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ABSTRACT Among the existing adaptive iterative learning control (ILC) work concerning unknown control
direction problem, no result is available for the two-dimensional (2-D) dynamical systems. In this paper,
an adaptive ILC is developed for a class of 2-D dynamical systems described by the Fornasini-Marchesini
model (FMM). Notably, the 2-D FMM system under investigation possesses not only random uncertainties
in boundary condition and reference trajectory, but also unknown control direction. Even so, the con-
structed adaptive ILC combining with a modification mechanism can still guarantee the precise tracking
of iteration-variant reference trajectory and the boundedness of all the system signals, as iteration number k
tends to infinity. Theoretical analysis and simulation study are given to demonstrate the effectiveness of the
developed adaptive ILC.

INDEX TERMS Two-dimensional (2-D) dynamical systems, unknown control direction, adaptive iterative
learning control (ILC), the Fornasini-Marchesini model (FMM).

I. INTRODUCTION
As an intelligent and effective control featured with sim-
ple structure, iterative learning control (ILC) has received
vast application in repeated control process over a finite
time interval [1]. Using few system model knowledge, ILC
schemes can iteratively learn and compensate the iteration-
dependent/independent uncertainties and gain ultimately pre-
cise trajectory tracking. Therefore, great interest has been
imposed on ILC in the control design of industrial pro-
cess such as robotic manipulators, chemical plants, lower
limb exoskeleton and so on [2], [3], [29]. Then, as we
expected, a tremendous amount of ILC algorithms are con-
stantly emerging due to application demand. As pointed out
in [3], the limitations of contracting mapping-based ILC,
that gradually appeared as the controlled systems encoun-
tered non-Lipschitz nonlinearities and random uncertainties
in initial value, desired reference and disturbance, give rise to
adaptive ILC. Generally, adaptive ILC can well tackle with
these uncertainties and non-Lipschitz nonlinearities with the
help of the so-called composite energy function to do the
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convergence analysis. Recent decades have witnessed much
progress in adaptive ILC of nonlinear dynamical systems.

However, most adaptive ILC approaches are developed for
one-dimensional (1-D) systems which only rely on one inde-
pendent variable [2]–[4]. As to the systems that are derived
by two or more independent variables, the existing adaptive
ILC approaches are becoming ineffective [2]–[4].

Two-dimensional (2-D) dynamical systems, that operate
repetitively in finite and given domains, have attracted con-
siderable attention as shown in [5]–[12]. In contrast to 1-D
dynamical system, the control objective is no longer tracking
curve, but surface in 2-D system. Thus, owing to the more
complicated tracking task and no direct analysis tool of 2-D
dynamical system, the ILC control design of 2-D dynamical
system is much more challenging [10]. To date, some authors
have devoted themselves to the study of ILC in 2-D dynam-
ical systems. And they have obtained several ILC works for
2-D dynamical systems [5]–[12]. A fuzzy ILC method was
first proposed in [5] and corresponding progresses were con-
sidered in [6]–[9]. Cichy et al. introduced the ILC method
into a kind of 2-D dynamical systems producing by partial
differential equations [6]. In [7] and [9], an optimal ILC
method was suggested for a 2-D dynamical system described
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by the Fornasini-Marchesini model (FMM) and a P-type ILC
method was developed for a 2-D dynamical system repre-
sented by Roesser model, respectively. It is worth mention-
ing that the ILC methods in [5]–[9] are only applicable to
the specified systems with identical boundary condition and
iteration-invariant reference trajectory. In practice, the ran-
dom uncertainties in boundary condition and reference tra-
jectory are inevitable due to the complicated environment.
Thus, when one of the boundary conditions was set to be
iteration-variant, a robust ILC law was introduced in [11].
Furthermore, when random uncertainties in boundary condi-
tion and reference trajectory were both considered, authors
in [10] proposed an adaptive ILC for 2-D FMM systems. And
the objective of perfect tracking was obtained in [10]. With
respect to high-order internal model (HOIM) strategy-based
iteration-variant reference trajectory, the ILC research in [12]
can also achieve perfect tracking when the iterative boundary
conditions execute the same HOIM strategy as the reference,
while compel the tracking error to a small neighbourhood of
reference trajectory under random boundary conditions.

