
Received August 7, 2019, accepted September 6, 2019, date of publication September 17, 2019,
date of current version September 27, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2941925

Performance Analysis of Not Only SQL
Semi-Stream Join Using MongoDB
for Real-Time Data Warehousing
ERUM MEHMOOD AND TAYYABA ANEES
School of Systems and Technology, University of Management and Technology, Lahore 54770, Pakistan

Corresponding author: Erum Mehmood (erum9964@hotmail.com)

ABSTRACT Data warehousing has been indispensable to enterprises for decades. However, infrequently
updated data warehouse environment does not support quicker business decisions and faster data recovery
in case of transformation or load issue. Implementation of real-time data warehouse provides solution to
update problems of enterprises. Efficient stream processing for un-structured(NoSQL) and structured(SQL)
data from various sources is required for the successful implementation of real-time data warehousing.
We have done an analysis between un-structured and structured semi-stream join processing, using efficient
database engine MongoDB at Extraction-Transformation-Loading phase. Semi-stream tuples coming from
different sources are joined with disk-based master data, based on keys in memory, for both un-structured
and structured documents(tuples) using MongoDB server, where the I/O rates are different for both inputs.
Through experiments, in this paper we have analyzed the CPU and memory usage for real-time semi-stream
join processing through two types of tests, un-structured and structured data streams using synthetic and real
datasets. The results show that, memory usage and execution time remains consistent for a given specification
irrespective of the nature of data streams (un-structured or structured), even when incoming semi-streams
are growing.

INDEX TERMS NoSQL/SQL, semi-stream join, real-time data warehousing, MongoDB.

I. INTRODUCTION
For deriving intelligence out of data, need of data
warehouse (DW) is increasing nowadays. Rather than having
multiple decision-support environments operating indepen-
dently, which may lead to conflicting information, a DW
unifies all sources of information. Decisional support sys-
tem architecture is composed of three important phases:
DW building, exportation and Extracting, Transforming and
Loading (ETL) processes which are responsible for extract-
ing, transforming and loading data into a multidimensional
DW [1] as shown in figure 1. In order to build ETL for
traditional DW, structure of the target system needs to be
known in advance. As NoSQL databases are schema-free,
this increases the need for extending the existing ETL tool in
order to be able to designing schema while integrating data.

Basic purpose of ETL is to filter redundant data not
required for analytical reports and to converge data for fast

The associate editor coordinating the review of this manuscript and
approving it for publication was Vlad Diaconita.

report generation [2]. Online Transaction Processing (OLTP)
refers to workloads that access data randomly, typically to
perform a quick search, insert, update or delete. OLTP opera-
tions are normally performed concurrently by a large number
of users who use the database in their daily work for regular
business operations. Typical data sources for a DW for Enter-
prise Resource Planning (ERP) systems are from external
sources as well as from internal sources. Large data files
are required to hold heterogeneous data temporarily which is
extracted from multiple operational systems, called streams,
after regular prescribed intervals. Extracted data elements are
moved to staging area after reformatting and rearranging the
data streams [3].

The idea of non-relational (NoSQL) databases alludes
to a database option in contrast to the relational model
that organizes information discretely into tables of rows
and columns. Whereas NoSQL databases organize infor-
mation into document-based database, key-value store etc.
The document-based databases allow the storage of doc-
uments made up of tagged elements and they seem to

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 134215

https://orcid.org/0000-0001-9424-8274

E. Mehmood, T. Anees: Performance Analysis of Not Only SQL Semi-Stream Join Using MongoDB

FIGURE 1. ETL phase for streams coming from various sources.

be the most popular NoSQL databases in practice (exam-
ples: Couchbase, MongoDB [4]; also in Latvia devel-
oped Clusterpoint [5]). While key-value stores use big
hash tables of keys and values for fast accessing of
data (examples: Riak, Amazon Dynamo) [6]. MongoDB is a
NoSQL database which contains collections of documents
which has no schema. A set of key/value pairs is desig-
nated as a document, and these documents are associated
with dynamic schemas making NoSQL databases as high
performance data structures which are suitable for lookup and
filtering operations therefore used for the implementation of
our work.

