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ABSTRACT Benefiting from the research of machine learning (ML) and deep learning(DL), multivariate
methods based on ML and DL have been the mainstream and successful analysis methods in Neural
Engineering or Neuroimaging research, for example, assisting diagnosis based on brain Magnetic Resonance
Imaging (MRI). However, many existing methods based on traditional ML methods cannot sufficiently
extract discriminative features, especially feature patterns across long-distance brain areas, resulting in
unsatisfactory classification performance. Designing an effective and robust classifier for different MRI
images remains a challenge. In this paper, we introduced dilated 3D CNN method for classifying 3D MRI
images combining CNN structure and dilated convolution with a small number of feature maps. We also
presented a methodology framework based on dilated 3D CNN method, which can classify both single MRI
images and image sequences. Our method and framework were evaluated on the structural MRI images of
ADHD-200 dataset and fMRI images of a Schizophrenia dataset, demonstrating better performances than

some other state-of-the-art methods.

INDEX TERMS Biomedical image processing, magnetic resonance imaging, machine learning.

I. INTRODUCTION

In the last two decades, neuroscience and neuroimaging
researchers relied on Univariate analysis, which compares
patients against healthy subjects and finds anatomical or func-
tional differences at a group level. However, these simple and
interpretable methods have two defects. First, univariate anal-
ysis methods based on the assumption that activities within
different brain regions or voxels are independent. However,
this assumption is not in accord with present findings of brain
function, which translate some brain function into network-
level activities [4]-[6]. Second, univariate analysis can’t be
used to make statistical inferences at an individual level,
which means these methods are failing to make diagnostic
decisions.

In the past few years, multivariate analysis methods in
neuroimaging research such as Magnetic Resonance Imag-
ing (MRI) has become a major area of interest in the field
of Neural Engineering and Artificial Intelligence [1]-[3].
Multivariate analysis methods introduced machine learning
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into the field of biomedical research as a powerful tool,
which develops algorithms that mine the patterns of existing
data and predict the patterns of new data. Machine learning
algorithms employ multivariate and the relations among vari-
ates, which overcome the first defect of univariate analysis
methods. They can also make statistical inferences at a sub-
ject or even image level, which overcome the second defect
of univariate analysis methods [7].

Machine learning algorithms have been successfully
applied to MRI data from cognitive experiments or patient
scanning [7], [8]. Moreover, Support Vector Machine (SVM)
is one of the most popular methods in this research field.
Kernel function used in SVM resolves the classification
problem where the two classes are not linearly separable
in [10], [14]. SVM has been used in a large number of
neuroimaging research, including classification of functional
task states or resting states of patients and healthy sub-
jects and estimation of subjects’ traits, such as age and
gender [15]-[17], [19].

There were also other kinds of machine learning algo-
rithms were used in neuroimaging research. Chou et al. [20]
presented a voxel (feature) selection algorithm based on
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Mutual Information and Partial Least Squares for recognition
of different types of fMRI Images. An information index for
selecting voxels with more information was presented based
on their relational degree with the experimental conditions.
Khazaee et al. presented a machine learning method based
on graph theory for recognizing different brain networks
between healthy subjects and patients with Alzheimer’s dis-
ease [21]. This method was used to extract optimal features
from functional MRI (fMRI) connectivity matrix graph mea-
sures, and the features were feed into SVM for classification.
Al-Zubaidi et al. had a similar result in classifying human
with metabolic states (hunger/satiety) [22]. The extracted
connectivity parameters from 90 brain regions and used
sequential forward floating selection strategy with linear
SVM to classify the human with the two states.