In spite of the promising results in the ILC study of
2-D dynamical systems, it is noticed that all the ILC designs
reported in [5]–[12] are basically based on the known control
direction. Generally, the applied control direction is assumed
to be positive in advance and the convergence property is
obtained in view of the fact that the control direction is
positive. In fact, since the adaptive technique was introduced
to ILC, Xu and Yan have done the pioneering work to
tackle with the unknown control direction problem in the
field of ILC in 2004 [13]. Then, with the successful applica-
tion of Nussbaum-type function, several works discussed the
adaptive ILC design for uncertain continuous systems were
achieved in [14]–[18]. On the other hand, similar discrete
adaptive ILC approaches have also been reported in [3], [19],
[20]. Nevertheless, it should be noted that the number of
tuning parameters and the complexity of controller structure
will increase by using Nussbaum-type functions in the adap-
tive ILC algorithms [3], [13]–[20]. Moreover, one can notice
that the transient performance is hard to ensure because of
the oscillating gain produced by the Nussbaum-type func-
tion based-adaptive ILC control [14]. As a result, there
emerged two adaptive ILC methods, which tried to conquer
the unknown control direction problems by estimating the
control gains directly [21], [22]. By subtly designing two
modification mechanisms, an adaptive ILC scheme was sug-
gested to the nonlinear system lacking of control direction
information [21]. While in [22], the adaptive ILC method
combining with two fuzzy systems was given so that it can
successfully solve the unknown control direction problem
without resorting to Nussbaum technique. Clearly, without
using Nussbaum-type function, the discussion on unknown
control direction problem is scarce.

From the above statements, we know that many adap-
tive ILC works have solved the unknown control direction
problems [3], [13]–[22], but none aimed at 2-D dynamical
systems. Usually, there are three popular 2-D state space

models which are proposed by Fornasini-Marchesini [23],
Roesser [24] and Kurek [25]. Recently, the researches about
2-D FMM systems have been a new focus and some studies
in theories and applications of the 2-D FMM systems were
recently reported in [10]–[12], [27], [28]. In this paper, for
the 2-D FMM system which is subject to unknown con-
trol direction, as well as random uncertainties in bound-
ary condition and reference trajectory, an adaptive ILC is
appropriately designed. Morever, we will not resort to the
Nussbaum-type function to deal with the unknown control
direction, but directly estimate the control gain through the
designed adaptive ILC combining with a modification mech-
anism. The relative contributions of this paper lie in that:
(1) Throughout the existing adaptive ILC work regarding the
unknown control direction problem [3], [13]–[22], no result
was designed for 2-D dynamical systems. Thus, this is the
first time to discuss the unknown control direction problem in
the ILC design of 2-D dynamical systems; (2) In our design
procedure, we estimate the control gain directly, which avoid
the need for an application of Nussbaum-type function to
accommodate the unknown control direction; (3) To date, few
researches but [10] and [12] address the 2-D FMM systems
with random uncertainties in boundary condition and refer-
ence trajectory. The designed adaptive ILC in this paper can
effectively deal with the random uncertainties in boundary
condition and reference trajectory, as well as the unknown
control direction. As a result, the tracking error is proved to
be convergent, while all the system signals maintain bounded
in the iteration process

The remainder of this paper is organized as follows.
Section II gives the problem formulation. Section III presents
the adaptive ILC approach and its convergence analysis is
provided in Section IV. Section V is about the simulation
study and the conclusion is provided in Section VI.

II. PROBLEM FORMULATION
In this paper, we use the following 2-D linear system repre-
sented by Fornasini-Marchesini model (FMM)

xk (i+ 1, j+ 1) = A1xk (i+ 1, j)+ A2xk (i, j)

+A3xk (i, j+ 1)+ Buk (i, j) (1)

where i and j are non-negative and finite coordinates with i ∈
[0,H ], j ∈ [0,V ] and k = 0, 1, 2, · · · is the k-th iteration of
system, xk (i, j) ∈ R and uk (i, j) ∈ R denote the measurable
system state and control input, respectively. A1, A2, A3, and
B are unknown coefficients of the 2-D FMM system.
Assumption 1: The control gain B is nonsingular, i.e., B 6=

0, and the sign of B which acts on behave of the control
direction is unknown.
Assumption 2: The boundary conditions for (1) are random

but bounded, i.e., xk (i, 0), i ∈ [0,H ], and xk (0, j), j ∈ [1,V ],
are randomly variant with iteration but bounded.

