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ABSTRACT A verifiable (t, n) threshold quantum secret sharing scheme with sequential communication
was proposed recently. In this work, we analyze its security and then give two new participant attacks.
Using the first participant attack, the first participant can obtain the dealer’s secrets by himself with nonzero
probability without being detected. Using the second participant attack, a dishonest participant can gain
access to the dealer’s secrets by himself in the secret reconstruction phase while he can make the other
participants recover false secrets instead of the real ones without being detected. Furthermore, we present
an effective way to prevent these attacks.

INDEX TERMS Verifiable secret sharing, verifiability, quantum secret sharing, participant attack.

I. INTRODUCTION
Threshold secret sharing scheme is a basic cryptographic
primitive, in which a secret s is divided into n shares such that
any t of the n shares can be used to reconstruct the secret s,
but any set of t − 1 or fewer shares contains absolutely no
information on the secret s [1]. Clearly, (t, n) threshold secret
sharing can be well used to solve the problem that the dealer
does not trust one of the agents completely. Nevertheless,
in some special cases, the agents do not trust the dealer either.
To deal with the possible deception from the dealer, Chor et al
firstly introduced the concept of verifiable secret sharing
in 1985 [2], which not only satisfies all the requirements
of secret sharing but also allows each agent of the secret to
verify that the share is consistent with the other shares [3].
Specifically, if the dealer is honest, then the cheaters cannot
obtain any information about s, and t or more than t honest
agents can reconstruct s if they cooperate with each other.
In addition, it can detect whether a dishonest dealer sends fake
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shares to some or all of the agents, and whether a dishonest
agent submits a fake share during the reconstruction phase.

Verifiable secret sharing is a useful tool in much theoretical
work. For example, unconditionally-secure verifiable secret
sharing schemes are constructed and used to design secure
multiparty protocols in [4]–[6]. Recently, unconditionally-
secure verifiable secret sharing attracted much attention.
A lot of unconditionally-secure verifiable secret sharing
schemes [7]–[9] were reported under the assumption that the
players can communicate over pairwise secure channels in
this model [6].

The security of quantum secret sharing schemes is based on
the fundamental principles of quantum physics, and therefore
it allows a dealer to distribute shares securely even in the
presence of an opponent with infinite computing resources.
Due to the security superiority, many proposals for quantum
secret sharing have been reported in both theoretical and
experimental aspects [10]–[16] since it was firstly introduced
by Hillery et al. [17].
Combining both verifiability and security superiority of

quantum secret sharing, the concept of verifiable quantum
secret sharing was then introduced, which gives a new way
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to realize unconditionally-secure verifiable secret sharing.
In contrast to classical proposals, verifiable quantum secret
sharing can also guarantee the unconditional security of pair-
wise channels. So far, various verifiable quantum secret shar-
ing schemes have been proposed [18]–[21], which provide
a new mechanism for detecting the cheat of the dishonest
agent who submits a fake share during the secret reconstruc-
tion phase, or checking the consistency of the reconstruction
secret.

Recently, a verifiable (t, n) threshold quantum secret shar-
ing scheme with sequential communication was proposed
based on a single d-level quantum system [22]. Compared
with the existing quantum secret sharing schemes, this
scheme stands out with the following advantages. Firstly,
it is more general and more practicable than 2-level quan-
tum secret sharing scheme; in addition, the private shares
can be used repeatedly. Secondly, it is scalable in the num-
ber of participants compared with those schemes based on
entangled states. Thirdly, it is more flexible in application
than (n, n) quantum secret sharing scheme. Fourthly, other
classical (t, n) threshold secret sharing schemes can be used
to replace Shamir’s scheme while keeping all the aforemen-
tioned advantages. Most importantly, this scheme is con-
sidered to be independent of any trusted third party and
able to detect any cheat and eavesdropping during secret
reconstruction.

In this paper, we analyze the security of the verifiable (t, n)
threshold quantum secret sharing scheme [22] and then give
two new participant attacks. Using the first attack, the first
participant Bob1 can obtain the dealer’s secrets by him-
self with nonzero probability without being detected. Using
the second attack, a dishonest participant can gain access to
the dealer’s secrets by himself in the secret reconstruction
phase. At the same time, he can make the other participants
recover false secrets instead of the real ones without being
detected. Therefore, this scheme does not satisfy the security
and verifiability in some sense. Moreover, we discuss how
people deal with such security problems and then give an
effective way to prevent these attacks.

The rest of this paper is organized as follows. In Section II,
a brief description of the verifiable (t, n) threshold quan-
tum secret sharing scheme with sequential communication
is reviewed. In Section III, we analyze the security of the
verifiable (t, n) threshold quantum secret sharing scheme
with sequential communication, and then present two new
participant attacks. In Section IV, we study how people deal
with the security problems and then give an improved version
to prevent these attacks. Finally, conclusions are given in
Section V.

II. VERIFIABLE THRESHOLD QUANTUM SECRET
SHARING SCHEME WITH SEQUENTIAL
COMMUNICATION
In this section, let us give a brief description of the verifiable
(t, n) threshold quantum secret sharing scheme with sequen-
tial communication [22], which includes both the classical

private share distribution phase and the secret sharing phase.
Moreover, a dealer Alice and n agents Bob1, Bob2, . . . , Bobn
are also involved.

A. CLASSICAL PRIVATE SHARE DISTRIBUTION PHASE
This phase includes the following three steps.

1) Alice chooses a random polynomial

f (x) = (a0 + a1x + · · · + at−1x t−1)modd (1)

over a finite field GF(d), where the notation GF is the abbre-
viation of Galois Field, d is an odd prime number, and s =
a0 = f (0) is the private value and a0, a1, . . . , at−1 ∈ GF(d).
2) Alice computes f (xj) as the share of agent Bobj for

j = 1, 2, . . . , n, where xj ∈ GF(d) is the public information
of Bobj with xj 6= xr for j 6= r .