Today’s most common DW implementation is based on the
relational model using SQL as its query language. However,
Not Only SQL (NoSQL) DW solutions are being proposed
bymany researchers as they are more scalable and have better
performance in comparison to relational data bases. Instances
of this type of data are smart phone records in which the
location is broadcast in short and regular intervals, videos
from cameras in public areas and even the extensive number
of documents on the web. Complex join queries are required
for selecting and joining information from multiple tables
in relational DW, which take longer time for large schema.
Structured (SQL) vs Un-structured (NoSQL) database termi-
nology comparison is shown in table

Semi-structured data from XML and web pages may not
be represented by any kind of schema [7] where similar data
objects may have different characteristics. However, NoSQL
DW can help deal with such data. A few researches have been
done in the area of ETL phase in NoSQLwarehousing [1], [8]
due to its complexity as NoSQL databases are schema-free.

According to the demand of growing business industry,
data streams immediately need to be loaded into DW almost
at real-time pace. However, format of data streams from
multiple sources is schema free and sometimes undefined
which leads in need of document oriented (NoSQL) real-time
DW instead of Relational DBMS based DW.

In this paper, we present performance analysis of Not
Only SQL semi-stream join for real-time data warehousing.
For this analysis we implement semi-stream join process for

TABLE 1. Structured vs Un-structured database terminologies [9].

NoSQL streams of data in real-time DW scenario: discussed
in section III, which extracts data streams from two different
sources and join them after rearranging and applying filter
on real-time basis according to the format of DW. We have
run experiments using big-sized NoSQL(synthetic and real-
life) and SQL databases in order to analyze the performance
of semi-stream join process. We have compared performance
aspect of our work in terms of different disk-based master
data sizes and memory budgets. Outcomes from our experi-
ments give insight into feasibility of using a NoSQL database
for semi-stream join algorithms. Our motivation for this study
is to analyze the performance of semi-stream join process in
case when data streams are schema free and disk-data is huge
in size and to understand and evaluate their memory usage
and processing speed.

This section describes the purpose of real-time DW and the
need to capture and evaluate huge sized un-structured schema
free data streams on real-time basis for business intelligence.

The remainder of this paper is organized as follows:
Related work is presented in section II. In section III, NoSQL

134216 VOLUME 7, 2019

E. Mehmood, T. Anees: Performance Analysis of Not Only SQL Semi-Stream Join Using MongoDB

semi-stream join process using MongoDB for real-time DW
is described in detail. In section IV, experimental evaluation
using synthetic and real-life datasets is discussed, pointing
features of memory distribution and disk-based master data
size. Conclusion and future work appear in Section V.

II. RELATED WORK
Due to the importance of ‘‘Big Data’’ NoSQL databases
are gaining popularity. Performance of some NoSQL and
SQL databases are investigated independently by [10] in
the light of key/value stores and result indicates that not all
NoSQL databases perform better than SQL databases. For
each database, the performance varies with each read or write
operation and there is little correlation between performance
and the data model each database uses. However, this discus-
sion can not provide any solution for NoSQL stream joins for
real-time DW.

Response time on relational and non-relational database
models is focused in the work by [9], where several
load tests are performed on SQL Server and MongoDB.
MongoDB offers better performance over Linux operating
systems, while SQL Server tends to increase response time
when it comes to quantity. However, SQL/NoSQL stream join
operation using SQL and NoSQL databases is not focused in
this work.

The study by [7] analyzed the performance of the NoSQL
database against the traditional SQL database for process-
ing a modest amount of structured data by implementing
databases in MongoDB and SQL server. The authors con-
cluded that MongoDB performs equally as well or better than
the relational database even for growing database, besides
when aggregate functions are deployed. However, this study
does not compare MongoDB implementation of stream join
operation for real-time DW with SQL implementation.

Comparison of different database engines is presented
in [11]. Speed analysis of HBase, Cassandra and MySQL
on different workloads is experimented in the mentioned
research. The experiments show that HBase performs better
for Read, Update and Insert operations. However, we choose
MongoDB and MongoDB Atlas for the experiments of our
research because of its key-value store structure and as a fully
automated cloud service.

A new approach to adapt Extract-Transform-Load (ETL)
processes with Big Data technologies called Big Dimensional
ETL (BigDimETL) is presented by [8] that deals with ETL
development process and taking into account the Multidi-
mensional structure. Experimental results show that ETL
operation adaptation can perform well especially with Join
operation using this approach.

Typical RDBMS are inefficient for handling un-structured
big data generated by Web, in contrast NoSQL have the
capabilities of handling such kind of data described by [6]
and [1]. The aim of the research in [12] on NoSQL ETL is
vital since currently DWs consist of structured data and this
does not lead to storage of un-structured data in DW hence,
strategic business decisions and data analysis can not bemade

for un-structured data. This study plays an important role in
selection of join operation at ETL phase for un-structured
data streams for real-time data warehousing.