Suppose x∗k (i, j) is an iteration-variant and realizable ref-
erence trajectory of the 2-D FMM system (1). The control
objective of this paper is to design an adaptive ILC controller
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under Assumptions 1-2 such that the state xk (i, j) of sys-
tem (1) can follow the iteration-variant reference trajectories
x∗k (i, j) for i ∈ [1,H ] and j ∈ [1,V ] as k increases and tends
to infinity.
Remark 1: It is worth noting that the unknown control

direction condition is considered in our paper. Although the
unknown control direction problem has generated consider-
able interest in adaptive ILC literature [3], [13]–[22], they
only aimed at 1-D dynamical systems. Thus, no result con-
cerned with unknown control direction is available for 2-D
dynamical systems.
Remark 2: In the ILC field of 2-D dynamical systems,

by using some prior konwledge about control gain, [10]
and [12] considered the random uncertainties in boundary
condition and reference trajectory of 2-D FMM systems.
In this paper, under the random uncertainties in boundary
condition and reference trajectory, an adaptive ILC algorithm
is proposed for the 2-D FMM system with unknown control
direction. As far as we know, this is the first time to discuss the
unknown control direction problem in the ILC design of 2-D
FMM system.

III. DESIGN OF AN ADAPTIVE ILC
Rewrite the 2-D FMM system (1) as the following

xk (i+ 1, j+ 1) =
[
A1 A2 A3

] xk (i+ 1, j)
xk (i, j)

xk (i, j+ 1)


+Buk (i, j)

= ψT ηk (i, j)+ Buk (i, j) (2)

where ψ=
[
A1 A2 A3

]T
∈ R3 and ηk (i, j)

=
[
xk (i+ 1, j) xk (i, j) xk (i, j+ 1)

]T
∈ R3.

Define ek (i, j) = xk (i, j)− x∗k (i, j) to be the tracking error
at k-th iteration. And let ψ̂k (i, j) and B̂k (i, j) be the estimated
values of ψ and B at the kth iteration, respectively.
Then, design an adaptive ILC algorithm as

uk (i, j)=
−ψ̂T

k (i, j) ηk (i, j)+ x
∗
k (i+ 1, j+ 1)

B̄k (i, j)
(3)

where i ∈ [0,H−1] and j ∈ [0,V−1], and B̄k (i, j) is designed
as following

B̄k (i, j) =

{
B̂k (i, j) if

∣∣∣B̂k (i, j)∣∣∣ ≥ b0
B̂k−1 (i, j) otherwise

(4)

where b0 is a positive constant. From the definition of
B̄k (i, j), it is easy to see that

∣∣B̄k (i, j)∣∣ ≥ b0 if the initial value
of B̂0 (i, j) is chosen as

∣∣∣B̂0 (i, j)∣∣∣ ≥ b0. While b0 is only used
for analysis, no exact value is needed in the ILC controller.
Remark 3: Different from the adaptive ILC result of 2-D

FMM system in [10] that B is assumed to be positive, no prior
information about control direction is used in the proposed
adaptive ILC algorithm (3) and the modification mechanism
about B̄k (i, j) in (4).

Remark 4: Through the modification mechanism (4),
we can guarantee that B̄k (i, j) is far away from the specified
neighborhood of zero. As a result, the singularity problem of
the control law is solved by applying the modified B̄k (i, j)
but not the B̂k (i, j) to the proposed adaptive ILC algorithm
(3).

From (3), it can be deduced that

x∗k (i+ 1, j+ 1) = ψ̂T
k (i, j) ηk (i, j)+ B̄k (i, j) uk (i, j) (5)

Let 9 =
[
ψT B

]T
∈ R4, ρk (i, j) =

[
ηTk (i, j) uk (i, j)

]T
∈ R4, and 9̂k (i, j) =

[
ψ̂T
k (i, j) B̂k (i, j)

]T
∈ R4 being the

estimation of 9 at the kth iteration.
Combining (2) and (5), it yields

ek (i+ 1, j+ 1) = xk (i+ 1, j+ 1)− x∗k (i+ 1, j+ 1)

= ψT ηk (i, j)+ Buk (i, j)

−

[
ψ̂T
k (i, j) ηk (i, j)+ B̄k (i, j) uk (i, j)

]
= −

[
ψ̂k (i, j)− ψ

]T
ηk (i, j)

−

[
B̂k (i, j)− B

]
uk (i, j)

+

[
B̂k (i, j)− B̄k (i, j)

]
uk (i, j)

= −ψ̃T
k (i, j) ηk (i, j)− B̃k (i, j) uk (i, j)

+

[
B̂k (i, j)− B̄k (i, j)