3) Alice sends each share f (xj) to the corresponding agent
Bobj via a private channel for j = 1, 2, . . . , n.
By the way of Shamir’s secret sharing, the dealer dis-

tributes n classical private shares to n agents Bob1, Bob2, . . .,
Bobn, respectively.

B. SECRET SHARING PHASE
Alice prepares three identical states |8v〉 = |φ00〉 =
1
√
d

∑d−1
j=0 |j〉, v = 1, 2, 3, and then distributes the secrets

S1, S2 ∈ GF(d) and a check value N ∈ GF(d) to m (m ≥ t)
participants Bob1, Bob2, . . . , Bobm as follows.
(i) Alice performs the operation Upv0qv0 = X

pv0
d Y

qv0
d on |8v〉,

which transforms the state |8v〉 into |8v〉0 = |φ
qv0
pv0
〉, where

Xd =
∑d−1

r=0 ω
r
|r〉〈r|, Yd =

∑d−1
r=0 ω

r2
|r〉〈r|, ω = e

2π i
d is the

d th root of unity, p10 = S1, p20 = S2, p30 = N , q10 = q20 = q30 =
d − s with pv0, q

v
0 ∈ GF(d), S1 = S2Nmodd .

(ii) Suppose that Alice wants the m participants Bob1,
Bob2, . . . , Bobm to share the secrets S1, S2, she sends
⊗

3
v=1|8v〉0 to Bob1, hereafter the notation ⊗ denotes the

direct product of quantum states. Upon receiving them, Bob1
performs the operation Upv1qv1 = X

pv1
d Y

qv1
d on |8v〉0 for v =

1, 2, 3, where p11, p
2
1, and p

3
1 are mutually independent ran-

dom numbers, qv1 = c1 = f (x1)
∏m

r=2
xr

xr−x1
modd , v =

1, 2, 3, and pv1, q
v
1 ∈ GF(d). After that, the states ⊗3

v=1|8v〉0

are transformed into ⊗3
v=1|8v〉1 = ⊗

3
v=1|φ

qv0+q
v
1

pv0+p
v
1
〉 and are

then sent to Bob2 by Bob1.
(iii) Bobj (j = 2, 3, . . . ,m) repeats the same procedure

sequentially as that Bob1 does in Step (ii), i.e., Bobj performs

the operation Upvj qvj = X
pvj
d Y

qvj
d on |8v〉j−1 for v = 1, 2, 3

and thus gets the states ⊗3
v=1|8v〉j = ⊗

3
v=1|φ

∑j
r=0 q

v
r∑j

r=0 p
v
r
〉, where

pvj , q
v
j ∈ GF(d), qvj = cj = f (xj)

∏m
r=1,r 6=j

xr
xr−xj

modd .

Then Bobj sends the states ⊗3
v=1|8v〉j to the next participant

Bobj+1.
(iv) The last participant Bobm measures the states
⊗

3
v=18v〉m with the basis {|φ0l 〉}l . Then he publishes the

measurement results R1,R2,R3.
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(v) After all m participants exchange their random num-
bers, they compute p10 = (R1 −

∑m
j=1 p

1
j )modd , p20 = (R2 −∑m

j=1 p
2
j )modd , p30 = (R3 −

∑m
j=1 p

3
j )modd , respectively.

Then they check whether the following equation

p10 = p20p
3
0modd (2)

holds. If it holds, they share the secrets S1 = p10, S2 = p20;
otherwise, they think that the secret sharing is invalid and then
abort this round.

III. CRYPTANALYSIS OF VERIFIABLE THRESHOLD
QUANTUM SECRET SHARING SCHEME WITH SEQUENTIAL
COMMUNICATION
To better understand the verifiable threshold quantum secret
sharing scheme and its cryptanalysis, a simple introduction
on the cyclic property of mutually unbiased bases (MUBs) is
firstly given [15]. It has been shown that if d is an odd prime,
then there are d MUBs {|φ0l 〉}l, {|φ

1
l 〉}l, . . . , {|φ

d−1
l 〉}l except

the computational basis {|j〉|j = 0, 1, . . . , d − 1} [22], where

|φkl 〉 =
1
√
d

d−1∑
j=0

ωj(l+kj)|j〉, (3)

here k ∈ {0, 1, . . . , d−1} labels the basis, l ∈ {0, 1, . . . , d−
1} enumberates the states of the given basis. Furthermore,
the unitary operations Xd =

∑d−1
r=0 ω

r
|r〉〈r| and Yd =∑d−1

r=0 ω
r2
|r〉〈r| can transform the state |φkl 〉 into |φ

k
l+1〉 and

|φk+1l 〉, respectively, which means there always exists an
operation Ul′k ′ = X l

′

d Y
k ′
d for any l ′, k ′ ∈ {0, 1, . . . , d − 1}

such that

Ul′k ′ |φ
k
l 〉 = |φ

k+k ′
l+l′ 〉. (4)

From Section 2, we can see that the verifiable (t, n) thresh-
old quantum secret sharing scheme is constructed based on
this cyclic property of MUBs. Firstly, the dealer Alice allo-
cates a share generated from a private value s to each agent
Bobj (j = 1, 2, . . . , n) by classical (t, n) threshold secret shar-
ing [1]. Then she prepares three identical qudits and embeds
the two secrets S1, S2 and the verification value N into each
qudit, respectively. These qudits are transmitted among m
participants in sequence. Upon receiving the qudits, each
participant performs unitary operations related to his share
on the qudits. On the one hand, a random number is added
to each secret and the verification value by an operation; on
the other hand, the private value in each qudit is eliminated
due to classical (t, n) threshold secret sharing when at least t
participants complete their operations. Subsequently, the last
participant Bobm canmeasure⊗3

v=1|8v〉m with the right basis
{|φ0l 〉}l . In an ideal case, if these qudits are not disturbed,
the measurement results R1,R2,R3, and the random numbers
p1j , p

2
j , p

3
j , j = 0, 1, . . . ,m must satisfy

R1 =
m∑
j=0

p1jmodd, (5)

R2 =
m∑
j=0

p2jmodd, (6)

R3 =
m∑
j=0

p3jmodd . (7)

Consequently, when Bobm publishes the measurement out-
comes to all participants, they can recover the secrets S1, S2
and the verification value N after disclosing their respective
random numbers.

