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ABSTRACT Blockchains guarantee data integrity through consensus of distributed ledgers based onmultiple
validation nodes called miners. For this reason, any blockchain system can be critically disabled by a
malicious attack from a majority of the nodes (e.g., 51% attack). These attacks are more likely to succeed
as the number of nodes required for consensus is smaller. Recently, as blockchains are becoming too large
(making them difficult to store, send, receive, and manage), sharding is being considered as a technology to
help improve the transaction throughput and scalability of blockchains. Sharding distributes block validators
to disjoint sets to process transactions in parallel. Therefore, the number of validators of each shard group is
smaller, which makes shard-based blockchains more vulnerable to 51% attacks than blockchains that do not
use sharding. To solve this problem, this paper proposes a trust-based shard distribution (TBSD) scheme that
assigns potential malicious nodes in the network to different shards, preventingmalicious nodes from gaining
a dominating influence on the consensus of a single shard. TBSD uses a trust-based shard distribution scheme
to prevent malicious miners from gathering in on one shard by integration of a trust management system and
genetic algorithm (GA). First, the trust of all nodes is computed based on the previous consensus result. Then,
a GA is used to compute the shard distribution set to prevent collusion of malicious miners. The performance
evaluation shows that the proposed TBSD scheme results in a shard distribution with a higher level of fairness
than existing schemes, which provides an improved level of protection against malicious attacks.

INDEX TERMS Blockchain, sharding, trust, malicious attack, genetic algorithm, fault tolerant.

I. INTRODUCTION
Blockchain is a key technology that enables cryptocurrency
(e.g., Bitcoin), smart contract services (e.g., Ethereum), and
various data protection services. The data protection level of
blockchains is based on the difficulty to tamper block data due
to the hash chain structure. Currently, there are several techni-
cal challenges that blockchain systems are facing. According
to Ethereum co-creator Vitalik Buterin, blockchain systems
at most can only have two of the following three features:
decentralization, scalability, or security. Especially, scala-
bility is an indispensable technical challenge for real-time
services in connection with various industrial integration of
blockchain systems, because the size of a blockchain grows
quickly, making it challenging to save, disseminate, check,
and mine new blocks to chain. In conventional blockchains
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like Bitcoin, a block is added to the blockchain about every
10 minutes. Among the candidate blocks proposed, the block
that includes a complete transaction list and provides the best
solution to the cryptography hash computation (which is a
process called Proof of Work (PoW)), is the block that is
selected to be added (i.e., chained) to the blockchain. The
miner that made the block receives a compensation for its
block contribution. This is why numerous miners compete
in making the next block to add to the blockchain. Miners
periodically generate blocks that are sent throughout the
network to have other validation nodes verify and compare
their block with other blocks by checking the block headers
and list of transactions in the block. If more than half of the
validator nodes determine that a block has a valid transaction
list and has the minimum hash value in the block header, then
that block is connected to the blockchain and the validators
maintain a common distributed ledger. As a result, every
time a block is generated, all nodes examine each candidate
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block, so the blockchain faces scalability problems as the
number of nodes increases due to an increasing amount of
message overhead. To address blockchain scalability issues,
the application of sharding technology has been proposed [1].
Blockchain sharding originated from existing database shard-
ing, in which a database is divided into multiple shards where
independent transactions are processed and validated in par-
allel. In other words, transactions are selectively processed
by a pre-selected group (shard), which allows transactions to
be processed simultaneously on different shards. Blockchain
sharding will result in an increase in the transactions per sec-
ond (TPS) performance, in reference to the number of shards
applied to the blockchain. However, since the number of
nodes participating in the validation process of a sharded
block decreases as the number of shards increases, it becomes
easier for malicious nodes to take over the consensus ini-
tiative of a single shard, called ‘single-shard takeover’ [2].
As a result, even though the ratio of malicious users in the
networkmay only be aminority, a single shard can experience
an increased vulnerability to 51% attacks, making shard-
based blockchains more insecure. In existing sharding based
blockchain cryptocurrencies (e.g., Ethereum 2.0, Zilliqa, and
ELASTICO), a random shard distribution is employed to
maintain the fairness of the shard distribution [1]–[3]. How-
ever, this method does not impose any penalty on malicious
behavior, and also the scheme assigns shards based on simple
randomness, which is not sufficiently reliable to be used
in block consensus procedures defending against various
malicious attacks. In addition, there are very few defense
mechanisms against malicious behavior that block validators
can perform during the consensus process. This is why in
this paper, a trust-based shard distribution (TBSD) scheme
that uses a genetic algorithm (GA) approach to minimize the
probability that the consensus group of any single shard is
formed by a majority of malicious nodes is presented. The
proposed TBSD scheme accomplishes this by distributing
consensus nodes fairly according to their trust value, where
the simulation results show that the proposed TBSD algo-
rithm is more robust than existing techniques. In the TBSD
scheme, nodal trust values are computed based on their pre-
vious consensus vote and the consensus result. Through a fair
trust distribution, malicious nodes are assigned to different
shards, so that the bias in trust level of all sharding group
nodes is minimized. The corresponding shard distribution
problem is NP-hard (which is proven in Lemma 1 of this
paper), so there is no exact algorithm that is guaranteed to
find the optimal solution within polynomial time. However,
our problem can be solved with a metaheuristic approach
that can provide a sufficiently good solution with incom-
plete computation capacity. GA1 is one of the representa-
tive metaheuristic evolutionary algorithms that have been
used in optimization problems of network distribution [4].