]
uk (i, j)

= −9̃T
k (i, j) ρk (i, j)+$k (i, j) (6)

where ψ̃k (i, j) = ψ̂k (i, j) − ψ , B̃k (i, j) = B̂k (i, j) − B,
and 9̃k (i, j) =

[
ψ̃T
k (i, j) B̃k (i, j)

]T
denote the error of the

parameters. And$k (i, j) =
[
B̂k (i, j)− B̄k (i, j)

]
uk (i, j) can

be easily obtained. Correspondingly, design the parameter
updating law as follows

9̂k+1 (i, j) = 9̂k (i, j)

+
ρk (i, j) [ek (i+ 1, j+ 1)−$k (i, j)]

a+ ρTk (i, j) ρk (i, j)
(7)

where i ∈ [0,H − 1], j ∈ [0,V − 1], and a is a small positive
constant for making the denominator a+ρTk (i, j) ρk not equal
to zero. It is noted that the initial value of 9̂0 (i, j) can be
arbitrary but meet the condition that

∣∣∣B̂0 (i, j)∣∣∣ ≥ b0.
IV. ANALYSIS OF CONVERGENCE
The main result of the proposed adaptive ILC for 2-D FMM
system (1) is summarized in the following theorem.
Theorem 1: Considering the 2-D FMM system (1) with

unknown control direction and random uncertainties in both
boundary condition and reference trajectory, the adaptive ILC
algorithm (3), (4), and (7) can guarantee that the tracking
errors ek (i, j), i ∈ [1,H ], j ∈ [1,V ] converge to zero as k
tends to infinity and all the system signals maintain bounded
during the whole ILC procedure.

Proof: The following proof has three parts. Part 1 is
about the boundedness of the involved parameters of (7). And
the boundedness of the other system signals is addressed in
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Part 2. At last, Part 3 deduces the convergence of the tracking
error ek (i, j) for i ∈ [1,H ] and j ∈ [1,V ].

Part 1. From (6), we get

ek (i+ 1, j+ 1)−$k (i, j) = −9̃T
k (i, j) ρk (i, j) (8)

Substituting (8) into (7), it yields

9̂k+1 (i, j) = 9̂k (i, j)

−
ρk (i, j)

a+ ρTk (i, j) ρk (i, j)
9̃T
k (i, j) ρk (i, j) (9)

Subtracting 9 from both sides of (9), we have

9̃k+1 (i, j) = 9̃k (i, j)

−
ρk (i, j)

a+ ρTk (i, j) ρk (i, j)
9̃T
k (i, j) ρk (i, j) (10)

Using (10), we have∥∥∥9̃k+1 (i, j)
∥∥∥2 − ∥∥∥9̃k (i, j)

∥∥∥2
= −2

[
9̃T
k (i, j) ρk (i, j)

]2
a+ ρTk (i, j) ρk (i, j)

+

ρTk (i, j) ρk (i, j)
[
9̃T
k (i, j) ρk (i, j)

]2
[
a+ ρTk (i, j) ρk (i, j)

]2
≤ −

[
9̃T
k (i, j) ρk (i, j)

]2
a+ ρTk (i, j) ρk (i, j)

≤ 0 (11)

Therefore, (11) leads to∥∥∥9̃k+1 (i, j)
∥∥∥2 ≤ ∥∥∥9̃k (i, j)

∥∥∥2 ≤ . . . ≤ ∥∥∥9̃0 (i, j)
∥∥∥2 (12)

Then we can conclude from (12) that
∥∥∥9̃k (i, j)

∥∥∥2 is a
bounded, non-negative, and non-increasing function with

respect to k as
∥∥∥9̃0 (i, j)

∥∥∥2 is chosen to be bounded. As a

result, 9̂k (i, j) is bounded for i ∈ [0,H − 1], i ∈ [0,V − 1],
and k = 0, 1, 2, · · · . That is to say, ψ̂T

k (i, j) and B̂k (i, j) are
bounded for i ∈ [0,H − 1] and j ∈ [0,V − 1].
Part 2. The following is the boundedness deduction of

uk (i, j) for i ∈ [0,H − 1], j ∈ [0,V − 1] and xk (i, j)
for i ∈ [0,H ], j ∈ [0,V ] based on the boundedness of
iteration-variant boundary condition xk (i, 0), xk (0, j), refer-
ence trajectory x∗k (i, j), i ∈ [0,H ], j ∈ [0,V ], as well as
the boundedness of ψ̂T

k (i, j) and B̂k (i, j), i ∈ [0,H − 1],
j ∈ [0,V − 1].
From the boundedness of the iteration-variant bound-

ary condition and reference trajectory, the boundedness of
ηk (0, 0) =

[
xk (1, 0) xk (0, 0) xk (0, 1)