As mentioned in [22], the last participant Bobm is crucial
to this scheme because he is responsible for keeping andmea-
suring the qudits in true basis. Therefore, he is able to deceive
the other participants by announcing wrong measurement
results. In addition, other participant can also cheat by using a
wrong share in secret reconstruction. Additionally, the qudits
are obviously vulnerable to an external eavesdropper in trans-
mission. Accordingly, a verification mechanism is necessary
to this scheme. By using Eq.(2) to detect cheat or eavesdrop-
ping, it is claimed that this scheme is able to detect any cheat
and eavesdropping during secret reconstruction because it is
thought that this scheme can find the cheat by participants
with the probability

pd =
d − 1
d

, (8)

which converges to 100% if d approaches to infinity.
As we know, cryptanalysis is an important and interest-

ing work in cryptography, which estimates the security of
cryptographic schemes, finds potential loopholes and tries
to solve the security problems [23]–[28]. As pointed out by
Lo and Ko, breaking cryptographic systems was as impor-
tant as building them [29]. In the study of quantum cryp-
tography, quite a few effective attack strategies have been
proposed, such as teleportation attack [30], dense-coding
attack [31], correlation-extractability attack [32], denial-of-
service attack [33]–[35], and so on. Understanding those
attacks will be helpful for us to design new schemes with high
security.

Participant attack, firstly proposed by Gao et al. [36], is a
special internal attack. In contrast to other opponents outside,
the dishonest participants havemany advantages. Firstly, they
know partial information legally. Secondly, they can tell a
lie in the process of eavesdropping check to try to avoid
introducing errors. Thus, it is a powerful attack and should
be paid more attention to. Now it has become an important
study point [37]–[44].

Here we give two new participant attack strategies on the
verifiable (t, n) threshold quantum secret sharing scheme
with sequential communication, which are to be described in
detail as follows.

A. PARTICIPANT ATTACK 1
The participant attack 1 includes the following steps.

(1) In the classical private share distribution phase, the first
participant Bob1 performs his actions faithfully.
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(2) In the secret sharing phase, when Bob1 receives the
three qudits ⊗3

v=1|8v〉0 = ⊗
3
v=1|φ

qv0
pv0
〉 from Alice in Step

(ii), he immediately measures each of them with a random
basis {|φkl 〉}l , and the measurement outcomes are denoted as
p10′ , p

2
0′ , p

3
0′ , respectively. Here it should be noted that the three

qudits are measured with the same basis {|φkl 〉}l chosen ran-
domly. At the same time, Bob1 prepares three new identical
quantum states |8v′〉 = |φ

0
0〉 =

1
√
d

∑d−1
j=0 |j〉, v

′
= 1, 2, 3.

(3) Bob1 chooses two fake secrets S ′1, S
′

2 ∈ GF(d) and a
fake check value N ′ ∈ GF(d) with S ′1 6= p10′ , S

′

2 6= p20′ and
S ′1 = S ′2N

′modd . Then he verifies whether the threemeasure-
ment outcomes p10′ , p

2
0′ , p

3
0′ satisfy the following equation

p10′ = p20′p
3
0′modd (9)

or not. If it is true, then he performs the operation Upv′0 qv
′

0
=

X
pv
′

0
d Y

qv
′

0
d on |8v′〉 for v′ = 1, 2, 3, where p10 = S ′1, p

2
0 =

S ′2, p
3
0 = N ′, q10 = q20 = q30 = k ∈ GF(d). Otherwise,

Bob1 performs the operation Upv′0 qv
′

0
= X

pv
′

0
d Y

qv
′

0
d on |8v′〉 for

v′ = 1, 2, 3, where p10 = S ′1, p
2
0 = S ′2, p

3
0 = N ′, but q10 =

q20 = q30 = k ′ ∈ GF(d) with k ′ 6= k . After that, the states

⊗
3
v′=1|8v′〉 are transformed into ⊗3

v′=1|8v′〉0 = ⊗
3
v′=1|φ

qv
′

0

pv
′

0
〉.

(4) Bob1 performs the remaining actions faithfully as those
in the original scheme.

(5) In Step (v), if the other m− 1 participants Bob2, Bob3,
. . . , Bobm think that the secret sharing attempt is corrupt
meanwhile Eq.(9) does not hold, then Bob1 can discriminate
that both the basis {|φkl 〉}l and the basis {|φk

′

l 〉}l must be
wrong; if the other m−1 participants Bob2, Bob3, . . . , Bobm
think that the secret sharing attempt is corrupt meanwhile
Eq.(9) holds, then Bob1 can discriminate that the basis {|φkl 〉}l
must be wrong; if the other m − 1 participants Bob2, Bob3,
. . . , Bobm think that the secret sharing attempt is not corrupt
meanwhile Eq.(9) does not hold, then Bob1 can discriminate
that the basis {|φkl 〉}l must be wrong but the basis {|φk

′

l 〉}l
may be right; Otherwise, Bob1 can discriminate that the basis
{|φkl 〉}l may be right.
(6) In the next round, i.e., the dealer distributes two new

secrets to the m participants Bob1, Bob2, . . . , Bobm, Bob1
performs the above attack process (1)-(5) again. The differ-
ence is that if he has known that the basis {|φkl 〉}l or the
basis {|φk

′

l 〉}l may be right, then he uses it to measure the
qudits that are encoded with new secrets and check value by
the dealer instead of using a random basis, and if the other
m−1 participants Bob2, Bob3, . . . , Bobm think that the secret
sharing attempt is also not corrupt in this round, then he can
further confirm that the basis {|φkl 〉}l or the basis {|φ

k ′
l 〉}l may

be right; else if the other m− 1 participants Bob2, Bob3, . . . ,
Bobm think that the secret sharing attempt is corrupt in this
round, then he can confirm that the basis {|φkl 〉}l or the basis
{|φk

′

l 〉}l must be wrong. Otherwise, if Bob1 has known that
the basis {|φkl 〉}l or the basis {|φ

k ′
l 〉}l or both must be wrong in

the previous round, then he performs the same attack process

except that the measurement basis randomly chosen by him
is not {|φkl 〉}l or {|φ

k ′
l 〉}l or both.