1A GA was applied because it is fast and robust, although it may result
in a suboptimal solution. Other evolutionary algorithms or machine learning
schemes may be used instead.

The optimal shard distribution is computed based on a mod-
ified GA that can quickly find a (near) optimal solution by
exploring a variety of solution spaces. For each generation,
the population of candidate solutions in the GA become
closer to the optimal fitness function through the crossover
and mutation process. In the TBSD scheme, the GA assigns
an array of shard numbers to each node, which becomes its
chromosome. Chromosomes are reproduced in each gener-
ation, and a selective population of candidate chromosomes
survive, which finally form an optimal chromosome set repre-
senting the fair shard distribution set to be used by the sharded
blockchain. The proposed TBSD scheme has the following
unique features.

1) The TBSD trust model is designed based on previous
consensus results. The trust model evaluates nodes by
penalizing malicious consensus behavior and trust tam-
pering behavior through comparison with other nodes.
This provides a quantitative measurement of which
node has been trustable in agreements.

2) To prevent malicious shard formation, a GA is used
to achieve maximum fairness of shard trust. The GA
finds the best shard distribution set to form the trust
level of each shard equally. The GA scheme distributes
nodes with similar consensus opinions in the previous
round to different shards, preventing coordinated col-
lusive malicious behavior, and thereby enhancing the
fairness of the shard distribution.

II. PRELIMINARIES
In this section, the related techniques used in the proposed
scheme are described.

A. TRUST MANAGEMENT SYSTEM
Trust management is a scheme that can enhance the security
level by determining the reliability of an entity (based on its
behavior pattern) in a network [5], or help improve network-
ing functions, such as secure routing [6] and clustering [7].
The basic trust evaluation is based on peer-to-peer evaluations
among nodes, where a honest node should behave in a way
that is consistent with the majority of honest nodes in the
network. This enables malicious behavior in the network to
be detected, based on the belief that a majority of the network
nodes are honest. All nodes compute the trust value of other
nodes based on peer-to-peer evaluation. Each node forms a
local trust opinion (LTO) of all neighboring nodes, where the
LTO values are aggregated to form the subjective reputation
(SR), behavior reputation (BR), and credit reputation (CR).
The trust agent (TA) of the network combines this informa-
tion to compute the global reputation (GR) of each node [8].
The type of information used to form the LTO, SR, BR,
and CR can be modified to fit its purpose. In trust systems
there is a motivation to discourage malicious behavior, which
is based on the continuous monitoring of behavior patterns.
Trust systems help in protecting the network because even if
an entity passes the primary security procedures (e.g., authen-
tication and authorization), covert malicious behavior can be
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FIGURE 1. Overview of the TBSD scheme structure.

detected. In blockchains, the process of creating and linking
blocks is based on the consensus of the network validation
nodes (e.g., miners). When a block is proposed, if a majority
of the nodes in the network reject the block, that block
cannot be connected to the chain. The validator nodes must
evaluate the proposed block and follow a consensus rule that
follows the dominant opinion by referring to the evaluation
of other nodes. The TA2 of the trust management system
supporting the network will support the proposed TBSD
process for the sharded blockchain network. Fig. 1 shows
the conceptual view of the proposed TBSD scheme. In the
Sharded blockchain (BC) Layer, each shard group processes
independent transactions received from its users. The Trust
Layer is the support layer of the Sharded BC layer, which
monitors the consensus behavior of the miners to manage and
calculate the trust value of the miner nodes. Once the trust
value (e.g., GR) of the miners are computed, the TA uses
the GA to derive the optimal shard clustering sets that will
maintain a fair shard distribution.

B. CONSENSUS
In blockchains, the consensus procedure determines how to
select a new transaction ledger block to be added to the
blockchain, and the commit step confirms to its users which
block was added. In distributed systems like blockchains,
the consensus scheme is desired to have both ‘safety’ and
‘liveness’ properties. ‘Safety’ refers to the property that the
consensus result of the network should be consistent for
any node, where ‘liveness’ refers to the property that any
node participating in a consensus should participate in reach-
ing a consensus. Extending from the Fischer, Lynch, and
Patterson (FLP) impossibility concept [9], it is challenging

2The proposed TBSD scheme can be modified to have multiple TAs
support the sharded blockchain.

for a distributed consensus algorithm to fully satisfy both
safety and liveness at the same time. For example, the Bit-
coin blockchain uses the Nakamoto consensus scheme (based
on minimum hash value generation for the new transaction
ledger block), where the block to be added is selected based
on PoW through majority voting and is confirmed through
the longest chain first rule [10]. When conflicts in the con-
sensus occur, a ‘fork’ is temporarily formed until the con-
flict is resolved. As can be seen, the Nakamoto consensus
algorithm used in Bitcoin is designed to pursue liveness by
partially sacrificing the safety property. On the other hand,
Byzantine Fault Tolerance (BFT) based consensus algorithms
(e.g., the Practical BFT (PBFT)) ensure safety while par-
tially sacrificing liveness, even if the consensus fails [11].
PBFT uses a 5-step protocol to guarantee consistent consen-
sus results. However, PBFT’s 5-step message exchange for
agreements can cause scalability problems when the number
of nodes increases [12]. Another consensus scheme that was
made to be more efficient than PoW is Proof of Stake (PoS).
PoS is based on a leader selection protocol that increases the
probability of being selected as a leader in proportion to the
amount of a miner’s stake holdings. In PoW, miners consume
a significant amount of energy in competing to compute the
minimum hash value of the new transactional ledger block,
in hope to be the block to be added to the blockchain to receive
an incentive reward. Opposing to this, PoS was designed to
require much less computational energy than PoW. A con-
ventional PoS algorithm is Follow-the-Satoshi (FTS) algo-
rithm [13]. Currently, many blockchain technologies use a
hybrid consensus algorithm combining PoS and BFT based
protocols [14]–[16].