The research by [6] is based on development and use of
prototypes for NoSQL based DW. The authors concluded
that creation of NoSQL based DW is possible only if a good
balance is found between characteristics of SQL based DW
and functionality offered by NoSQL DBMS. However, this
study does not provide an insight into NoSQL stream joins at
ETL phase for the implementation of NoSQL based DW.

According to [13], horizontally scalable stream processors
are gaining momentum as the requirement for low latency
has become a driving force in modern Big Data analytics
pipelines. Performance analysis on very powerful stream pro-
cessing systems, Apache Spark, Apache Smaza and Apache
Storm, in terms of tuple sizes is presented by [14] and [13].
However, both studies have not addressed NoSQL streams for
real-time DW. Large scale data analytics for real-time stream-
ing sensory and social media data in smart city environments
is presented in another research by [15], that provides the
architecture to extract actionable-knowledge out of raw sen-
sory data (NoSQL). This study, however, doesn’t provide an
insight into stream processing for real-time DW.

The MESHJOIN algorithm proposed by [16] used for
matching a continuous real-time structured data streamwith a
big sized disk-based database. This algorithm plays a promi-
nent role in the field of stream joins as it analyzes and joins
inputs coming from two different sources: i.e., stream and
disk. However, this algorithm cannot deal in un-structured
input data stream for NoSQL based real-time DW.

A robust stream-based stream join algorithm, called
HYBRIDJOIN presented in [17], deals with struc-
tured streams of data for real-time DW. Non-uniform
distributions [18] of stream data are not implemented by the
HYBRIDJOIN. However, both of these approaches have not
addressed un-structured stream joins for real-time DW.

An adaptive semi-stream join algorithm called CACHEJOIN
focusing nonuniform SQL stream data is presented in [19].
Another approach, P-CACHEJOIN (Parallel Cache Join)
algorithm for semi-stream joins in real-time datawarehousing
is presented in [20] with some optimization in CACHEJOIN.
However, these algorithms have not provided solution in case
of un-structured stream joins for real-time DW.

A many-to-many semi-stream join (SSBJ) with a theoreti-
cally founded caching strategy is proposed by [21]. The cache
in SSBJ does not interfere with the subsequent disk-based
join, therefore it is possible to apply this caching strategy to
other semi-stream joins in the future. However, SSBJ does not
provide solution for un-structured stream joins for real-time
DWH.

In the [22], the authors tested population-based queries of
NoSQL databases storing archetype-based Electronic Health
Record (EHR) data. Population-based queries were sub-
mitted to relational database, XML databases and NoSQL
Couchbase. Authors concluded that Couchbase had better
response times than MySQL, especially for larger datasets.

VOLUME 7, 2019 134217

E. Mehmood, T. Anees: Performance Analysis of Not Only SQL Semi-Stream Join Using MongoDB

FIGURE 2. Real-time stream processing architecture for un-structured data from various apps.

Another study by [23] evaluated the scalability of PyEHR,
a data access layer, using two NoSQL Database Management
Systems: MongoDB and Elasticsearch, for secondary use of
structured heterogeneous biomedical and clinical data. How-
ever, the un-structured aspect of data is not the focus of these
studies.

As shown above, several approaches for analyzing the
performance of SQL and NoSQL databases using structured
or un-structured data have been presented. To the best of our
knowledge, however, there is no such study in the literature
that deals with un-structured semi-stream joins using Mon-
goDB for real-time data warehousing.

III. METHOD AND MATERIAL
In this section, we propose implementation method named
join module for the performance analysis of not only SQL
semi-stream join for real-time DW at ETL layer. Architecture
shown in figure 2, presents real-time stream processing at
ETL layer through NoSQL semi-stream data in real-time
DW environment, is followed for the implementation of
this analysis. We analyzed the performance of SQL and
NoSQL stream processing through join module in order to
provide a performance comparison for SQL and NoSQL data.
For stream processing implementation, we first generated six
synthetic datasets each of different size and type and one
real-life dataset. Secondly we generated six stream files for
synthetic datasets and one stream file for real-life dataset
containing ids from each dataset used for stream generation.

MongoDB Compass with MongoDB Server version
3.0 have been installed for our implementation on a machine
running an Intel Core i5 1.70 GHz processor with 4GB of
RAM. Proposed applications were coded in python using
IDLE (python 3.6 64-bit).

Sub-section A explains testing arrangements for the execu-
tion of our implementation in order to conduct this analysis.
Detailed data specifications for each dataset and stream file
are presented in sub-section B whereas overall working of
join module is described in sub-section C.