(7) The attack process (1)-(6) are repeatedly performed
until the dealer announces that the private value s is not reused
any longer.

From the participant attack 1, we can find that Bob1 can
obtain some useful information whether the measurement
basis chosen by him in Step (2) is right or not in every round,
which will improve the probability that he chooses the right
basis in the next round. Specifically, if the basis {|φkl 〉}l is
the right basis {|φd−sl 〉}l , he will choose the right basis with
the probability 100% in the remaining rounds because the
private value s is reused and thus the right bases in all rounds
are the same; if it is not right, he will choose the right basis
with a relative larger probability in the next round because
one or two bases may be excluded from the candidate bases.
For example, Bob1 will choose the right measurement basis
{|φd−sl 〉}l for the three qudits⊗

3
v=1|8v〉0 with the probability

1
d in the first round, but the probability that he will choose
the right measurement basis {|φd−sl 〉}l will be more than 1

d
in the second round in general because he has known that
the basis {|φkl 〉}l or the basis {|φk

′

l 〉}l or both are not right.
Therefore, if this attack has been performed n′ rounds by
Bob1 for n′ = 1, 2, . . . , n, where n is the total number of
attack rounds, then the probability Ps that he will choose the
right measurement basis {|φd−sl 〉}l is

Ps = 1− Pe1× Pe2 × . . .× Pen′ ≥1−(1−
1
d
)n
′

≈
n′

d
(10)

due to 1 − 1
d = Pe1 ≥ Pe2 ≥ · · · ≥ Pen′ , where Pei is

the probability that Bob1 will choose the false measurement
basis in the ith round for i = 1, 2, . . . , n′. Furthermore, it is
evident that when Bob1 chooses the right measurement basis
{|φkl 〉}l = {|φ

d−s
l 〉}l in some round (e.g., the n′th round), he

can easily gain access to the private value s by computing

s = (d − k)modd, (11)

in this case he can obtain the secrets distributed by the dealer
in all the remaining rounds without being detected. Addition-
ally, it should be noted that Bob1 can discriminate the basis
{|φkl 〉}l or the basis {|φ

k ′
l 〉}l or both are not right with the prob-

ability 100%, but he cannot distinguish the basis {|φkl 〉}l or the
basis {|φk

′

l 〉}l is right with the probability 100% even if the
otherm−1 participants Bob2, Bob3, . . . , Bobm think that the
secret sharing attempt is not corrupt meanwhile Eq.(9) holds
in each of the remaining rounds. However, the error probabil-
ity Pe is negligible. Without loss of generality, suppose that
Bob1 thinks the basis {|φkl 〉}l chosen in the n

′th round is right,
which requires that the other m− 1 participants Bob2, Bob3,
. . ., Bobm think that the secret sharing attempt is not corrupt
meanwhile Eq.(9) holds in this round and the remaining n−n′

rounds. If the basis {|φkl 〉}l is surely right, these requirements
must be satisfied; if it is not, these requirements may be also
satisfied with the probability

Pe =
1
d
×

1
d2
× . . .×

1
d2
=

1
d2(n−n′)+1

, (12)

VOLUME 7, 2019 134857



X. Cai et al.: Security of Verifiable Threshold Quantum Secret Sharing With Sequential Communication

which is exponentially close to 0 with the increase
of n.

In a word, using the participant attack 1, the first partic-
ipant Bob1 can gain access to the private value s with the
probability no less than n′

d at the end of the n′th round for
n′ = 1, 2, . . . , n. Furthermore, if Bob1 has known the private
value s at the end of this round, then he can obtain the secrets
distributed by the dealer in all the remaining rounds without
being detected. More importantly, Bob1 has no loss even if
his cheating is detected by the other m− 1 participants Bob2,
Bob3, . . . , Bobm because nobody can distinguish he is the
attacker.

It should be noted that a participant Bobk (k = 2, 3, . . . ,m)
can also perform a similar attack to gain access to the pre-
vious participant Bobk−1’s share f (xk−1) and three random
numbers p1k−1, p

2
k−1, p

3
k−1. Specifically, when Bobk−2 sends

the states ⊗3
v=1|8v〉k−2 to Bobk−1 in Step (ii) or Step (iii),

Bobk intercepts them. At the same time, he prepares three
fake states and sends them to Bobk−1. After receiving the
fake states from Bobk−1, Bobk immediately measures them
with a random basis {|φkl 〉}l . According to the measurement
outcomes, Bobk performs the corresponding operations on
the real states ⊗3

v=1|8v〉k−2 by personating Bobk−1. Then
he performs his own actions faithfully. Compared with Bob1,
Bobk cannot immediately verify the correctness of his mea-
surement outcomes p1k−1, p

2
k−1, p

3
k−1, but can only judge

them by whether the other m − 1 participants think that the
secret sharing attempt is corrupt or not in Step (v). Therefore,
the probability that Bobk chooses the right basis is not more
than Ps by simply arguments if it is also performed n′ rounds.

B. PARTICIPANT ATTACK 2
Next we show that a dishonest participant can gain access to
the dealer’s secrets in the secret reconstruction phase while he
can make the other participants recover false secrets instead
of the real ones without being detected. Without loss of gen-
erality, suppose that Bobk (k = 1, 2, . . . ,m) is the dishonest
participant, he can obtain the dealer’s secrets by the following
attack.