C. SHARDING
Blockchain sharding techniques can be classified into trans-
action sharding and state sharding. Transaction sharding has
the advantage that transactions can be processed in parallel
by a disjoint shard, resulting in an increased throughput per-
formance, where the increment is almost linear to the amount
of sharding applied. State sharding stores the disjoint part or
state of the transaction by ledger pruning, therefore it can
save the required storage size [17]. Both types of sharding
commonly require nodes to be assigned to different shards
for every particular epoch. The existing sharding protocol
for shard allocation of each node uses a PoW based random
scheme. In ELASTICO, each node competes in PoW hashing
to get its identity, then all nodes are randomly assigned to
different shards [1]. In addition, Rapidchain uses a similar
shard configuration scheme, where participant nodes can be
randomly assigned by using the randomness of hash values in
the peer discovery process [18]. But because the distributed
shard grouping process uses the PoW approach for identity
verification, these schemes do have hash computation bur-
dens. On the other hand, the SSChain blockchain supports
both transaction sharding and state sharding based on its non-
reshuffling structure, and uses the existing PoW algorithm
for shard consensus [17]. In addition, SSChain manages two
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chain structures (i.e., root chain and side chain), which can
easily compromise the overall security of the root chain.

The procedures of the block consensus in sharding proto-
cols can be classified into the following steps [1], [19]. First,
each node finds their peer to be clustered for a shard based on
a random PoW based algorithm. After all nodes are assigned
to a specific shard, each shard runs an intra-shard consen-
sus to process transactions independently. Transactions are
assigned to each shard according to their input address. After
the intra-shard consensus is completed, the final consensus
to create the block to be added to the blockchain is made
by the final committee. The connected block contains the
SHA 256 transaction hash processed in all shards. Vul-
nerability exists in the fact that if a single shard takeover
occurs in the intra-shard stage, a malicious validator can
cause the consensus to fail or result in incorrect transaction
processing.

D. USER/MINER AUTHENTICATION
In blockchain systems such as Bitcoin and Ethereum, all
users can create their own account address using a public
key (PK) and private key (i.e., the secured key (SK)) based
on asymmetric key technology. Transaction data encrypted
by a SK can be decrypted by the pairing PK. Therefore, if a
user’s SK is not stolen, the identity of the transaction can be
clearly proved. Users can create their PK and SK pair using a
PK generator. Problems can arise when a miner creates many
accounts, and authenticates its multiple identifications using
the PK based approach. Since, the votes of miners are used to
verify blocks, a miner with multiple accounts can maliciously
influence the voting process, which is what happens in 51%
attacks on blockchains [20]. As blockchains become too long
and challenging to send, receive, and store, applying shard-
ing technology to blockchains is almost unavoidable. How-
ever, considering the possibility of mining pools colluding,
an additional layer of authentication on sharded blockchains
is needed.

E. GENETIC ALGORITHM
When each trust value is calculated by the trust management
system, the GA aims to find the best shard distribution that
makes each shard trust level equivalent. However, GAs are
metaheuristic schemes that can help find a near-optimal solu-
tion. Strictly optimal solutions are difficult to find because
computing shard distribution sets (to have similar trust levels)
is a NP-hard problem, which is proved later in Lemma 1. This
is why a feasible suboptimal scheme like GA is suitable for
blockchains that operate block adding procedures based on a
strict periodical schedule.

III. SYSTEM MODEL
The proposed TBSD trust model is based on the block con-
sensus results from each miner, which is used by the modified
GA algorithm that distributes the shard fairly using the calcu-
lated miner trust value. The notation of the parameters used
in the TBSD scheme are described in Table. 1.

TABLE 1. Notations in TBSD scheme.

A. TRUST MODEL ON BLOCKCHAIN MINER
Node (miner) trust is computed based on the following steps:
(1) Leader selection, (2) Block commit phase, (3) Reporting
subjective consensus opinion (SCO), (4) Local consensus
result (LCR) formation, and (5) Final node trust evaluation.

1) LEADER SELECTION
In every consensus round, a block is proposed by the elected
leader based on PoS. If the FTS PoS algorithm is used,
the leader selection probability of miner node i among n
participants is

pi =
si∑n
j=1 sj

(1)

where si is the stake of node i. Without loss of generality, it is
assumed that the stake and computational capabilities of all
mining nodes are equivalent, and therefore, the probability of
leader selection is 1

n . After the leader is selected, the leader
broadcasts its own block composed of the transaction list to
the network.

2) BLOCK COMMIT STEP
The block proposer broadcasts the block to the network, and
other nodes participate in the commit process to check the
validity of the proposed block. The validation decision of
the nodes participating can either be ‘valid block’ or ‘invalid
block.’ Invalid transaction list, faulty hash value, or invalid
key are proper reasons that lead to an ‘invalid block’ decision.
However, malicious nodes and colluding attack nodes would
claim ‘invalid block’ without having a proper reason. After
each node makes a decision on the validness of the new
block, all nodes broadcast their block commit results to the
other nodes. If a proposed block has been verified by a
majority of other nodes, the block is accepted and linked to
the blockchain.