A. TESTING ARRANGEMENTS
We have used one, two and four million number of un-
structured and structured documents as synthetic datasets,
total are six, and one million number of un-structured doc-
uments from one real-life dataset to perform this analysis.
Different sized data streams starting from ten till twenty thou-
sand number of streams are tested in our join module. Results
of join operation of ten, one hundred, five hundred, one
thousand, ten thousand, fifteen thousand and twenty thou-
sand number of streams from each stream file are included
in this analysis as no significant results were generated for
other sizes. In this analysis, we observed execution time and
memory usage for stream processing only for the mentioned
stream sizes as the results for streams more than maximum
limit can be predicted on the basis of pattern identified from
other tested sizes and are discussed in detail in section IV.

B. DATA SPECIFICATIONS
We used two categories of datasets that we refer to in the
following as synthetic data and real-life data. We describe
now the characteristics of these two categories.

1) SYNTHETIC DATA
For the purpose of evaluating performance of our implemen-
tation we created syntheic dataset similar to real-life datasets
and at least as challenging if notmore, for stream join process.
According to proposed testing arrangement, we generated

134218 VOLUME 7, 2019

E. Mehmood, T. Anees: Performance Analysis of Not Only SQL Semi-Stream Join Using MongoDB

TABLE 2. Data specifications for synthetic un-structured datasets and
stream files.

TABLE 3. Data specifications for synthetic structured datasets and stream
files.

six un-structured and structured dataset collections starting
from one million number of documents till four million num-
ber of documents. Sample collections for un-structured and
structured data are stored on disk. Stream files containing
ids from each generated dataset are also generated and stored
on disk. Table 2 shows data specifications for un-structured
collections containing thirty or less attributes with their cor-
responding stream file names and sizes. We have generated
structured datasets each with thirty or less attributes of integer
data type using MongoDB compass without creating any
nested documents in order to maintain simple schema. Three
collections were generated for structured data, data specifica-
tion of each collection along with their stream file names and
sizes are shown in table 3.

Three random documents from disk-based un-structured
collection ‘‘unstr-col-1’’ are shown in table 4 representing
nested documents each of different type and size.
Documents with attributes of different data types are gen-
erated for experiments in order to create un-structured
collection where id field (hexadecimal) is a primary key.
Documents inside documents are generated formore complex
schema, array and object fields indicate nested documents
shown in second and third row of table 4.

2) REAL-LIFE DATA
In order to validate the results, we experimented semi-stream
join process on real-life dataset deployed from cloud
MongoDB Atlas SandBox cluster.1

1 https://docs.atlas.mongodb.com/sample-data/sample-weather/

TABLE 4. Three random disk-based documents(tuples) from
‘‘unstr-col-1’’ collection.

We have selected collection ‘‘100YWeatherSmall’’ to be
used in our analysis from cloud MongoDB Atlas Sand-
Box cluster. When any new weather condition analysis needs
any search, a real-time analytics is required to match the
query to its massive data stores.

The motivation of this data set is to analyze the perfor-
mance of semi-stream join process on a standardized work-
load as this database is common in big data infrastructure
and captures massive data in an un-structured format, and is
also used in experiments by [24] in their micro-batch model
for distributed join processing. In order to make this dataset
fit on our proposed testing arrangements, we increased its
size by duplicating whole dataset four times obtaining one
million of documents. Initial andmodified data specifications
for real-life dataset ‘‘100YWeatherSmall’’ are presented in
table 5. We present twenty fields of one random document
from ‘‘100YWeatherSmall’’ dataset shown in table6 which is

VOLUME 7, 2019 134219

E. Mehmood, T. Anees: Performance Analysis of Not Only SQL Semi-Stream Join Using MongoDB

TABLE 5. Data specifications for real-life dataset and stream file.

clearly presenting a complex schema. Other documents from
same dataset contain different or same schema as presented
by this table making this whole dataset an un-structured one.

C. JOIN MODULE
We present here, working of semi-stream join module for un-
structured and structured data using different sized stream
files and datasets stored on disk. For the implementation of
join module, we first created synthetic datasets and copy real-
life dataset from Atlas Cluster on local machine by estab-
lishing MongoDB connection using configurations shown
in table 7. Following python string is used to establish the
connection of stored datasets with the join module written in
python:

local_host = ‘‘mongodb://localhost:27017/’’
After successful connection with dataset, join module

reads random object_ids from corresponding stream file and
stores them in stream_list. In order to develop a complete
stream, five random fields(structured, un-structured) are also
generated at run time and are appended into stream_list
variable to be attached with each selected object_id. This
stream_list will reside in memory for join process there-
fore size of stream_list is then added into overall memory
usage. Stream documents from stream_list are then matched
to the corresponding disk-based datasets using the following
MongoDB query statement:

‘‘collection.find(’_id’:ObjectId(stream_list[0]))’’.
Once the match is found, stream documents are joined with

the dataset documents and stored in a text file on disk. Each
find() query is returning exactly one document matching with
stream object id as there are no two documents matching
with same object id. Same cycle repeats until all stream
documents from stream_list find their match from dataset.
Memory usage and CPU time are recorded for complete join
operation for all testing arrangements using ‘‘time’’, ‘‘psutil’’
and ‘‘os’’ libraries alongside following python statements:

memory = psutil.Process(os.getpid())# for memory size
start_time = time.time()
executing join module
execTime = time.time() − start_time
print execution time in seconds
print(execTime)
print memory size in bytes
print((memory.memory_info().rss)/(1024**2))

TABLE 6. One random disk-based document from collection ‘‘data’’ of
‘‘100YWeatherSmall’’ dataset.

We recorded ofmemory usage and execution time after five
iterations for each arrangement in order to compute average

134220 VOLUME 7, 2019

E. Mehmood, T. Anees: Performance Analysis of Not Only SQL Semi-Stream Join Using MongoDB

TABLE 6. (Continued.) One random disk-based document from collection
‘‘data’’ of ‘‘100YWeatherSmall’’ dataset.

TABLE 7. MongoDB connection configuration.

values as there can be any scenario among best, average or
worst case match for each stream.

In this section, overall methodology is described in order
to perform the proposed analysis. Implementation details,
testing arrangements, data specifications and working of join
module are explained in detail by this section.

IV. EXPERIMENTAL EVALUATION
In this section we present an experimental study compar-
ing memory usage and execution time for semi-stream join

FIGURE 3. Memory usage for stream processing using three different
sized un-structured datasets.

FIGURE 4. Execution time for stream processing using using three
different sized un-structured datasets.

based on two categories i.e, synthetic and real-life datasets.
In order to obtain a range of results we use all stream sizes
on each dataset mentioned in testing arrangement section.
We present memory and execution time comparison for pro-
cessing all defined stream sizes using synthetic un-structured
and structured datasets respectively in sub-sections A-1 and
A-2 individually, while connection between performance of
join module using un-structured and structured datasets is
being evaluated in sub-section A-3. Whereas sub-section B
describes performance comparison for stream join processing
using real-life un-structured dataset.

VOLUME 7, 2019 134221

E. Mehmood, T. Anees: Performance Analysis of Not Only SQL Semi-Stream Join Using MongoDB

FIGURE 5. Memory usage for stream processing using three different
sized structured datasets.

A. PERFORMANCE COMPARISON USING
SYNTHETIC DATA
To study the behaviour of join module, synthetic datasets are
being tested with all defined stream sizes. Un-structured and
structured data sets are used in this evaluation in order to
assess performance.

1) UN-STRUCTURED STREAM PROCESSING WITH
DIFFERENT SIZED DISK-BASED COLLECTIONS
Figure 3 presents memory consumption comparison for
stream join operation using un-structured collections.
Disk-based collection name ‘‘unstr-col-1’’ takes less memory
for stream join operation while more memory is required for
other two collections as their disk sizes are increased (from
543.8MB to 1.1GB and 2.1GB). whereas almost constant
rate is observed by this memory bar graph for increasing
number of streams proving that increased rate of incoming
streams does not require more memory for stream process-
ing because these streams contain less attributes hence are
of less size. We also compared execution time in seconds
for stream join operation using all un-structured collections
shown in figure 4. From figure 4 it can be noted that, join
module process small number of streams in very less time for
all sizes of disk-based collections. However, more execution
time is required while increasing number of streamsmatching
with increasing size of disk-based collections. This is not
unexpected, since join of each stream can be any case among
best/average/worst cases and where there is a huge size of
disk-based collection to search in. It is concluded from the
behaviour of join module with different sized collections and
streams that almost same memory settings are required for

FIGURE 6. Execution time for stream processing using three different
sized structured datasets.

FIGURE 7. Memory usage comparison: ONE million no. of documents.

one sized collection irrespective to the number if incoming
streams, however more execution time is required to process
more number of streams in case of larger datasets.