However, in recent years, success on computer vision,
natural language processing of Deep learning (DL), an alter-
native algorithm family of machine learning algorithms, has
been gaining attention in the other research fields, includ-
ing Biomedical Engineering and Neuroscience [23]-[26].
Zhao et al. [30] presented a deep 3D Convolutional Neural
Network (CNN) structure for recognizing a large number
of sparse presentation of functional brain networks recon-
structed by whole-brain fMRI signals. To reduce the influ-
ence of irrelevant part of fMRI images, the experimental
results based on multiple fMRI data sets showed that the 3D
CNN structure was effective and robust. Zou ef al. presented
a multi-modality CNN architecture combing fMRI and struc-
tural MRI (sMRI) for distinguishing neuroimages between
healthy subjects and subjects with Attention deficit hyperac-
tivity disorder (ADHD) [31]. In this method, refined features
were extracted and combined from both fMRI and sMRI
images and fed into the classifier. This structure achieved high
accuracy of 69.15% in the data from ADHD-200 competi-
tion. Besides CNN structures, other types of deep learning
algorithms have also been employed in fMRI classification.
Xu et al. proposed a framework based on Tensor Neural
Network that could avoid the curse of dimensionality prob-
lem and extract useful features from fMRI images. Their
framework outperformed traditional machine learning meth-
ods in both binary-class and multi-class fMRI classification
tasks [32]. Kasabov et al. proposed a new method based on
NeuCube Spiking Neural Networks (SNN) for classifying
subject’s cognitive state, in which the fMRI images were
encoded into spiking sequences [33].

Although the above mentioned methods have achieved
outstanding performance for neuroimage, especially fMRI
image classification, the following problems exist: (1) the
sample size is usually small in neuroimage research. The
small dataset could probably lead model overfitting or under-
fitting. (2) Some mental disorders, for example, ADHD,
are concurrent with brain activity changes in patient’s brain
functional connectivity [34], [35]. However, the patterns of
functional connectivity between two faraway brain regions
are difficult to be detected by standard convolution layers.
Currently, there is no machine learning or other classification
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methods used in brain image classification to conquer these
problems.

To tackle these problems, we introduced effective dilated
CNN classification algorithm into brain MRI images classi-
fication. Comparing with existing research for MRI image
classification, several significant contributions that this study
makes are described as follows: 1) We introduced a dilated 3D
CNN algorithm with embedded dilated convolution layers.
The embedded dilated convolution layers enlarge the recep-
tive fields and detect the voxel patterns between long-distance
brain areas. 2) We proposed a novel framework that can clas-
sify the subject’s health state not only by a sequence of fMRI
epipolar plane images (EPI) but also by a single EPI image.
3) Our proposed algorithm can outperform some state-of-the-
art algorithms for classifying a single structural MRI (sMRI)
image of different subjects. We performed two experiments,
which classified MRI images of patients and healthy subjects.
The first one used sSMRI images from ADHD-200 datasets.
The second experiment used fMRI images of healthy sub-
jects and patients with schizophrenia. Proposed algorithm
outperformed other algorithms in both experiments. We also
achieved the highest accuracy in ADHD-200 structural MRI
data in comparison with previous related research.

The rest of this paper proceeds as follows: we will intro-
duce relevant literature and methods in Section 2. Section 3
details the presented algorithm and framework in this paper.
Section 4 conducts two experiments and the experimental
results are analyzed. We will draw conclusions in section.

Il. RELATED WORK

Over the past few years, various approaches of neuroimaging
classification have been proposed to increase classification
performances. We review some CNN classification structures
that have been used in neuroimaging, and also some methods
based on dilated convolutional feature extraction.

A. CNN USED IN NEUROIMAGING

Multiple CNN structures that had performed well in image
recognition has been introduced into neuroimaging classi-
fication. These structures also showed their power in neu-
roimaging classification. LeNet [36] was introduced for clas-
sifying Autism functional MRI images [37]. Convolution
layers, pooling layers, and fully connected layers constitute
the LeNet. The LeNet structure is shown in Fig. 1(a), the first
four layers extract features that are fully connected to the
output for image classification. ResNet proposed by He [38],
which contains residual structures (shown in Fig. 1(b)) was
also introduced in pancreatic tumor recognition based on
MRIimages [39]. The ResNet structure has performed well in
tumor recognition of MRI images and achieved the accuracy
of 91% in their experiments.

Previous successful application of classical CNN struc-
tures from image classification to neuroimaging classifica-
tion enlightened us. We introduced a CNN structure into MRI
images classification, which included layers that were all
transformed into 3-dimensional layers.
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FIGURE 1. CNN structures that have been successfully used in
neuroimaging classification (a) is the LeNet structure.
(b) is a residual structure in ResNet.

Conv

B. DILATED CONVOLUTION IN DL

Some deficits exist in this the combination of standard con-
volution layers and pooling layers. Pooling layers are used to
diminish the feature maps and to help extract features within
far-distance regions. However, some parts of information
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could be lost in the subsampling operations, such as data
structure or some spatial information.