3) REPORTING SCO
SCO is a trust table generated by the validator node for each
round of consensus. After the block commit phase, nodes
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FIGURE 2. Overview of SCO reporting.

verify the commit result of the proposed block. At this time,
a node must refer to the block evaluation of other nodes when
chaining the proposed block to its own blockchain. In addi-
tion, a node can collect tamper-proof validation results of
other nodes based on PK authentication. Then all nodes verify
the proposed block of the proposer and broadcast the val-
idation result to the entire network. Assuming there are n
validator nodes in the network, each node saves the other n
validation results into a (1 × n) vector form. If the block is
judged to be valid, it is marked as ‘Y ’ (i.e., Yes, accepted
block), otherwise, it is marked as ‘N ’ (i.e., No, rejected
block). Each SCO acts as a trust table that nodes evaluate
validation behavior of the other nodes subjectively. The SCO
vector recorded by node i is marked as Si and is reported
to the TA. A conceptual view of SCO reporting is described
in Fig. 2.

4) LCR FORMATION
LCR is computed by collecting the SCO from each node.
First, the ratio of ‘Y ’ and ‘N ’ recorded in each SCO is con-
verted into a number. If ni(Y ) and ni(N ) represents the number
of Y s and N s in the SCO vector of the ith node (Si), the ratio
of Y s and N s among the total nodes can be represented as

ni(Y )
ni(Y )+ni(N ) ,

ni(N )
ni(Y )+ni(N ) , respectively. Then all values of ‘Y ’ and

‘N ’ in the existing SCO vector are converted to corresponding
ratio values. For example, if there are three nodes, where
nodes 1 and 2 approve a block while the malicious behaving
node 3 rejects the block, in this case, nodes 1 and 2’s SCO
value will be ( 23 ,

2
3 ,

1
3 ). Then the LCR values (i.e., Li,j) are

computed using the collected converted SCO values of all
nodes, forming a N × N matrix, where N is the number of
total nodes, and Li,j represents the entire network’s opinion
of the jth node based on the perspective of the ith node. Then,
Li,j can be expressed as in (2).

Li,j =


ni(Y )

ni(Y )+ ni(N )
, if committed result of j is ‘Y ′

ni(N )
ni(Y )+ ni(N )

, if committed result of j is ‘N ′

(2)

The LCR is a quantitative value indicating the opinion of a
node based on the evaluation of other nodes in the network.

5) FINAL NODE TRUST EVALUATION
The final node trust evaluation is described in Fig. 3. To obtain
the final node trust value, the average trust value and trust
weights are computed. The final nodal trust of node i (ti) is
expressed as the product of the average trust and trust weight.
The average trust of node j (uj) is represented as

n∑
i=1

Li,j
n
= uj (3)

FIGURE 3. Node trust evaluation in TA.
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where uj is the average of the column vectors of the LCR
matrix. The value uj is an indicator of how the commit result
of the jth node matches the opinion of the entire network.
The trust weight is used to impose a penalty on a node that

presents a conflicting trust report. Each LCR row vector of
node i is denoted as `i (trust vector in Fig. 3). If any two
nodes have submitted the same SCO, each LCR row vector
would be completely identical. However, if there are mali-
cious nodes modifying the commit result of the other nodes,
the inconsistency in the LCRmatrix increases. Tomeasure the
level of inconsistency, cosine similarity is used. The cosine
similarity of two LCR vectors of node i and j (Simi,j) is
expressed as

Simi,j = cos(`i, `j) (4)

where cos(`i, `j) is bounded to [0, 1] if all components of the
vector are positive. The trust weight of node i is expressed
based on the aggregated similarity Wi =

∑n
j=1

Simi,j
n . The

trust weight (Wi) is an average of all similarities of the trust
vectors with other nodes, which measures how much `i is
similar to the average of all other LCR row vectors. The ith
node trust (ti) is computed by multiplying the average trust
and the trust weight, which is represented as

ti = Wiui (5)

where, if node i has an outlier opinion `i (trust vector of i),
Wi will be close to zero. On the other hand, if `i is similar
with the overall trust vectors of other nodes,Wi will be close
to one.

The final node trust value is also bounded to [0, 1]. If ti
is closer to 1, both the behavior of the trust reporting and
the commit results of node i become the majority consensus
behavior in the corresponding consensus round. If there is an
unanimous consensus without any malicious node detected,
the trust value of all nodes will be 1. However, if there is
a malicious node reporting an outlier trust vector, the trust
weight of the malicious node will be drastically reduced by
the majority opinion of the honest nodes. The final node
trust value is used to make shard distributions fair, which is
described in the following sections.

B. ADVERSARY MODEL
A malicious node in consensus is defined by its commit
phase behavior. An honest node makes ‘valid’ decisions for
properly prepared blocks and makes ‘invalid’ decisions for
faulty blocks. In addition, a honest node always generates a
honest valid block when it is selected as a leader. However,
malicious nodes do not follow the honest consensus rules.
In this paper, the objective of malicious nodes is to induce
failure of consensus to proper blocks, and to commit a faulty
block if they can form a malicious majority in a single shard.
If some behavior does not negatively affect the consensus
of the blockchain, it cannot be considered as a successful
malicious attack. The specific classification of a malicious
behavior is modeled referring to existing network attack sce-
narios as follows [8].

1) NAIVE MALICIOUS ATTACK (NMA)
Amalicious node provides improper services, not complying
with the given network protocol. If a NMA node is selected
as the leader, it will always make a faulty block and draw
commitments to the faulty block. Otherwise, these nodes will
deny the block from a honest leader node. However, it does
not modulate the SCOs. The purpose of NMA is to hamper
honest consensus behavior. The attacker continues the mali-
cious behavior consistently.