2) STRUCTURED STREAM PROCESSING WITH DIFFERENT
SIZED DISK-BASED COLLECTIONS
We also evaluated performance of join module for different
sized disk-based structured collections (str-col-1, str-col-2,
str-col-3) on the basis of their memory consumption and
execution time. Memory usage for stream processing using
one, two and four million disk-based collections is compared
and presented in figure 5, which shows consistent rate for
increasing number of streams proving that increased rate of
incoming streams does not require more memory, however
more memory is required in case of each larger dataset.
Figure 6 presents comparison of execution time for stream

134222 VOLUME 7, 2019

E. Mehmood, T. Anees: Performance Analysis of Not Only SQL Semi-Stream Join Using MongoDB

FIGURE 8. Memory usage comparison: TWO million no. of documents.

FIGURE 9. Memory usage comparison: FOUR million no. of documents.

join operation with different sized disk-based structured col-
lections and using different sized streams. The results in
figure 6 show that as soon as the number of streams increases
joinmodule takesmore time for each dataset.Moreover, more
execution time is required in order to match streams with
comparatively larger datasets as each stream needs to find its
match starts from the beginning of dataset till it is found i.e,
last page of dataset for worst case scenario.

3) UN-STRUCTURED VS STRUCTURED STREAM PROCESSING
In order to examine the connection between un-structured
and structured stream processing, we prepared memory
usage bar graphs shown in figures 7, 8 and 9 and execu-
tion time line graphs are shown in figures 10, 11 and 12.
Memory graphs depict that almost same memory is required
to join a certain number of streams using structured or
un-structured disk-based collections for sizes one, two and

FIGURE 10. Execution time comparison: ONE million no. of documents.

FIGURE 11. Execution time comparison: TWO million no. of documents.

four million documents. However, it can be noticed that at
5000 or more stream tuples slightly more memory is required
to process un-structured streams as average size of each un-
structured document is more than that of structured docu-
ment (see tables 2 and 3). Approximately similar execution
time is observed for each testing arrangement using both un-
structured and structured datasets showing that stream pro-
cessing takes same execution time irrespective to the nature
of stream (un-structured/structured), results in execution time
graphs are in support of our findings. However, slight differ-
ences among execution time with the use of un-structured and
structured datasets are due to unrecorded best/average/worst
case scenarios.

B. PERFORMANCE COMPARISON USING REAL-LIFE DATA
In these experiments we measured memory usage and exe-
cution time of our join module using real-life data and then
present a comparison with the results of synthetic data in

VOLUME 7, 2019 134223

E. Mehmood, T. Anees: Performance Analysis of Not Only SQL Semi-Stream Join Using MongoDB

FIGURE 12. Execution time comparison: FOUR million no. of documents.

FIGURE 13. Memory usage comparison: (un-structured) synthetic and
real-life datasets with one million no. of documents each.

order to validate our findings. Memory usage comparison
shown in figure 13 clearly depicts that same memory set-
tings are required for both categories of datasets because
both datasets contain un-structured documents. Execution
time comparison of real-life dataset with synthetic dataset is
shown in figure 14 using one million number of documents in
each case. We note that, for higher number of stream tuples,
the execution time of join module using real-life dataset is
much higher than using synthetic dataset because of bigger
size of real data documents i.e, 1.6GBwhere as synthetic data
size of one million documents is 543.8MB (see tables 3 and
5 [extended dataset]). In support of it, we have found that
certain sized pages are brought into page cache bymongodb.2

Hence less number of documents can reside in one page for

2https://docs.mongodb.com/manual/administration/analyzing-mongodb-
performance

FIGURE 14. Execution time comparison: (un-structured) synthetic and
real-life datasets with one million no. of documents each.

big sized documents therefore more disk I/O operations are
required for worst case which causes more execution time
for loading/unloading disk pages increasing overall execution
time for our join module.

When considering the performance of join module using
defined testing arrangements, we can predict the behaviour
of our implementation for increasing sizes of streams and
datasets. More memory settings are required for increasing
size of datasets (un-structured/structured) while more execu-
tion time is required for growing stream tuples.

V. CONCLUSION
In this paper, we have identified challenges in joining NoSQL
streams after analyzing semi-stream join processing through
un-structured and structured streams of data coming with
different I/O rates i.e, one stream from memory and other
is from disk. We implemented a join module and multi-
ple datasets in order to perform this analysis based on two
parameters, CPU and memory utilization. In this implemen-
tation, We first generated six different sized un-structured
and structured disk-based collections(tables) and one real-life
un-structured dataset and then created their corresponding
stream files. Streams from stream files reside in memory and
are fetched one by one to find their match from disk-based
big sized dataset based on primary key and then recorded
memory and execution time for this join operation based
on testing criteria. Our experimental results showed that
under the given configuration, a fixed sized memory and
constant CPU time is required for stream join processing
for a given stream size, irrespective of the nature of data
stream, which however increases for growing stream size.
Stream processing with larger datasets need more disk I/O
therefore increasing execution time and memory used. This
paper plays a role as a guideline for data streams join opera-
tions using NoSQL database MongoDB and help developers
to choose the appropriate sized memory for fast incoming

134224 VOLUME 7, 2019

E. Mehmood, T. Anees: Performance Analysis of Not Only SQL Semi-Stream Join Using MongoDB

un-structured/structured streams by reducing disk I/O cost for
successful implementation of real-time data warehousing.