(1) Bobk performs his actions faithfully both in the clas-
sical private share distribution phase and the secret sharing
phase.

(2) In the secret reconstruction phase, when Bobk
receives all the other m − 1 participants’ random numbers
pv1, p

v
2, . . . , p

v
k−1, p

v
k+1, . . . , p

v
m for v = 1, 2, 3, he immedi-

ately chooses two fake random numbers p1
′

k , p
2′
k with p1

′

k 6=

p1k , p
2′
k 6= p2k , and then derives the third number p3

′

k by solving
the following equation

(R1 −
m∑

j=1,j 6=k

p1j − p
1′
k )(R2 −

m∑
j=1,j 6=k

p2j − p
2′
k )

= (R3 −
m∑

j=1,j 6=k

p3j − p
3′
k )modd . (13)

After that, he sends them to the otherm−1 participants Bob1,
Bob2, . . . , Bobk−1, Bobk+1, . . . , Bobm instead of the real
three random numbers p1k , p

2
k , p

3
k .

(3) As does in Step (v), Bobk recovers the dealer’s secrets
S1 and S2 by computing S1 = (R1 −

∑m
j p

1
j )modd and S2 =

(R2 −
∑m

j p
2
j )modd .

By simple deducing, it can be seen that if the two random
numbers p1

′

k and p2
′

k are given, then the third p3
′

k can always
be found by solving Eq. (13). Obviously, the other m − 1
participants Bob1, Bob2, . . . , Bobk−1, Bobk+1, . . . , Bobm
will get the fake secrets

p1
′

0 = S ′′1 = (R1 −
m∑

j=1,j 6=k

p1j − p
1′
k )modd, (14)

p2
′

0 = S ′′2 = (R2 −
m∑

j=1,j 6=k

p2j − p
2′
k )modd, (15)

and the fake check value

p3
′

0 = N ′′ = (R3 −
m∑

j=1,j 6=k

p3j − p
3′
k )modd . (16)

Furthermore, it is easily deduced from Eqs. (13)-(16) that the
three numbers p1

′

0 , p
2′
0 , p

3′
0 also satisfy

p1
′

0 p
2′
0 = p3

′

0 modd, (17)

which means that the dishonest participant Bobk ’s deception
cannot be detected by the other m − 1 participants Bob1,
Bob2, . . . , Bobk−1, Bobk+1, . . . , Bobm.
As a result, the dishonest participant Bobk (k = 1,

2, . . . ,m) can gain access to the dealer’s real secrets S1 and
S2 by himself in the secret reconstruction phase. Furthermore,
he can make the other m − 1 participants Bob1, Bob2, . . . ,
Bobk−1, Bobk+1, . . . , Bobm reconstruct the false secrets S ′′1
and S ′′2 instead of the real ones without being detected.

IV. THE WAY TO PREVENT PARTICIPANT ATTACKS
The scenarios for solving the security problems will be intro-
duced in the following content. From the participant attack 1,
it can be seen that there are three key factors to the success of
this attack. The first factor is that the dealer’s secrets S1 and S2
are directly encoded to the quantum states⊗2

v=1|8v〉 in every
round, and these states are transformed into the same basis
{|φd−sl 〉}l after the encoding operations for the secrets and the
check value, which gives an opportunity for the first partici-
pant Bob1 to gain access to them by measuring the encoded
quantum states ⊗2

v=1|8v〉0 with a random basis {|φkl 〉}l .
The second factor is that the verification mechanism also
gives a good chance for the first participant Bob1 to verify
the correctness of the measurement basis {|φkl 〉}l meanwhile
it provides the verifiability of allocated secrets S1 and S2. The
third factor is that the reused private value s provides more
chances for Bob1 to gain access to it and further verify its
correctness. Accordingly, to prevent the participant attack 1,
one possible way is to find a new encoding method, which
must guarantee any participant cannot gain access to the two
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secrets S1 and S2 by directly measuring the encoded quantum
states except with a negligible probability. Another way is
to remove the verification mechanism, which makes Bob1
cannot distinguish the correctness of the secrets S1 and S2
any longer, but it also makes the original scheme lose the
good property of allocated secrets’ verifiability. Therefore,
the feasible way to prevent the participant attack 1 is finding
a new encoding method for the two secrets S1 and S2 while
the reused times of the private value s is limited.
From the participant attack 2, it can be seen that the reason

for the success of this attack is that the dishonest participant
Bobk can be the last one to submit his three random numbers,
which gives him a chance to choose the fake random numbers
p1
′

k , p
2′
k , and p

3′
k . Consequently, if the random numbers chosen

by each participant are exchanged simultaneously among
them, then any participant has no chance to perform this
attack any longer.

In order to prevent the two participant attacks, here we give
some improvements on the original scheme according to the
above analysis, which are described as follows.

(A) In the classical private share distribution phase, Alice
chooses three random polynomials

f1(x) = (a10 + a
1
1x + · · · + a

1
t−1x

t−1)modd, (18)

f2(x) = (a20 + a
2
1x + · · · + a

2
t−1x

t−1)modd, (19)

f3(x) = (a30 + a
3
1x + · · · + a

3
t−1x

t−1)modd, (20)

where sv = av0 = fv(0) is the private value and
av0, a

v
1, . . . , a

v
t−1 ∈ GF(d) for v = 1, 2, 3, and s1, s2, s3

are different. Then she computes f1(xj), f2(xj), f3(xj) as the
share of agent Bobj for j = 1, 2, . . . , n with xj 6= xr for
j 6= r . Finally, she sends each share f1(xj), f2(xj), f3(xj)
to the corresponding agent Bobj via a private channel for
j = 1, 2, . . . , n.
(B) In the secret sharing phase, Alice and each participant

Bobj (j = 1, 2, . . . ,m) performs the same actions as those in
Steps (i)-(iv) except choosing qv0 = d − sv and qvj = cvj =
fv(xj)

∏m
r=1,r 6=j

xr
xr−xj

modd for v = 1, 2, 3.
(C) In Step (v), all the participants Bob1, Bob2, . . . , Bobm

exchange their three random numbers in a way of bit by bit,
and then reconstruct the secrets by the same way.