2) COLLUSIVE RUMOR ATTACK (CRA)
In addition to providing improper commit results same as
in NMA, the malicious nodes report opposite SCOs gen-
erated by honest nodes (i.e., good/bad mouthing attack).
CRA nodes will accept a false block from a malicious node
and reject a honest block from a honest node. If a CRA
node is selected as the leader, it will always make mali-
cious decisions to commit to a faulty block. The purpose
of this attack is to disrupt accurate consensus and trust
evaluations.

3) CONFLICTING BEHAVIOR ATTACK (CBA)
In this attack, malicious nodes behave inconsistently. If a
CBA node is selected to be the leader, it will propose proper
and faulty blocks with a 50% probability. In addition, it will
also falsely commit and report SCO vectors with reversed
faulty data for half of the honest nodes. The purpose of CBA
is to cause an inconsistent consensus behavior and faulty
SCOs, which critically interferes with the accuracy of the
trust evaluation system.

NMA and CRA nodes will consistently generate mali-
cious blocks when they are elected as a block leader. Invalid
blocks created by malicious nodes in a single shard are
rejected if the majority of that shard is honest. If malicious
nodes occupy a majority of the shard, a corrupted block
can be committed and connected to the chain. On the other
hand, CBA nodes increase discrepancy between the SCOs
of nodes through inconsistent consensus behavior and induce
disturbance in the trust computations.

C. SHARD DISTRIBUTION
In the following, a ‘corrupted shard’ refers to a shard whose
block consensus is wrongfully decided by the influence of
its malicious nodes, and a ‘uncorrupted shard’ refers to a
shard whose block consensus was correctly decided by the
influence of its honest nodes. Shard distribution is performed
based on node trust, but initially it will randomly distribute
nodes to shards at the beginning, due to the absence of
any trust information. After the initial random sharding is
finished, the TA collects all SCO information from each shard
and composes the corresponding LCRs. Then, node trust
values are evaluated through the composed LCRs, and finally
each node is assigned to each shard using the GA trust-based
shard distribution scheme.
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1) PROBLEM STATEMENT
The proposed TBSD scheme’s objective in assigning nodes to
shards is to find a fair shard distribution set to prevent col-
luding based on the trust value of the nodes. When trust is
calculated for each shard in the trust model, the node with
the majority opinion on that node gets a high trust value, and
vice versa. Assuming that the trust model actually reflects
the reliability of the node, the aggregated trust of each shard
should be kept as close as possible. If discrepancy of the
aggregated trust in a shard is large, that shard can be heavily
biased, and the threat of malicious colluding may increase.

In addition, malicious nodes may form a majority of a
single shard in the initial random shard grouping. In this case,
malicious nodes may receive a high trust value due to being
the majority. These malicious node will have high similarity
between their trust vectors, therefore they will eventually
receive the same trust values. To prevent further collusion,
in the proposed scheme, nodes that receive the same trust
evaluation are separated and assigned to different shards in
the following epoch (round).

Therefore, to properly isolate malicious nodes from clus-
tering, the following two conditions should be required:
1) Find the shard distribution sets that result in the same
aggregated trust value for each shard. 2) Nodes with the same
consensus behavior should be separated into different shards
in the next epoch. These two properties are applied to the
proposed modified GA-based TBSD scheme.

To distribute nodes to each shard fairly, the objective func-
tion of the proposed scheme is to find the optimal shard dis-
tribution set while minimizing the root mean square (RMS)
error (E) of the shard trust values,

minE =
K∑
i=1

K∑
j=1

√
(TGi − TGj )2

K
, 1 ≤ i, j ≤ K (6)

Subject to TGi =
∑
j∈Gi

tj (7)

whereK denotes the given number of shards in the blockchain
system, Gi and TGi represent the ith shard set and the aggre-
gated trust of the corresponding shard, respectively. In (7), tj
denotes trust value of node j in set Gi, where Gi stores the
index of the node to be assigned in the ith shard group.

Finding the optimal shard set (G1,G2, · · · ,GK ) given the
trust set T = (t1, t2, · · · , tN ) to minimize (6) is a NP-hard
problem, which is validated through Lemma 1.
Lemma 1: The TBSD problem is NP-hard.
Proof: In the TBSD problem (denoted asD), it is shown

that there is a shard distribution setG = G1∪G2∪· · ·∪Gk of
G into K disjoint non-empty shard sets satisfying the objec-

tive function min
i,j∈K

∑K
i=1

∑K
j=1

√
(TGi−TGj )

2

K , while the trust set

T is given. Then, the decision problem of TBSD is changed
to find the shard distribution set G satisfying E = 0 because
it is evident that the condition TGi = TGj for ∀ (i, j) is needed
to minimize the objective function E to zero. In this case,

the decision problem of TBSD is reduced to a K -partition
problem finding the set partition with an equal trust sum of
each shard, which is a NP-complete problem [21]. There-
fore, the decision problem version of TBSD is NP-complete.
On the other hand, the TBSD problem D is an optimization
problem that finds an optimal set G that minimizes E . For a
given arbitrary solution set G∗, it cannot be guaranteed that
there exists a polynomial time algorithm that can verify that
the given G∗ results in a minimum E . Therefore, since the
problem D /∈ NP, it is NP hard not in NP-complete (NPC).

