and more concentrative in distribution, which indicates
the KBR-InSAR performs better in fringe preservation, espe-
cially at the position of 2π jump.

B. REAL DATA
The experiment on ten SAR complex images acquired by
Stentinel-1B from July to November 2018, covering Chang-
bai Mountain area in Northeast China, has been carried out.
The master acquisition (August 17, 2018) is selected for
the coregistration with all slave images. A complex InSAR
tensor is formed by these coregistrated SLC images, as shown
in Fig. 13. The filtering for this InSAR stack data is relatively
challenging because of the low SNR in this real data.
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FIGURE 14. The filtered results acquired by KBR-InSAR and other widespread filters when the fringes are sparse in the selected interferogram of the real
InSAR tensor collected from Sentinel-1B. The filtering result of HoRPCA is too smooth to maintain details, and the results acquired by WHoRPCA, NL-SAR,
Goldstein, Lee and Boxcar are still noisy. The straight stripes caused by the limitation of InSAR-BM3D are obvious. KBR-InSAR has a satisfactory filtering
result.

FIGURE 15. The filtered results acquired by KBR-InSAR and other widespread filters when the fringes are dense in the selected interferogram of the real
InSAR tensor collected from Sentinel-1B. The results acquired by HoRPCA, NL-SAR and NL-InSAR are over smooth and lose most details. The results
filtered by InSAR-BM3D are attractive, but hardly correct in dense fringes (see the details in Figure 19).

Fig. 14 presents the filtered results under the condition of
sparse fringes, and the dense fringes case is shown in Fig. 15.
The filtered interferograms acquired by boxcar and Goldstein
remain more noise than other filters obviously. Although
HoRPCA almost clears all the residues, the ability of fringes
preservation is insufficient. The result of HoRPCA may be
more appealing than WHoRPCA, but it is hard to guarantee
that is an accurate filtered result, which is more intuitive in the
condition of dense fringes. WHoRPCA preserves the details
of fringes by introducing weights into HoRPCA algorithm,
however, it smooths the product of weight tensor and low
rank tensor rather than only low-rank tensor, and thus causes
the slight remaining noise in the filtered result. NL-SAR

FIGURE 16. The terrain model and deformation model of the simulated
InSAR tensor with a complicated building.

and NL-InSAR excessively smooth the interferometric phase
and sacrifice many details, which is more obvious when the
fringes are dense. Obviously, averaging the similar patches
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FIGURE 17. One interferogram in the simulated InSAR tensor with the complicated building and its filtered results acquired by tensor-based filters
and adaptive filters.

FIGURE 18. A noisy interferogram in real InSAR phase tensor collected
from Sentinel-1B shown in Figure 15. The short white lines on the
interferogram are used to illustrate the phase profiles shown in Figure 19.

is an unsuitable strategy for filtering phase changed rapidly,
after all, this phase mutation reflects the details of the terrain,
not caused by noise. The same conclusion can be found in
Fig. 9 and its related explanations.

VII. DISCUSSIONS
A. PERFORMANCE IN SIMULATED DATA
To further prove the reliability of KBR-InSAR, then a sim-
ulation experiment is supplied in this section. The elevation
model of the simulated InSAR tensor is a vertical structure
with curvy edges as shown in Fig. 16. The circular com-
plex standard Gaussian noise with SNR of 5dB is added
to these simulated InSAR stack data. 30% pixels in each
interferogram are randomly replaced by −π or π . One of
interferograms in this InSAR tensor is selected to directly
compare the filtered results acquired by tensor-based meth-
ods and adaptive methods, as shown in Fig. 17. The phase
boundary caused by curvy edges in elevation model is clear

in KBR-InSAR, however, the filtered results in HoRPCA and
WHoRPCA are ambiguous, not to mention those adaptive
methods. Therefore, it indicates that KBR-InSAR superior
to other tensor-based methods. On the view of quantitative
evaluation, KBR-InSAR is also superior to adaptive filters as
shown in Table 6.

Then to evaluate the computation overhead and time
consumption of the tensor-based filters. In this experiment,
CPU is Intel (R) Xeon (R) CPU E5-2620 v4 with the
frequency of 2.10 GHZ. Three tensor-based methods are
very close in spatial complexity, and KBR-InSAR has the
minimum consumption about 0.45 GB memory. In time
consumption, the average iteration time of WHoRPCA is
6.873s when the size of simulated data is 512× 512× 25, and
HoRPCA is about 11.855s, and KBR-InSAR is about 0.819s.
In total time-consumption, WHoRPCA is 0.06h with 30 iter-
ations, and HoRPCA has 0.171h with 52 iterations. Although
KBR-InSAR has a greater consumption, i.e. 0.357h
caused by 1571 iterations, it is a time-accuracy bal-
ance choice. Predictably, the time-consumption of KBR-
InSAR can be significantly decreased by using parallel
computation.

B. PERFORMANCE IN REAL DATA
In the experiment of real InSAR stack data, some phase
profiles, marked as the white short lines in Fig. 18, in dif-
ferent filtered results are depicted to prove the superiority
of our method, as shown in Fig. 19. KBR-InSAR has sta-
bility to obtain satisfactory filtered result with low SNR
whether at sparse or dense fringes. On the contrary, there
are some phase steps appearing in the phase profiles of
InSAR-BM3D, which are unacceptable in application. It is
noted that all tensor-based methods have a good property
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FIGURE 19. The filtered phase profiles (marked by white short line in Figure 18) with KBR-InSAR (blue dotted line) and other reference filtered
methods. Although the filtered result of InSAR-BM3D is intuitively acceptable shown in Figure 15, there are many phase steps in its results.
More or less, the same shortcoming exists in the results of WHoRPCA, Goldstein and Boxcar.

of improving accuracy through tensor depth. If the num-
ber of interferograms in InSAR stack data, i.e. the depth
of tensor, continues to grow, the quality of the fil-
tered result, acquired by KBR-InSAR, will be noticeably
improved.

VIII. CONCLUSION
InSAR tensor is the mathematical model of the multi-pass
interferometric stack data. The low rank tensor, acquired
by the tensor decomposition method, achieves the noise
reduction and fringes preservation. However, the main issue
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for low-rank tensor estimation is the selection of tensor
rank definition. This paper analyses different definitions of
InSAR tensor rank, including Tucker rank, CP rank and
KBR, and the feasibility of their application in interfero-
metric phase filtering is discussed. Based on these analysis,
KBR-InSAR is proposed to improve the performance of fil-
tering in low SNR and solve the problem caused by over
low-rank, which is established on KBR and an improved
InSAR phase tensor model. Our improved InSAR phase ten-
sor model further separates the outlier tensor into isolated
phase jump-points caused by spatial under-sampling and
Gaussian noise term, which supports the decomposition of
InSAR tensor.

The experiments are conducted with simulated data and
real InSAR stack data generated from Sentinel-1B. In the
first simulated experiment, KBR-InSAR outperforms other
tensor-based methods with various noisy conditions in terms
of MSE of filtered results, which verify the robustness and
practicability of KBR-InSAR. In the second simulated exper-
iment, the performance of the proposed filter and other
widespread filters are compared on the natural terrain and
urban terrain with dense or sparse fringes, and quantitative
and visual results demonstrate the superiority of our method.
In the experiment on real data, the performance of these
filters is outlined and the effectiveness of KBR-InSAR is
proved.
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