(D) The private value sv can be used nomore than T rounds
for v = 1, 2, 3, here T is a positive integer and satisfies
T � d .
From the improvements, it can be seen that in Step

(B), although Alice performs the similar encoding oper-
ations Up10q10

,Up20q20
,Up30q30

on the three quantum states

|81〉, |82〉, |83〉, respectively, the three states ⊗3
v=1|8v〉 are

transformed into⊗3
v=1|8v〉0 = ⊗

3
v=1|φ

qv0
pv0
〉, which are in three

different bases {|φ
q10
l 〉}l, {|φ

q20
l 〉}l, {|φ

q30
l 〉}l because q

1
0 = d −

s1 6= q20 = d− s2 6= q30 = d− s3 6= q10 = d− s1. In this case,
the probability that the first participant Bob1 chooses the right
basis for each of the three states ⊗3

v=1|8v〉0 = ⊗
3
v=1|φ

qv0
pv0
〉

is about 1
d ×

1
d ×

1
d =

1
d3

in each round by the participant

attack 1. At the same time, the private value sv is reused no
more than T rounds for v = 1, 2, 3. Consequently, the final
probability Ps that Bob1 will choose the right measurement

bases {|φ
q10
l 〉}l, {|φ

q20
l 〉}l, {|φ

q30
l 〉}l is about T

d3
, which means

that the participant attack 1 can be effectively prevented in
the sense the probability Ps is negligible. By simple analysis,
the similar attack to steal a participant’s share can be also
prevented by the improvements. Furthermore, in Step (C),
it is required that all the participants Bob1, Bob2, . . . , Bobm
exchange their three random numbers in a way of bit by bit,
which makes the dishonest participant has no chance to find
the fake ones that can escape the other m − 1 participants’
check any longer. Therefore, the participant attack 2 also can
be effectively prevented.

So far, we have shown the participant attack 1 can be
effectively prevented by greatly reducing the probability that
the dishonest participant Bob1 can gain access to the dealer’s
secrets, and the participant attack 2 can be prevented only by
changing the way of random numbers’ exchange. Moreover,
these improvements do not change the model of the original
scheme, and therefore its security analysis against intercept-
resend attack and joint attack can be directly applied to the
improved version.

V. CONCLUSION
To sum up, we analyze the security of a verifiable (t, n)
threshold quantum secret sharing scheme with sequen-
tial communication, and then propose two new participant
attacks. Using the first participant attack, the first participant
Bob1 can obtain the dealer’s secrets S1 and S2 by himself with
the probability ps = 1

d without being detected in the first
round, and in this case he also can gain access to the private
value s, which will give him a good chance to recover the
secrets distributed by the dealer in the next round. Further-
more, the probability that Bob1 can gain access to the private
value s linearly increases with the increasing of rounds. More
worse, Bob1 has no loss even if his cheat is detected by the
other m − 1 participants Bob2, Bob3, . . . , Bobm because
nobody can discriminate that he is the attacker. Using the sec-
ond participant attack, a dishonest participant Bobk can gain
access to the dealer’s secrets S1 and S2 by himself with
certain probability in the secret reconstruction phase, but he
can make the other participants recover false secrets instead
of the real ones without being detected. Finally, we discuss
how people deal with the security problems and then give an
improved version to prevent these attacks.

REFERENCES
[1] A. Shamir, ‘‘How to shair a secret,’’ Commun. ACM, vol. 22, no. 11,

pp. 612–613, Nov. 1979.
[2] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch, ‘‘Verifiable secret

sharing and achieving simultaneity in the presence of faults,’’ in Proc.
26th IEEE Symp. Found. Comput. Sci., Portland, OR, USA, Oct. 1985,
pp. 383–395.

[3] M. Carpentieri, ‘‘A perfect threshold secret sharing scheme to iden-
tify cheaters,’’ Des., Codes Cryptogr., vol. 5, no. 3, pp. 183–187,
May1995.

VOLUME 7, 2019 134859



X. Cai et al.: Security of Verifiable Threshold Quantum Secret Sharing With Sequential Communication

[4] M. Ben-Or, S. Goldwasser, and A. Widgerson, ‘‘Completeness theorems
for non-cryptographic fault-tolerant distributed computation,’’ in Proc.
12th Annu. ACM Symp. Theory Comput., 1988, pp. 1–10.

[5] D. Chaum, C. Crépeau, and I. Damgård, ‘‘Multiparty unconditionally
secure protocols,’’ in Proc. 12th Annu. ACM Symp. Theory Comput., 1988,
pp. 11–19.

[6] R. Cramer, I. Damgård, and U. Maurer, ‘‘General secure multi-party
computation from any linear secret-sharing scheme,’’ in Advances in
Cryptology—EUROCRYPT 2000. Berlin, Germany: Springer, 2000.

[7] T. P. Pedersen, ‘‘Non-interactive and information-theoretic secure verifi-
able secret sharing,’’ in Advances Cryptology. Berlin, Germany: Springer,
1991.

[8] M. Nojoummian, ‘‘Unconditionally secure proactive verifiable secret shar-
ing using new detection and recovery techniques,’’ in Proc. 14th Annu.
Int. Conf. Privacy, Secur. Trust, Auckland, New Zealand, Dec. 2016,
pp. 269–274.

[9] M. Yoshida and S. Obana, ‘‘Verifiably multiplicative secret sharing,’’ IEEE
Trans. Inf. Theory, vol. 65, no. 5, pp. 3233–3245, May 2019.