]T and x∗k (1, 1) is
easily achieved. Thus, from (3), it yields that uk (0, 0) is
bounded. Further, as uk (0, 0) is bounded, the boundedness
of xk (1, 1) is also obtained from (2). Then, ηk (1, 0) =[
xk (2, 0) xk (1, 0) xk (1, 1)

]T is bounded and so is uk (1, 0)
from (3) and xk (2, 1) from (2). Deducing in the direction of
i, we can get the boundedness for all uk (i, 0), i ∈ [0,H − 1]

and xk (i, 1), i ∈ [0,H ]. Correspondingly, we can also get the
boundedness for all uk (0, j), j ∈ [0,V − 1] and xk (1, j), j ∈
[0,V ] in the same way. On the other hand, since ηk (1, 1) =[
xk (2, 1) xk (1, 1) xk (1, 2)

]T is bounded, the boundedness
of uk (1, 1) is obtained based on (3). While the boundedness
of xk (2, 2) is also achieved based on (2). Through continuous
substitution, we can finally obtain the boundedness of uk (i, j)
for i ∈ [0,H − 1], j ∈ [0,V − 1] and xk (i, j) for i ∈ [0,H ],
j ∈ [0,V ].
Part 3. From (11), we have

k∑
z=0

[
9̃T
z (i, j) ρz (i, j)

]2
a+ ρTz (i, j) ρz (i, j)

≤

∥∥∥9̃0 (i, j)
∥∥∥2 − ∥∥∥9̃k+1 (i, j)

∥∥∥2
≤

∥∥∥9̃0 (i, j)
∥∥∥2 (13)

Considering the boundedness of 9 and 9̂0 (i, j), it yields

lim
k→∞

k∑
z=0

[
9̃T
z (i, j) ρz (i, j)

]2
a+ ρTz (i, j) ρz (i, j)

<∞ (14)

That is

lim
k→∞

[
9̃T
k (i, j) ρk (i, j)

]2
a+ ρTk (i, j) ρk (i, j)

= 0 (15)

On the other hand, we can get from (9) that∥∥∥9̂k+1 (i, j)− 9̂k (i, j)
∥∥∥2

=

ρTk (i, j) ρk (i, j)
[
9̃T
k (i, j) ρk (i, j)

]2
[
a+ ρTk (i, j) ρk (i, j)

]2 (16)

Note that[
9̃T
k (i, j) ρk (i, j)

]2
a+ ρTk (i, j) ρk (i, j)

=

[
a+ ρTk (i, j) ρk (i, j)

] [
9̃T
k (i, j) ρk (i, j)

]2
[
a+ ρTk (i, j) ρk (i, j)

]2
≥

∥∥∥9̂k+1 (i, j)− 9̂k (i, j)
∥∥∥2 (17)

Combining (15) and (17), the following

lim
k→∞

∥∥∥9̂k+1 (i, j)− 9̂k (i, j)
∥∥∥ = 0 (18)

is achieved for i ∈ [0,H − 1] and j ∈ [0,V − 1]. Notably,
we have

lim
k→∞

∣∣∣B̂k (i, j)− B̂k−1 (i, j)∣∣∣ = 0 (19)

By using the Schwarz inequality,∥∥∥9̂k (i, j)− 9̂k−n (i, j)
∥∥∥2

=

∥∥∥(9̂k (i, j)− 9̂k−1 (i, j)
)
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+

(
9̂k−1 (i, j)− 9̂k−2 (i, j)

)
+ · · ·

+

(
9̂k−n+1 (i, j)− 9̂k−n (i, j)

)∥∥∥2
≤ n

(∥∥∥9̂k (i, j)− 9̂k−1 (i, j)
∥∥∥2

+

∥∥∥9̂k−1 (i, j)− 9̂k−2 (i, j)
∥∥∥2 + · · ·

+

∥∥∥9̂k−n+1 (i, j)− 9̂k−n (i, j)
∥∥∥2) (20)

where n is a finite number. Considering (18) and (20), we have

lim
k→∞

∥∥∥9̂k (i, j)− 9̂k−n (i, j)
∥∥∥ = 0 (21)