The dilated convolution [40] resolved the problem. The
dilated convolution is widely used in feature extraction
with larger receptive fields, which could facilitate extract-
ing the useful features within extended regions. The dif-
ference between standard convolution and dilated convolu-
tion is shown in Fig. 2. The dilated convolution is shown
in Figure. 2(b) gets a dilated rate / more than the standard
convolution. / means the gaps between the closest computing
units of a convolution kernel. / = 1 means that the dilated
convolution equals to standard convolution and / = 3 means
it skips 3 pixels between closest computing units.

|

.|

(a) (b)

FIGURE 2. The comparison between standard convolution and dilated
convolution. (a) Standard convolution. (b) Dilated convolution with / = 2.

Dilated convolution has been employed in classifica-
tion or segmentation of medical MRI images. A 3D fully con-
volutional networks (FCN) with group dilated convolution
was proposed by [41] to segment the prostate on MRI. This
algorithm with dilated convolution outperformed other seg-
mentation methods and was demonstrated its clinical feasibil-
ity. Huang presented a GlimpseNet with dilated convolution
that got better performance than previous methods in classi-
fication and segmentation of mammogram MRI images [42].

For now, dilated convolution has not been used in the brain
image classification. In this paper, the dilated convolution
was embedded into the proposed CNN network structure
to extract more features that are sensitive to brain activi-
ties or structural differences in large regions.

Ill. PROPOSED METHOD

Our framework consists of the following parts: data prepro-
cessing, dataset balancing, classification of single images,
and Aggregation results of an image sequence. A block dia-
gram of our framework is presented in Fig. 3, and each part
is described below.

A. DATA PREPROCESSING

Each MRI image, whether fMRI image or sMRI image,
should be preprocessed into the same data coordinates before
fed into classifiers. In experiments of a sequence of fMRI
images, each subject has multiple EPI images. The prepro-
cessing steps for all of the EPI images include slice timing,
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FIGURE 3. Flowchart of our framework based on Dilated 3D CNN. In the first step, images are preprocessed in both training and testing datasets. Random
oversampling is employed on the imbalanced training dataset. In the next step, the preprocessed and balanced dataset is presented to dilated 3D CNN
for training and testing. For a sequence of images, the final result is aggregated from previous classification results.

realign, normalization, and smooth. After the preprocessing
steps, all raw functional EPI images should have been con-
verted into the normalized images. Finally, all images are
smoothed using a Gaussian kernel to increase the signal-to-
noise ratio. Different from fMRI EPI images, in general con-
ditions, one subject has only one structural MRI image. The
structural MRI images should be skull-stripped, segmented
and registered into the gray matter (GM), white matter (WM)
and Cerebrospinal fluid (CSF) images are normalized in
Montreal Neurological Institute (MNI) templates. The GM
images are also finally smoothed using Gaussian kernel.

B. DATASET BALANCING
Imbalance of dataset may be one of the common issues
found in classification in most of the biomedical application.
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Data imbalance often meant the classes within a dataset
that are unequally distributed, and it may have a negative
effect on the performance of a classifier by making the pre-
diction results focus on majority class. Random oversam-
pling or under-sampling methods are effective to counter this
problem. We applied the oversampling method to produce a
balanced dataset for training.

C. DILATED 3D CNN

Fig. 4 sketches our proposed dilated 3D CNN classifier archi-
tecture. All of the convolution and max-pooling layers are
transformed from 2D to 3D, whose kernels are converted
from a square to a cube. dilated 3D CNN consists of 6 dilated
convolution and max-pooling layers. All of the dilated con-
volution layers have 3 x 3 x 3 convolution kernels with the
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TABLE 1. Details of the dilated 3D CNN architecture.