[10] W. Tittel, H. Zbinden, and N. Gisin, ‘‘Experimental demonstration of quan-
tum secret sharing,’’ Phys. Rev. A, Gen. Phys., vol. 63, no. 4, Apr. 2001,
Art. no. 042301.

[11] L. Xiao, G. L. Long, F.-G. Deng, and J.-W. Pan, ‘‘Efficient multiparty
quantum-secret-sharing schemes,’’ Phys. Rev. A, Gen. Phys., vol. 69, no. 5,
May 2004, Art. no. 052307.

[12] C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and
H. Weinfurter, ‘‘Experimental single qubit quantum secret sharing,’’ Phys.
Rev. Lett., vol. 95, no. 23, Dec. 2005, Art. no. 230505.

[13] T. Y. Wang, Q. Y. Wen, X. B. Chen, F. Z. Guo, and F. C. Zhu, ‘‘An efficient
and secure multiparty quantum secret sharing scheme based on single
photons,’’ Opt. Commun., vol. 281, no. 24, pp. 6130–6134, Dec. 2008.

[14] J. J. Shi, R. H. Shi, Y. Tang, and M. H. Lee, ‘‘A multiparty quantum proxy
group signature scheme for the entangled-state message with quantum
Fourier transform,’’ Quantum Inf. Process., vol. 10, no. 5, pp. 653–670,
Oct. 2011.

[15] A. Tavakoli, I. Herbauts, M. Żukowski, and M. Bourennane, ‘‘Secret
sharing with a single d-level quantum system,’’ Phys. Rev. A, Gen. Phys.,
vol. 92, no. 3, Mar. 2015, Art. no. 030302.

[16] Y. Zhou, J. Yu, Z. Yan, X. Jia, J. Zhang, C. Xie, and K. Peng, ‘‘Quantum
secret sharing among four players using multipartite bound entangle-
ment of an optical field,’’ Phys. Rev. Lett., vol. 121, no. 15, Dec. 2018,
Art. no. 150502.

[17] M. Hillery, V. Bužek, and A. Berthiaume, ‘‘Quantum secret sharing,’’Phys.
Rev. A, Gen. Phys., vol. 59, pp. 1829–1834, Mar. 1999.

[18] Q. Li, D. Y. Long, W. H. Chan, and D. W. Qiu, ‘‘Sharing a quantum secret
without a trusted party,’’Quantum Inf. Process., vol. 10, no. 1, pp. 97–106,
Feb. 2011.

[19] Y. G. Yang, Y. W. Teng, H. P. Chai, and Q. Y. Wen, ‘‘Verifiable quantum
(k, n)-threshold secret key sharing,’’ Int. J. Theor. Phys., vol. 50, no. 3,
pp. 792–798, Mar. 2011.

[20] Y. Yang, X. Jia, H.-Y. Wang, and H. Zhang, ‘‘Verifiable quantum
(k, n)-threshold secret sharing,’’ Quantum Inf. Process, vol. 11, no. 6,
pp. 1619–1625, 2012.

[21] H. W. Qin and Y. W. Dai, ‘‘Verifiable (t, n) threshold quantum secret
sharing using d-dimensional bell state,’’ Inf. Process. Lett., vol. 116, no. 5,
pp. 351–355, May 2016.

[22] C. B. Lu, F. Y. Miao, and J. P. Hou, ‘‘Verifiable threshold quantum secret
sharing with sequential communication,’’ Quantum Inf. Process., vol. 17,
no. 11, Nov. 2018, Art. no. 310.

[23] F. Gao, S. J. Qin, F. Z. Guo, and Q. Y.Wen, ‘‘Cryptanalysis of the arbitrated
quantum signature protocols,’’ Phys. Rev. A, Gen. Phys., vol. 84, no. 2,
Aug. 2011, Art. no. 022344.

[24] T. Y.Wang, J. F.Ma, andX.Q. Cai, ‘‘The postprocessing of quantum digital
signatures,’’ Quantum Inf. Process., vol. 16, no. 1, Jan. 2017, Art. no. 19.

[25] C.-Y. Wei, X.-Q. Cai, B. Liu, T.-Y. Wang, and F. Gao, ‘‘A generic con-
struction of quantum-oblivious-key-transfer-based private query with ideal
database security and zero failure,’’ IEEE Trans. Comput., vol. 67, no. 1,
pp. 2–8, Jan. 2018.

[26] F. Gao, S. J. Qin, W. Huang, and Q. Y. Wen, ‘‘Quantum private query:
A new kind of practical quantum cryptographic protocols,’’ Sci. Chin.-
Phys. Mech. Astron., vol. 62, no. 7, Jul. 2019, Art. no. 070301.

[27] X. Jia, D. He, S. Zeadally, and L. Li, ‘‘Efficient revocable ID-
based signature with cloud revocation server,’’ IEEE Access, vol. 5,
pp. 2945–2954, 2017.

[28] H. Du, Q. Y. Wen, and S. Zhang, ‘‘A provably-secure outsourced revocable
certificateless signature scheme without bilinear pairings,’’ IEEE Access,
vol. 6, pp. 73846–73855, 2018.

[29] H. K. Lo and T.-M. Ko, ‘‘Some attacks on quantum-based cryptographic
protocols,’’ Quantum Inf. Comput., vol. 5, no. 1, pp. 40–47, Jan. 2005.

[30] F. Gao, Q.-Y. Wen, and F.-C. Zhu, ‘‘Teleportation attack on the QSDC
protocol with a random basis and order,’’ Chin. Phys. B, vol. 17, no. 9,
pp. 3189–3194, Sep. 2008.

[31] F. Gao, S.-J. Qin, F.-Z. Guo, and Q.-Y. Wen, ‘‘Dense-coding attack on
three-party quantum key distribution protocols,’’ IEEE J. Quantum Elec-
tron., vol. 47, no. 5, pp. 630–635, Mar. 2011.