Using the definition of 9̂k (i, j) and B̄k (i, j) in (4), we can
obtain

lim
k→∞

∣∣∣B̂k (i, j)− B̄k (i, j)∣∣∣ = 0 (22)

Then, based on (22) and the boundedness of uk (i, j), it yields

lim
k→∞

$k (i, j)= lim
k→∞

(
B̂k (i, j)−B̄k (i, j)

)
uk (i, j)=0 (23)

On the other hand, we have obtained from part 2 that
uk (i, j) and ηk (i, j) are bounded for i ∈ [0,H − 1] and
j ∈ [0,V − 1], thus the boundedness of ρk (i, j) =[
ηTk (i, j) uk (i, j)

]T is immediately deduced. From (15),
we get

lim
k→∞

9̃T
k (i, j) ρk (i, j)= 0 (24)

Combining (8) and (24), there is

lim
k→∞

[ek (i+ 1, j+ 1)−$k (i, j)] = 0 (25)

Then, based on (23), we get

lim
k→∞

ek (i+ 1, j+ 1) = 0 (26)

That is

lim
k→∞

ek (i, j) = 0 (27)

where i ∈ [1,H ] and j ∈ [1,V ]. It shows that the tracking
error will precisely converge to zero as iteration number k
goes to infinity. This Theorem is proved.

V. SIMULATION RESULTS
Example: The same example of Darboux equation as in [10],
which represents some dynamical plants in gas absorption,
water stream heating, and air drying [26], is used for the sim-
ulation. However, different to [10], no information including
the sign of control gain is known in advance of our simulation.
The Darboux equation used in simulation is described as

∂2s(w,t)
∂w∂t

=a1
∂s(w, t)
∂t
+a2

∂s(w,t)
∂w
+a0s(w,t)+bf (w,t) (28)

where w(space) ∈ [0,Wf ] and t(time) ∈ [0,Tf ] are the inde-
pendent variables, and s(w, t) is the system output. Letting
x(i, j) = s(i1w, j1t) and then doing the discretization of
equation (28), we can get the coefficients of the 2-D FMM
system (1) as

FIGURE 1. Random factor m(k) in the reference trajectory x∗k (i, j ).

FIGURE 2. The total absolute tracking error EEk .

A0 = a01w1t − a11w− a21t − 1,

A1 = 1+ a21t,

A2 = 1+ a11w,

B = b1w1t.

The boundary states of xk (i, 0) and xk (0, j) for i ∈ [0, 20]
and j ∈ [1, 20] will randomly take values at [0, 1]. And the
reference trajectories are represented by

x∗k (i, j) = m(k) sin(0.7i+ 0.1j) (29)

wherem(k) denotes the iteration-dependent uncertainties and
takes value at [0, 1] randomly.

Choose the same values of parameter a0, a1, a2, b,1w, and
1t as to [10]. To illustrate the validity of the proposed adap-
tive ILC algorithm (3), (4), and (7), no information including
the sign of the control gain B is used in the simulation. The
constants involved in (4) and (7) are chosen as b0 = 0.1 and
a = 0.01. Taking the following total absolute tracking error
to evaluate the tracking accuracy,

EEk =
20∑
i=1

20∑
j=1

∣∣x∗k (i, j)− xk (i, j)∣∣ (30)
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FIGURE 3. The tracking error surfaces at k = 1, k = 15, k = 50, and
k = 100, respectively.

the corresponding results are given in FIGURE 2 and
FIGURE 3.

The random-varying factorm(k) in the reference trajectory
x∗k (i, j) is shown in FIGURE 1. The convergence of tracking
error is shown in FIGURE 2. And FIGURE 3 depicts the
tracking error surfaces at k = 1, k = 15, k = 50, and
k = 100, respectively. Clearly, for the Darboux equation
system (28) which is subject to unknown control direction
as well as random uncertainties in boundary condition and
reference trajectory, the precise tracking is achieved.

VI. CONCLUSION
If the prior knowledge of control direction is not available,
no result is applicable for the 2-D dynamical systems. In this
paper, for the 2-D FMM system possessing unknown control
direction as well as random uncertainties in boundary condi-
tion and reference trajectory, an adaptive ILC is appropriately
designed. Both of the theoretical and simulation analysis have
validated the effectiveness of the developed adaptive ILC in
this paper. Extensions of the proposed adaptive ILC method
to 2-D dynamical systems with unknown control directions,
as well as state constraints and nonlinear input characteristics
may be considered in the future work.
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