Layer Feature maps  Stride Kernel | Dilated Rate Activation Structure
Dilated Convolution 4 1x1x1|3x3x3| 3x3x3 |BatchNormalization+LeakyRelu
Dilated Convolution 4 1x1x1|3x3x3| 3x3x3 |BatchNormalization+LeakyRelu

Max Pooling 4 2x2x2[4x4x4
Dilated Convolution 8 1x1x1|3x3x3| 3x3x3 |BatchNormalization+LeakyRelu
Dilated Convolution 8 1x1x1|3x3x3| 3x3x3 |BatchNormalization+LeakyRelu
Max Pooling 8 2x2x2[4x4x4
Dilated Convolution 16 1x1x1|3x3x3| 3x3x3 |BatchNormalization+LeakyRelu
Dilated Convolution 16 1x1x1|3x3x3| 3x3x3 |BatchNormalization+LeakyRelu
Max Pooling 16 2x2x2[4x4x4
Fully Connected 128 LeakyRelu
Fully Connected 128 LeakyRelu
Fully Connected 2 Softmax
Classification Layer Argmax

Pool Dilated Dilated
Conv  Conv

Dilated Dilated

ool
Conv  Conv

Dilate Dilated
Conv  Conv

FIGURE 4. The network structure of our proposed dilated 3D CNN
classifier.

dilated rate of 3 and stride of 1 x 1 x 1. All of the max-
pooling layers also have convolution kernels with a size of
4 x 4 x 4 and stride of 2 x 2 x 2, which are designed to
diminish the size of feature maps. Each convolution layer
is followed by a common activation module that consists
of a batch normalization layer [43] and a Leaky Relu [44]
activation function. The last max-pooling layer is followed by
two fully connected layers and softmax classifier. Moreover,
as we all know, the 3D CNN usually requires a large memory
usage in GPU, which makes the classifier cannot work well in
most GPUs and too complicated to train properly. We decided
to use a small number of feature maps in dilated 3D CNN
to resolve these problems. Detailed parameters of dilated 3D
CNN are listed in Table 1.

This classifier is designed to be a 2-class classifier. The
output of the softmax layer contains two units. One denotes
the probability of classified into healthy class (images of
healthy subjects), and the other one denotes the probability
of classified into patient class (images of patients).

D. AGGREGATION RESULTS

For structural MRI image, which is the only one image match-
ing one subject, the predictive label from dilated 3D CNN
is the final predictive result. But a subject has a sequence of
fMRI EPI images, which means that the sequence labels from
EPI sequences should be aggregated.
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We define a true label ratio r that is calculated as the
following equation:
_ N
N, + Ny,
N, is the number of EPI images that are predicted to patient
class. On the opposite, Ny, is the number of EPI images that

are predicted to healthy subject class.
The aggregated result g is defined as follow:

r

ey

1 r>=0.5
- 2
710 r<o05 @

IV. EXPERIMENTS AND RESULTS

To evaluated the proposed dilated 3D CNN framework,
we started two experiments respectively on sequences of
fMRI EPI images and structural MRI images. In the first
experiment, the structural images from public ADHD-200
datasets were used to evaluate the Dilated 3D CNN, which
predicted sSMRI images with two-class classification (typi-
cally developing children (TDC) vs. children with ADHD).
And in the second experiment, we employed an fMRI dataset
which was scanned from schizophrenia (SZ) and healthy
subjects. The proposed framework was used to classify
schizophrenia and healthy subjects.

In the two experiments, our algorithm and framework
is compared with three frequently-used CNN models,
ResNet [38], ResNetXt [45], VGG [46], SparseNet [52],
AlexNet [23] and Inception-v3 [53]. All the images were pre-
processed using SPMS (https://www.fil.ion.ucl.ac.uk/) and
MATLAB (Mathworks, Natic, MA) software. In this work,
we employed TensorFlow [48] as the DNN framework to
experiment with all methods in two experiments. Exper-
iments were implemented in the software environment:
Centos 7.5 64 bit, python 3.6, Tensorflow 1.11.0 and hard-
ware environment: Intel 17-7820X, RAM 64G, and a NVIDIA
GeForce GTX 2080Ti GPU.

A. EXPERIMENT 1: SMRI DATASETS OF ADHD-200

In the experiment, 587 sMRI images were obtained from
ADHD-200 dataset with a size of 121 x 145 x 121 voxels.
We used 5-fold cross-validation to train and test models.
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In each test, 470 images were used for training including
353 images of healthy subjects and 117 images of patients,
and the remaining 117 images were used for testing including
88 images of healthy subjects and 29 images of patients. After
over-sampling in training phase, the number of images of
patients in training was 353.

With the random initialization of the network parame-
ters in predefined ranges and random partition of dataset,
we repeated training and testing for 10 times and selected
the parameters in which the network performed in an aver-
age level. The initial weights are random, and the learning
rate is 107>, Models used RMSprop [47] as optimizer and
categorical cross-entropy as the loss function. The number of
the batch is 32 in the training process.