Next, when the shard distribution is processed randomly,
the advent probability of a malicious shard is analyzed in the
following Lemma 2.
Lemma 2: The generalized equation for probability

of malicious shard clustering is given as Pmal =

1−
∏K

i=1
∑Ni

l=dNibe

(Ni
l

)
pNi−l(1− p)l .

Proof: Let N be the total number of nodes satisfying
N =

∑K
i=1 Ni, whereNi represents the number of nodes in the

ith shard. Let b be the consensus bound, which represents the
minimum quorum required for agreement in the consensus
algorithm (which is 1

2 for majority voting and 2
3 for PBFT),

and p is the malicious node ratio of the network.
Then, the shard needs at least (Nib) nodes to start a safe

consensus round and remain as an uncorrupted shard. Ran-
dom variable X ij is 1 if the jth node of the ith shard is a honest

node, and 0 elsewise. Let X i =
∑Ni

j=1 X
i
j , where X

i is the total
number of honest nodes in the ith shard. Then, X i follows a
binomial distribution with a malicious node ratio of p. The
probability pihonest denotes the probability that shard i is an
uncorrupted shard based on the following equation.

pihonest = Pr[X i ≥ Nib] = 1−
dNibe∑
l=0

Pr[X i = l]

=

Ni∑
l=dNibe

(
Ni
l

)
pNi−l(1− p)l (8)

In addition, the probability of malicious shard clustering
(pmal) is a complementary event of all K shards being uncor-
rupted shards. Therefore, the generalized probability equa-
tion for malicious shard clustering is derived as follows.

pmal = 1−
K∏
i=1

Ni∑
l=dNibe

(
Ni
l

)
pNi−l(1− p)l (9)

2) GA BASED SHARD DISTRIBUTION PROTOCOL
The proposed TBSD scheme assigns nodes to shards based on
their trust level. In order to prevent the composition of a shard
with a majority of malicious nodes, the proposed system uses
a GA to distribute nodes fairly based on their trust level. The
GAfitness function is based on the optimization function (E),
which is obtained by the RMS of the average trust of each
shard and average trust of the entire node set. Until the fitness
function is minimized, the GA process repeatedly attempts to
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FIGURE 4. Shard distribution example: a) chromosome generation; b) crossover and mutation process.

form optimal shard distribution sets. Fig. 4a shows how the
shard distribution set is converted to chromosomes, in which
6 nodes are distributed to 3 shards, where nodes 1 and 2 are
assigned to shard 1, nodes 3 and 6 are assigned shard 2, and
nodes 4 and 5 are assigned to shard 3. The shard number
to which a node is assigned is indicated in the index of
the chromosome, in which the first generation of the shard
distribution set is presented. The GA forms multiple popula-
tions of the initial chromosome set (which represents the first
generation) and repeats the crossover and mutation process
iterations until the fitness function is minimized.

a: CROSSOVER PROCESS
Among the many populations initially created, parents are
selected, and the process of generating offsprings through
genetic exchange of the parents is executed in the crossover
process. Through the crossover process, the features of the
parents are exchanged and inherited to each offspring. The
algorithm filters the dominant chromosomes suitable for
the fitness function through the offspring generation pro-
cess. In the TBSD scheme, uniform crossover was applied in
the one-by-one chromosome switching process. In general,
the GA process combines a number of parent pairs randomly
without evolutionary direction. The detailed crossover pro-
cess is shown in Fig. 4b. First, the initial parents’ population
are generated by a random shard distribution, and the two
parents are selected by the crossover probability Pc. After
the parents have been determined, the fitness function that
represents the RMS error of the trust is computed. If the
parent fitness function is too high, the gene with a higher
trust value should be replaced with a gene of a lower trust
value of the other parent to balance the trust level of the shard.
In this example, the parents have shard distributions of [1, 1,
1, 3, 3, 2] and [1, 2, 2, 3, 1, 2]. If the trust of shard 1 in the
upper parent is higher than the average, it can be exchanged
with the genes of the second node of the parent below. There-
fore, the crossover process changes genes to find the optimal

shard distribution set that satisfies the fitness function. The
offspring pairs generated by the crossover become parents in
the next iteration. Through this process, chromosomes that do
not fit the fitness function are made extinct, and only a few
chromosomes near the optimal solution will survive.

b: MUTATION PROCESS
The mutation process is a way to pursue the diversity of solu-
tions from an evolutionary point of view. Candidate solutions
go through the crossover process to the optimal solution,
but at the end of the phase, the variability of the solution
decreases. Often, due to the lack of variety of solutions,
the optimal solutions that satisfy the fitness function can
easily fall into a local optimal point. The mutation process
makes certain variants of the solution candidatesmore diverse
by applying a mutation probability (Pm) to the chromosomes.
An example of the mutation process is shown in Fig. 4b.
In Fig. 4a, the shard group assigned to node 5 has changed
from 1 to 3. In this case, until the mutation occurs, the number
of nodes belonging to shard 1 is 3, which occupies half of the
total nodes. The mutation process assigns nodes that were
assigned to shard 1 to other shards randomly.