REFERENCES
[1] R. Yangui, A. Nabli, and F. Gargouri, ‘‘Etl based framework for NoSQL

warehousing,’’ in Proc. Eur., Medit., Middle Eastern Conf. Inf. Syst.Cham,
Switzerland: Springer, 2017, pp. 40–53.

[2] N. Sharma, A. Iyer, R. Bhattacharya, N. Modi, and W. Crivelini,
Getting StartedWith DataWarehousing, 1st ed. Victoria, BC, Canada: IBM
Canada, 2012.

[3] P. Ponniah,Data Warehousing Fundamentals: A Comprehensive Guide for
IT Professionals. Hoboken, NJ, USA: Wiley, 2004.

[4] K. B. S. Kumar, Srividya, and S.Mohanavalli, ‘‘A performance comparison
of document oriented NoSQL databases,’’ in Proc. Int. Conf. Comput.,
Commun. Signal Process. (ICCCSP), Jan. 2017, pp. 1–6.

[5] Z. Bicevska, A. Neimanis, and I. Oditis, ‘‘NoSQL-based data warehouse
solutions: Sense, benefits and prerequisites,’’ Baltic J. Mod. Comput.,
vol. 4, no. 3, p. 597, 2016.

[6] Z. Bicevska and I. Oditis, ‘‘Towards NoSQL-based data warehouse solu-
tions,’’ Procedia Comput. Sci., vol. 104, pp. 104–111, 2017.

[7] Z. Parker, S. Poe, and S. V. Vrbsky, ‘‘Comparing NoSQL MongoDB to
an SQL db,’’ in Proc. 51st ACM Southeast Conf. Savannah, Georgia:
Univ. Savannah, 2013, p. 5.

[8] H.Mallek, F. Ghozzi, O. Teste, and F. Gargouri, ‘‘BigdimETLwith NoSQL
database,’’ Procedia Comput. Sci., vol. 126, pp. 798–807, 2018.

[9] A. Flores, S. Ramírez, R. Toasa, J. Vargas, R. Urvina-Barrionuevo, and
J. M. Lavin, ‘‘Performance evaluation of NoSQL and SQL queries in
response time for the e-government,’’ in Proc. Int. Conf. eDemocracy
eGovernment (ICEDEG), Apr. 2018, pp. 257–262.

[10] Y. Li and S. Manoharan, ‘‘A performance comparison of SQL and NoSQL
databases,’’ in Proc. IEEE Pacific Rim Conf. Commun., Comput. signal
Process. (PACRIM), Aug. 2013, pp. 15–19.

[11] D.-H. Shih, F.-C. Huang, W.-H. Lai, and M.-H. Shih, ‘‘Privacy preserv-
ing and performance analysis on not only SQL database aggregation in
bigdata era,’’ in Proc. IEEE 2nd Int. Conf. Cloud Comput. Big Data
Anal. (ICCCBDA), Apr. 2017, pp. 56–60.

[12] D. Sahiet and P. D. Asanka, ‘‘ETL framework design for NoSQL databases
in dataware housing,’’ Int. J. Res. Comput. Appl. Robot., vol. 3, pp. 67–75,
Nov. 2015.

[13] W. Wingerath, F. Gessert, S. Friedrich, and N. Ritter, ‘‘Real-time stream
processing for big data,’’ Inf. Technol., vol. 58, no. 4, pp. 186–194, 2016.

[14] P. Córdova, ‘‘Analysis of real time stream processing systems considering
latency,’’ Univ. Toronto, Toronto, ON, Canada, Tech. Rep., 2015.

[15] R. Tönjes, P. Barnaghi, M. Ali, A. Mileo, M. Hauswirth, F. Ganz, S. Ganea,
B. Kjærgaard, D. Kuemper, S. Nechifor, and D. Puiu, ‘‘Real time IoT
stream processing and large-scale data analytics for smart city applica-
tions,’’ in Proc. Eur. Conf. Netw. Commun., 2014, pp. 1–5.