B. RESULT 1

According to the average testing accuracy in the training pro-
cess shown in Fig. 5, all of the four methods could converge
at a stable level after iteration 60. The accuracy results are
shown in Table 2. According to the accuracy comparison, it’s
intuitionistic that dilated 3D CNN is the most accurate model
with the ResNetXt follows. The accuracy of the proposed
method was 0.766, which outperformed others and ResNetXt
performed most closely to it. But the imbalanced data might
make the predictive labels more likely to be the majority
class. The standard deviation of accuracy of SparseNet is the
highest, which meant that SparseNet could be not stable in
this experiment.

0.7 4

0.6 4

0.5 1 Dilated 3D CNN

ResNet
—— ResNetxXt
— VGG

0.4 4 —— AlexNet
—— InceptionVv3

SparseNet

0 20 40 60 80 100

FIGURE 5. Average testing accuracy in the training processes of ADHD
classification methods.

TABLE 2. Accuracy of cross-validation test of all models in experiment 1.

Model CV1 | CV2 | CV3 | CV4 | CV5 | Avg. Std.
dilated 3D CNN | 0.786 [ 0.829 | 0.726 | 0.761 | 0.731 | 0.766 0.042
ResNet 0.684 | 0.769 | 0.692 | 0.624 | 0.655 | 0.685 0.054
ResNetXt 0.735]0.752 1 0.752 | 0.769 | 0.765 | 0.755 0.013
VGG 0.692 | 0.769 | 0.641 | 0.709 | 0.697 | 0.702 0.046
SparseNet 0.391]0.645 | 0.609 | 0.640 | 0.608 | 0.579 0.106
AlexNet 0.709 | 0.744 | 0.701 | 0.744 | 0.723 | 0.724 0.02
Inception-v3 | 0.658 | 0.675|0.701 | 0.684 | 0.765 | 0.697 0.041
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Average sensitivity, specificity, areas under the curve
(AUC) and F1 scores are shown in Table 3. Sensitivity and
specificity are statistical measures of the performance of a
binary classification test. Sensitivity is calculated according
to the following equation:

TruePositive

Sensitivity =

3

TruePositive + FalseNegative

TABLE 3. Average sensitivity, specificity, AUC and F1 scores of all models
in experiment 1.

Model Sensitivity | Specificity | AUC | Flscore
dilated 3D CNN | 0.390 0.891 0.671| 0.437
ResNet 0.377 0.789 [0.638 | 0.373
ResNetXt 0.075 0982 0478 | 0.132
VGG 0.164 0.882 [0.568 | 0.312
SparseNet 0.449 0.651 0.612| 0.436
AlexNet 0.219 0.891 0.592 | 0.283
Inception-v3 0.301 0.828 [0.587| 0.331

Sensitivity means the probability of a patient being classi-
fied into patient class. Specificity is calculated according to
the following equation:

TrueNegative

Specificity = “4)

TrueNegative + FalsePositive

Specificity means the probability of a healthy subject being
classified into the healthy subject class.

It’s obvious that although ResNetXt got a high accuracy,
the sensitivity and F1 score was extremely low compar-
ing to other models. dilated 3D CNN got both high AUC
and F1 score comparing to remaining models. F1 score of
SparseNet is 0.436, close to F1 score of dilated 3D CNN.
Based on the AUC shown in Table 3 and receiver operating
characteristic (ROC) curves plotting in Fig. 6, dilated
3D CNN outperformed other methods in the most validation
test.

In order to evaluate the dilated 3D CNN method, we com-
pared our results with the results in previous results on sSMRI
images of ADHD-200 dataset. Authors of these research per-
formed cross-validation in training and testing ADHD-200
dataset. The comparison is presented in Table 4. The accuracy
achieved by our proposed methodology is better than the
others.

TABLE 4. Comparison between our results and results of previous
research.