c: PARTITIONING NODES WITH SAME TRUST
In the TBSD scheme, modification in the GA were applied
to prevent malicious colluding. As mentioned in the problem
statement, trust computations may be unreliable in the early
stages. This is because in the initial stage, nodes are assigned
to shards randomly due to not having any calculated trust
values of the nodes, and also it takes a few epochs to accumu-
late reliable trust values of the nodes. However, if a colluded
attack is conducted in the initial stage, the colluded nodes will
receive the same trust values, and therefore will be separated
in the following stage. This method will quickly separate
nodes that attempt to collude, preventing further colluding
opportunities.
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To execute this method, the trust values are used as fol-
lows. In order for malicious nodes to collude, the honest
nodes should be isolated by modulated SCO opinions gen-
erated by the colluding malicious nodes. In addition, in order
for a malicious node to get a malicious consensus result in
the shard, the commit result of the block and the SCO report
need to be matched, and therefore, the colluding nodes will
receive the same trust evaluation. To prevent further collu-
sion, the proposed scheme distributes nodes with the same
trust value to different shards. This feature can be applied
in the mutation process as follows. In Fig. 4b, the mutation
process selects node 5 as a mutation node based on Pm.
At this time, since the shard allocation of node 5 is 1, it can
be changed to shard 2 or 3. If there is a node with the
same trust value as node 5 in shard 2, it will be reallocated
to shard 3 through a one-by-one exchange. In other words,
nodes with the same trust value will be separated to different
shards in themutation process. The pseudocode for the TBSD
scheme is described in Algorithm 1. After the trust compu-
tations are completed for all nodes, the GA shard distribution
process begins. In the GA procedures, the crossover, muta-
tion, and partition process are iteratively operated to find the
optimal shard distribution set.

IV. SECURITY ANALYSIS
A 51% attack on a single shard is called a ‘single shard
takeover,’ which is a major security challenge in sharded
blockchains [22]. Since transactions are independently pro-
cessed for each shard, the occurrence of a corrupted shard
is fatal to sharded blockchains. Therefore, a 51% attack on
a blockchain can be devastating, since the effects can be
extended to a variety of malicious behaviors (e.g., double
spending attack, eclipse, and denial of service) [20]. There-
fore, preventing a 51% attack on single shard is important in
sharded blockchain security, because the distributed ledger
of a blockchain relies on the majority consensus of the val-
idator (miner) nodes. To effectively attack a single shard,
malicious nodes need to have the same commit result to
overturn the majority vote of the consensus process. Based
on this point, the proposed trust model is designed to make
the trust evaluation of malicious nodes to be similar if their
commit behaviors are similar by applying a penalty weightW
value. However, the trust value of a node is computed based
on a local consensus of each shard, where malicious nodes in
the initial shard may be a majority. In this case, malicious
nodes can obtain high trust values if they collude and exclude
honest trust reporting by intentionally adding discrepancy to
their SCO tables. To solve this problem, themodifiedGA pro-
cess includes additional partitioning of nodes with the same
trust value to separate potential collusive nodes. If malicious
nodes in a particular shard conspire a false consensus, they
will attempt to manipulate the majority commit result to suc-
cessfully launch a 51% attack. Their coordinated malicious
behavior will result in them being isolated in the following
round. In addition, even ifmalicious nodes have different trust
values due to their inconsistent behavior patterns, because

Algorithm 1Optimal Shard Distribution Based on the TBSD
Modified GA
Input T : trust set of nodes, where T = (t1, t2, t3 · · · , tN ),
K : number of shards, TGi : aggregated trust of the ith shard,
N : number of total nodes, Pc: crossover probability, Pm:
mutation probability, C = (C1,C2, · · · ,CN ): shard dis-
tribution chromosomes, Ci: assigned shard number of the
ith node, 1 ≤ Ci ≤ K , P: set of parents, O: set of
offsprings, M : number of populations, θ : shard distribu-
tion threshold, γ : crossover operator, ω: mutation opera-
tor

Initialize generate initial parent group
Arbitrarily generateM different chromosomes and store in
parent set P
Iterative crossover and mutation process

while
∑K

i=1
∑K

j=1

√
(TGi−TGj )

2

K > θ do
Crossover process
Generate pair for different M chromosomes in P
Select random index dPcNe number of times to inter-
change selected gene of each pair
Output P→

γ
P∗

Mutation process
for ∀i in P∗i , 1 ≤ i ≤ N do
Select random index dPmNe number of times.
Change the gene (shard number) of the selected index

end for
Partitioning nodes with same trust
for the selected index i do
if there is j with ti = tj then
Ci mutated to Cx where Cx 6= Cj where
1 ≤ Cx ,Cj ≤ K

else
Ci mutated to arbitrary Cj

end if
Output P∗→

ω
O

end for
end while

the honest nodes will be evenly separated to different shards,
this will also help to effectively hinder malicious nodes from
succeeding in their collusive attack. Due to this feature of the
TBSD scheme, even if a single shard takeover is attempted
in a particular round, it cannot be sustained in the following
round. In this sense, the proposed TBSD scheme is resilient
against both consistent and inconsistent behavior of mali-
cious nodes.

V. PERFORMANCE ANALYSIS
In this section, the performance metric to analyze the pro-
posed TBSD scheme is described. In Table 2, there are four
possible outcomes (i.e., TN, TP, FN, FP) based on the con-
sensus result. Based on this, we defined two performance
parameters in the following.
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FIGURE 5. Simulation results, a) parameter selection; b) fairness evaluation; c) convergence test; d) false consensus probability.

TABLE 2. Performance metric on consensus.

A. PERFORMANCE PARAMETERS
Accuracy (ACC): Accuracy is a measure of how well shards
are distributed so that a corrupted shard does not occur. ACC
is represented by the probability of an uncorrupted shard.
An uncorrupted shard results in the determination that the
block from a honest node as valid (TN) and judges the block
from a malicious node as invalid (TP). Therefore, the accu-
racy is computed as ACC = TN+TP

TN+TP+FN+FP .
False Consensus Probability (FCP): FCP represents the

probability of a corrupted shard occurring. A corrupted shard
results in the determination that the block proposed by a
honest node as invalid (FP), and evaluates the block proposed
by a malicious node as valid (FN). As a result, the FCP is
computed as FCP = FN+FP

TN+TP+FN+FP .