[32] F. Gao, Q. Y. Wen, and F. C. Zhu, ‘‘Comment on: ‘Quantum exam’ [Phys.
Lett. A 350 (2006) 174],’’ Phys. Lett. A, vol. 360, no. 6, pp. 748–750,
Mar. 2007.

[33] Q. Y. Cai, ‘‘The ping-pong protocol can be attacked without eavesdrop-
ping,’’ Phys. Rev. Lett., vol. 91, no. 10, Aug. 2003, Art. no. 109801.

[34] F. Gao, F. Z. Guo, Q. Y. Wen, and F. C. Zhu, ‘‘Consistency of shared
reference frames should be reexamined,’’ Phys. Rev. A, Gen. Phys., vol. 77,
no. 1, Jan. 2008, Art. no. 014302.

[35] X.-Q. Cai and C.-Y. Wei, ‘‘Cryptanalysis of an inter-bank E-payment
protocol based on quantum proxy blind signature,’’Quantum Inf. Process.,
vol. 12, no. 4, pp. 1651–1671, Apr. 2013.

[36] F. Gao, S. J. Qin, Q. Y. Wen, and F. C. Zhu, ‘‘A simple participant attack
on the Brádler-Dušek protocol,’’ Quantum Inf. Comput., vol. 7, no. 4,
pp. 329–334, May 2007.

[37] S. J. Qin, F. Gao, Q. Y. Wen, and F. C. Zhu, ‘‘Cryptanalysis of the Hillery-
Bužek-Berthiaume quantum secret-sharing protocol,’’ Phys. Rev. A, Gen.
Phys., vol. 76, no. 6, Dec. 2007, Art. no. 062324.

[38] F. Gao, F.-Z. Guo, Q.-Y. Wen, and F.-C. Zhu, ‘‘Comment on ‘experimental
demonstration of a quantum protocol for byzantine agreement and liar
detection,’’’ Phys. Rev. Lett., vol. 101, no. 20, Nov. 2008, Art. no. 208901.

[39] T. T. Song, J. Zhang, F. Gao, W. Qiao-Yan, and Z. Fu-Chen, ‘‘Participant
attack on quantum secret sharing based on entanglement swapping,’’ Chin.
Phys. B, vol. 18, no. 4, pp. 1333–1337, Apr. 2009.

[40] T.-Y. Wang, Q.-Y. Wen, F. Gao, S. Lin, and F.-C. Zhu, ‘‘Cryptanalysis
and improvement of multiparty quantum secret sharing schemes,’’ Phys.
Lett. A, vol. 373, no. 1, pp. 65–68, Dec. 2008.

[41] T. Y. Wang, Q. Y. Wen, and F. C. Zhu, ‘‘Cryptanalysis of multiparty
quantum secret sharing with bell states and bell measurements,’’ Opt.
Commun., vol. 284, no. 6, pp. 1711–1713, Mar. 2011.

[42] T.-Y. Wang and Q.-Y. Wen, ‘‘Security of a kind of quantum secret
sharing with single photons,’’ Quantum Inf. Comput., vol. 11, nos. 5–6,
pp. 434–443, May 2011.

[43] T. Y. Wang and Y. P. Li, ‘‘Cryptanalysis of dynamic quantum secret
sharing,’’Quantum Inf. Process., vol. 12, no. 5, pp. 1991–1997, May 2013.

[44] T.-Y. Wang, Y.-Z. Liu, C.-Y. Wei, X.-Q. Cai, and J.-F. Ma, ‘‘Security of
a kind of quantum secret sharing with entangled states,’’ Sci. Rep., vol. 7,
May 2017, Art. no. 2485.

XIAOQIU CAI received the B.S. degree in math-
ematics from Henan University, in 2003, and the
M.S. degree in applied mathematics from Shaanxi
Normal University, in 2007. She is currently pur-
suing the Ph.D. degree with the Beijing University
of Posts and Telecommunications. She is also an
Associate Professor with LuoyangNormal Univer-
sity. Her research interests include cryptography
and quantum computing.

TIANYIN WANG received the B.S. degree in
mathematics from Henan University, in 2002,
the M.S. degree in applied mathematics from
Shaanxi Normal University, in 2005, and the Ph.D.
degree in cryptography from the Beijing Univer-
sity of Posts and Telecommunications, in 2010.
He is currently a Professor with Luoyang Normal
University. His research interests include quantum
cryptography and information security.

134860 VOLUME 7, 2019



X. Cai et al.: Security of Verifiable Threshold Quantum Secret Sharing With Sequential Communication

RUILING ZHANG received the B.S. degree
in mathematics from Henan Normal University,
in 1986, and the M.S. degree in computer applica-
tion from Northwestern Polytechnical University,
in 2007. She is currently a Professor with Luoyang
Normal University. Her research interests include
cryptography and machine learning.

FEI GAO received the B.E. degree in communi-
cation engineering and the Ph.D. degree in cryp-
tography from the Beijing University of Posts and
Telecommunications, in 2002 and 2007, respec-
tively, where he is currently a Professor. His
research interests include quantum cryptography,
quantum computing, and quantum information.

VOLUME 7, 2019 134861


	INTRODUCTION
	VERIFIABLE THRESHOLD QUANTUM SECRET SHARING SCHEME WITH SEQUENTIAL COMMUNICATION
	CLASSICAL PRIVATE SHARE DISTRIBUTION PHASE
	SECRET SHARING PHASE

	CRYPTANALYSIS OF VERIFIABLE THRESHOLD QUANTUM SECRET SHARING SCHEME WITH SEQUENTIAL COMMUNICATION
	PARTICIPANT ATTACK 1
	PARTICIPANT ATTACK 2

	THE WAY TO PREVENT PARTICIPANT ATTACKS
	CONCLUSION
	REFERENCES
	Biographies
	XIAOQIU CAI
	TIANYIN WANG
	RUILING ZHANG
	FEI GAO