Model Accuracy | Data Combination
dilated 3D CNN 0.766 sMRI
Zou et al. 2017 [31] | 0.6586 SMRI
Zouetal. 2017 [31] | 0.6915 SMRI+fMRI

Senetal. 2018 [49] | 0.689
Sina et al. 2016 [50] 0.70

SMRI+fMRI
sMRI+fMRI

It is also a question that how it could be if employ a hybrid
CNN structure with standard and dilated convolution layers.
Whether hybrid CNN could improve the performance? We
lunched a comparison between Dilated 3D CNN, hybrid CNN
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FIGURE 6. Seven methods’ ROC curves in each cross-validation test in experiment 1.

with 2 standard convolution layers and 4 dilated convolution
layers (hybrid CNN 2/4) and hybrid CNN with 4 standard
convolution layers and 4 dilated convolution layers (hybrid
CNN 4/2). Performance metrics are shown in Table 5.
Dilated 3D CNN got the highest average accuracy, speci-
ficity, AUC score and F1 score. Hybrid CNN 2/4 follows it.
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“N/A” which means an incalculable value was filled in
F1 score of hybrid CNN 4/2, because this model has predicted
all labels as O or 1 in each validation. It was obvious that
hybrid CNN with four dilated convolution layers could not
reach a balance between positive and negative classes. dilated
3D CNN outperformed both hybrid CNN models.

VOLUME 7, 2019



Z. Wang et al.: Dilated 3D Convolutional Neural Networks for Brain MRI Data Classification

IEEE Access

TABLE 5. Comparison of dilated 3D CNN and hybrid CNNs.

Model Avg. Acc. | Sensitivity Specificity AUC F1 score
Dilated 3D CNN | 0.766 0.390  0.891 0.671 0.437
hybrid CNN 2/4 |  0.697 0322  0.821 0.647 0.347
hybrid CNN 4/2 |  0.450 0.400  0.600 0.5 N/A

These results may be caused by the characteristics of
ADHD. According to findings in [51], cortical thickness in
bilateral frontal regions and the right cingulate cortex were
found thinner for ADHD patients. And They had significantly
decreased structural and functional connectivity in many
different brain regions, including cingulate cortex, lateral
prefrontal cortex, left precuneus and thalamus. But the func-
tional connectivity was increased in bilateral posterior medial
frontal cortex. Some of these regions of interest (ROIs) are
faraway from each other and the changes in connectivity
could be easier for dilated convolution to found. Although
standard convolution could extract more features from near
brain regions, these features perhaps didn’t help recognize
patterns.

C. EXPERIMENT 2: FMRI DATASETS OF SCHIZOPHRENIA
In the second experiment, we used clinical data scanned
in local hospital under the permission of Ethics Commit-
tee. fMRI EPI images were scanned using a 3-T GE MRI
scanner. The repetition time was 2000ms, and echo time
was 30ms. Each image consisted of 50 slices. 28 healthy and
28 SZ patients participated in this experiment (age range:
15-44, healthy subjects: 17 females and 11 males, patients:
14 females and 14 males). 50 EPI images of each subject
were scanned and used in classification. There were totally
2800 EPI images in our dataset for training and testing.
During scanning, each subject was told to lie in the MRI
scanner and keep in an awake resting state with head fixed
by sponges.

In the experiment, fMRI EPI images were with a size of
61 x 73 x 61 voxels. We used 5-fold cross-validation to train
and test models. Dataset was split at subject level. In each
test, 2300 images of 23 patients and 23 healthy subjects were
used for training, and the 500 images of remaining subjects
were used for testing. Healthy and patient class has the same
number in training and testing phase.

With the random initialization of the network parame-
ters in predefined ranges and random partition of dataset,
we repeated training and testing for 10 times and selected
the parameters in which the network performed in an aver-
age level. The initial weights are random, and the learning
rate is 107>, Models used RMSprop [47] as optimizer and
categorical cross-entropy as the loss function. The number of
the batch is 32 in the training process.

Because a sequence of fMRI EPI images existed in this
experiment, we would compare the results of classifica-
tion as well as the aggregated results of our proposed
framework.
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D. RESULT 2

The accuracy results are shown in Table 6. The accuracy
of the proposed dilated 3D CNN method was 0.822, which
was higher than the performance of other methods. And like
the accuracy results in experiment 1, the ResNetXt got the
accuracy of 0.806, which was closest to dilated 3D CNN.
Because of the difference of datasets, sensitivity, and speci-
ficity of dilated 3D CNN shown in Table 7 is respectively
0.793 and 0.855, which is higher than those in experiment 1.
And the AUC and F1 score of dilated 3D CNN still got
highest in among these methods. These results mean that
our proposed method could recognize both SZ patients and
healthy subjects with high accuracy, based on a single fMRI
EPI image.