B. SIMULATION RESULTS
The shard distribution scenario for the blockchain was imple-
mented using Python based on a total of 400 block validation
nodes, which were allocated to 10 shards. The generations of
TBSD were set to 300 per each shard distribution. In Fig. 5a,
the change of the E value was observed based on different
values of Pc and Pm for the range of 0.1∼1, with an internal
size of 0.1. All experiment results were taken from the aver-
age values of 100 independent simulations. The vertical axis
refers to the ratio of E after optimizing the initial E . As shown
in Fig. 5a, the ratio of E values varies slightly depending on
different Pc and Pm values, and converges within the range
of 0.3∼0.33. As Pc and Pm increase, several local minimum
points were observed, but the global minimum was obtained
at Pc = 0.8 and Pm = 0.4. Thus, these points were selected
by the GA to use in the following procedures. The shard
distribution cycle takes place every 10 commit phases, where
each cycle is denoted as a round (epoch) in the simulation
figure.

Fig. 5b shows the change in E , where through the genera-
tions the GAfinds the optimal chromosome shard distribution
that results in a minimum trust average difference among the
shards, which reduces the value of E . As shown in Fig. 5b,
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the slope of the declining curve stagnates after 300 genera-
tions, which is why the 300th generation was set as a stop
point.

Fig. 5c shows the change in accuracy over 10 rounds
of the consensus process under NMA. In TBSD, the trust-
based shard distribution starts after the first-round ends.
For performance comparison, the shard-based blockchain
ELASTICO of [1] and SSChain [17] were compared with the
proposed TBSD scheme. Because TBSD finds the optimal
shard distribution configuration using a GA, the consensus
accuracy of each shard shows a more stable convergence
characteristic compared to ELASTICO and SSChain. In the
case of SSChain, the overall accuracy is higher than that
of ELASTICO, but the accuracy deviation range is also the
highest. This is because SSChain uses a PoW consensus
based on a majority rule, so the average accuracy is higher
than that of ELASTICO using PBFT with relatively tight
consensus bounds. SSChain, on the other hand, has no reshuf-
fling method and is very vulnerable when the nodes in charge
of the root chain are compromised by having over 51% of
malicious nodes in a shard. Therefore, SSChain shows the
largest performance deviation in accuracy.

Fig. 5d shows the FCP under NMA, CRA, and CBA
attack scenarios comparing both ELASTICO, SSChain, and
TBSD. The NMA and CRA nodes disturb the consensus
process, while the CBA nodes conduct inconsistent consen-
sus behavior to hinder accurate trust evaluations. Because
ELASTICO does not apply any penalty for malicious behav-
ior, it cannot effectively prevent malicious node grouping
to a shard. Since NMA and CRA differ in SCO tamper-
ing, the two attack scenarios are equivalent in ELASTICO,
where no trust management is used. Under CBA, due to
random consensus behavior, there is a difference in FCP
compared to NMA and CRA. SSChain shows a moderate
performance at less than 40%, but as the malicious node ratio
increases, SSChain becomesmore vulnerable because it man-
ages not only the side chain of each shard, but also the root
chain.

In the case of the proposed TBSD scheme, because
nodes are assigned to shards corresponding to their trust eval-
uations to form a fair distribution, the probability of having
a majority of malicious nodes in a particular shard is signifi-
cantly reduced, compared when the ELASTICO algorithm is
used. If malicious nodes had been assigned to the same shard
in the previous round, the malicious nodes will all receive
bad trust evaluations for their collusive behavior, in which the
modified GA process will divide malicious nodes to different
shards in the next round, which helps to prevent further
collusive actions.

However, CBA nodes will not always behave the same
because they intentionally apply inconsistent consensus
behavior patterns. However, even in this case, because the
modified GA attempts to evenly distribute honest nodes to
different shards, the defense against CBA nodes is also
very effective. As a result, the TBSD scheme effectively
makes it very difficult for malicious nodes to collude in

any shard. This effect results in the performance gain
presented in Fig. 5c and 5d.

In addition, in terms of accuracy performance under both
NMA and CRA attacks, TBSD achieves an average perfor-
mance gain of 24% and 18% respectively over ELASTICO
and SSChain at the 30% malicious node rate, and also
achieves an average performance gain of 34% and 31%
respectively over ELASTICO and SSChain at the 40%
malicious node rate. In addition, under the CBA scenario,
the accuracy performance gain reaches a maximum of 29%
at the 40% malicious node ratio.

VI. CONCLUSION
Sharding technologies are being considered to solve
blockchain scalability problems. However, sharding can
make blockchains more vulnerable, as the fault tolerance
level of a single shard will decrease, making shards more
vulnerable to malicious attacks. To solve this problem,
the proposed TBSD scheme distributes nodes to shards based
on trust evaluations to avoid malicious node grouping. The
fairness of the shard distribution is maintained by minimizing
the discrepancy between the aggregated trust of each shard
using GA processing. The ACC and FCP performance of
the proposed TBSD scheme is compared with the ELAS-
TICO and SSChain scheme in reference to NMA, CRA, and
CBA attacks for different malicious node ratios, where the
results show that the TBSD scheme provides a performance
improvement for the adversary models tested.
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