[16] N. Polyzotis, S. Skiadopoulos, P. Vassiliadis, A. Simitsis, and N. Frantzell,
‘‘Meshing streaming updates with persistent data in an active data ware-
house,’’ IEEE Trans. Knowl. Data Eng., vol. 20, no. 7, pp. 976–991,
Jul. 2008.

[17] M. A. Naeem, G. Dobbie, and G. Weber, ‘‘HYBRIDJOIN for near-real-
time data warehousing,’’ Int. J. Data Warehousing Mining, vol. 7, no. 4,
pp. 21–42, 2011.

[18] M. A. Naeem, G. Dobbie, and G. Weber, ‘‘X-HYBRIDJOIN for near-
real-time data warehousing,’’ in Proc. Brit. Nat. Conf. Databases. Berlin,
Germany: Springer, 2011, pp. 33–47.

[19] M. A. Naeem, G. Dobbie, and G. Weber, ‘‘A lightweight stream-based join
with limited resource consumption,’’ in Proc. Int. Conf. Data Warehousing
Knowl. Discovery. Berlin, Germany: Springer, 2012, pp. 431–442.

[20] E. Mehmood and M. A. Naeem, ‘‘Optimization of cache-based semi-
stream joins,’’ in Proc. IEEE 2nd Int. Conf. Cloud Comput. Big Data
Anal. (ICCCBDA), Chengdu, China, Apr. 2017, pp. 76–81.

[21] M. A. Naeem, G. Weber, and C. Lutteroth, ‘‘A memory-optimal many-
to-many semi-stream join,’’ Distrib. Parallel Databases, pp. 1–27,
Aug. 2018.

[22] S. M. Freire, D. Teodoro, F. Wei-Kleiner, E. Sundvall, D. Karlsson, and
P. Lambrix, ‘‘Comparing the performance of NoSQL approaches for man-
aging archetype-based electronic health record data,’’ PLoS One, vol. 11,
no. 3, 2016, Art. no. e0150069.

[23] G. Delussu, L. Lianas, F. Frexia, and G. Zanetti, ‘‘A scalable data access
layer to manage structured heterogeneous biomedical data,’’ PLoS One,
vol. 11, no. 12, 2016, Art. no. e0168004.

[24] Y.-H. Jeon, K.-H. Lee, and H.-J. Kim, ‘‘Distributed join processing
between streaming and stored big data under the micro-batch model,’’
IEEE Access, vol. 7, pp. 34583–34598, 2019.

ERUM MEHMOOD was born in Pakistan.
She received the M.Phil. degree in computer sci-
ence from NCBAE, Lahore, Pakistan, in 2017.
She is currently pursuing the Ph.D. degree with
the University of Management and Technol-
ogy, Lahore, Pakistan under the supervision of
Dr. T. Anees. Her M.Phil. dissertation was on
the area of stream processing for real-time data
warehousing.

She is currently a Lecturer of computer science
with Government Degree College, Lahore. Her research interests include big
data analytics, stream processing, ETL, and real-time data warehousing.

TAYYABA ANEES was born in Pakistan.
She received the Ph.D. degree from the Vienna
University of Technology, Vienna, Austria,
in 2012. Her Ph.D. dissertation was on the area
of service-oriented architecture and web services
availability domain. She was a Project Assistant
with the Vienna University of Technology for four
years. She is currently the Director of the Software
Engineering Program and an Assistant Professor
with the Software Engineering Department, Uni-

versity of Management and Technology, Lahore. Her research interests
include service-oriented architecture, web services, software availability,
software safety, software engineering, software fault tolerance, and real-time
data warehousing.

VOLUME 7, 2019 134225

	INTRODUCTION
	RELATED WORK
	METHOD AND MATERIAL
	TESTING ARRANGEMENTS
	DATA SPECIFICATIONS
	SYNTHETIC DATA
	REAL-LIFE DATA

	JOIN MODULE

	EXPERIMENTAL EVALUATION
	PERFORMANCE COMPARISON USING SYNTHETIC DATA
	UN-STRUCTURED STREAM PROCESSING WITH DIFFERENT SIZED DISK-BASED COLLECTIONS
	STRUCTURED STREAM PROCESSING WITH DIFFERENT SIZED DISK-BASED COLLECTIONS
	UN-STRUCTURED VS STRUCTURED STREAM PROCESSING

	PERFORMANCE COMPARISON USING REAL-LIFE DATA

	CONCLUSION
	REFERENCES
	Biographies
	ERUM MEHMOOD
	TAYYABA ANEES