TABLE 6. Accuracy of cross-validation test of all models in experiment 2.

Model CV1 | CV2 | CV3 | CV4 | CV5 | Avg. Std.
dilated 3D CNN | 0.837 | 0.910 | 0.819 | 0.711 | 0.833 | 0.822 0.071
ResNet 0.335]0.559 | 0.438 | 0.820 | 0.551 | 0.608 0.181
ResNetXt 0.822]0.585(0.715 | 0.569 | 0.785 | 0.806 0.115
VGG 0.796 | 0.662 | 0.862 | 0.445 | 0.642 | 0.686 0.161
SparseNet 0.898|0.718 [ 0.756 | 0.814 | 0.792 | 0.796 0.068
AlexNet 0.596 | 0.683 | 0.647 | 0.822 | 0.794 | 0.710 0.097
Inception-v3 | 0.650 | 0.635|0.597 | 0.597 | 0.419 | 0.579 0.093

TABLE 7. Average sensitivity, specificity, AUC and F1 scores of all models
in experiment 2.

Model Sensitivity | Specificity | AUC | F1 score
dilated SDCNN | 0.793 0.855 ]0.827| 0.818
ResNet 0.454 0.618 |0.665| 0.495
ResNetXt 0.725 0.672  0.567| 0.706
VGG 0.648 0.723  10.787| 0.699
SparseNet 0.772 0.818 0.812| 0.790
AlexNet 0.751 0.661 [0.756| 0.719
Inception-v3 0.506 0.651 0.729 | 0.546

The AUC scores and ROC curves are shown in Table 6 and
Fig. 7. Although the ROC curves in experiment 2 are more
disordered than those in experiment 1, the average AUC score
showed dilated 3D CNN’s domination among seven methods.

The previous results substantiated the accuracy and robust-
ness of dilated 3D CNN on a single EPI image level. In the
last part of our proposed framework, prediction labels on
the single EPI image level were aggregated into prediction
labels on subject level. The accuracy, sensitivity, specificity
and F1 score results on a subject level are shown in Table 8.
Measures of all models decreased slightly comparing to

TABLE 8. Average sensitivity, specificity and accuracy results aggregated
on subject level.

Model Sensitivity | Specificity | Accuracy | F1 score
dilated 3D CNN | 0.774 0.862 0.818 0.808
ResNet 0.435 0.589 0.512 0.465
ResNetXt 0.632 0.597 0.639 0.688
VGG 0.644 0.742 0.692 0.677
SparsNet 0.768 0.835 0.801 0.784
AlexNet 0.727 0.662 0.695 0.694
Inception-v3 0.530 0.634 0.582 0.526
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FIGURE 7. Seven methods’ ROC curves in each cross-validation test in experiment 2.
results on the single EPI image level. But all of the mea- classify SZ and healthy subjects using fMRI images at

sures of proposed dilated 3D CNN were still the highest, high accuracy of 81.8%, sensitivity of 0.774, specificity
which means that our method and framework could of 0.862 and F1 score of 0.805.
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V. CONCLUSION

In this work, we introduced the dilated 3D CNN method for
3D brain MRI image classification. In this method, dilated
convolution was used for recognizing patterns across long-
distance brain areas in both structural and functional MRI
images. To reduce the memory usage of 3D CNN method,
we cut down the number of feature maps in convolution
layers. Moreover, a methodology framework based on dilated
3D CNN method was also presented, including data pre-
processing, data balancing, single images classifying, and
prediction labels aggregating. This framework could classify
both single MRI images and a sequence of EPI images.
In the task of ADHD sMRI image classification, the proposed
framework based on dilated 3D CNN method outperformed
other methods. It achieved accuracy of 76.6%, which is higher
than the results of previous related research. In the other
task of SZ fMRI EPI image classification, the proposed
method achieved accuracy of 82.7% at single EPI image
level and 81.8% at subject level. These results confirmed that
the dilated 3D CNN method and framework is effective and
robust in some different kinds of MRI images. This method
could also be used in Computer-Assisted Diagnosis and real-
time fMRI analysis. It is worth exploring in future research
how increasing/decreasing dilation rate affects performance
metrics.
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