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ABSTRACT As a kind of green, clean and renewable energy, wind power generation has beenwidely utilized
in various countries in the world. With the rapid development of wind energy, it is also facing prominent
problems. Because wind power generation is intermittent, unstable and stochastic, it has caused serious
difficulties for power grid dispatch. At present, the important method to solve this problem is to predict
wind speed and wind power. Grey model is suitable for uncertain systems with poor information and needs
less operation data, so it can be used for wind speed and wind power prediction. However, the traditional
grey system model has the disadvantage of low prediction accuracy. Therefore, firstly the GM (1,1) for wind
speed prediction is improved by background value optimization in this paper. In order to comprehensively
reveal the inherent uncertainty of wind speed random series, the fractional order grey system models with
different orders are constructed. Secondly, in order to overcome the shortcoming of single grey model, each
grey model is effectively united, and a combination prediction model based on neural network is presented.
The two NWP outputs, i.e. ECMWF and GRAPES-MESO, have been added to the prediction model for
reducing the uncertainty. The structure parameters of the neural network are optimized by trial and error.
Thirdly, the support vector regression model is established to fit the scatter operation data of wind speed-
power, and the parameters of the model are optimized by the particle swarm algorithm. Then the power
prediction value is obtained by the fitted wind speed-power relationship and the corresponding result of
the grey combination model for wind speed prediction. Finally, wind speed and wind power are predicted
based on the actual operation data. In addition, the prediction model based on ARIMA is also constructed
as a benchmark model. The results show that the proposed grey combination model improves the prediction
accuracy.

INDEX TERMS Grey model, background value, support vector regression, fractional order, particle swarm
algorithm, wind speed prediction, wind power prediction, combination model.

I. INTRODUCTION
With the rapid development of global economy, energy
demand is rapidly growing. The traditional fossil energy has
been depleted, and the problems of climate warming and
environmental pollution are becoming increasingly serious.
As a clean and renewable resource, wind energy has been
paid more and more attention. Wind power generation has
been developing rapidly all over the world [1]–[3]. In 2018,
the new installed capacity of wind power generation in the
world was 53.9 GW, and the cumulative installed capacity
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exceeded 600 GW for the first time. In China, the new
installed capacity was 21 GW, and the cumulative installed
capacity was 221 GW.

Due to the rising scale of grid-connected wind power
generation, the randomness, fluctuation and uncertainty of
wind energy have a profound impact on the security, stabil-
ity and economy of power system [4]–[7]. At present, the
important method to solve this problem is to carry out wind
power prediction research. According to the historical data
and current information of wind speed and wind turbine,
the changing trend of wind power generation is predicted
in order to enhance the safety, reliability and controllabil-
ity of the system [8]–[10]. Thus, the grid dispatch plan is
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optimized. The ability of peak regulation is improved and the
spinning reserve capacity is also reduced. With the decrease
of wind abandonment, the wind power generation can meet
the requirement of electricity market transaction and actively
participate in electricity market bidding.

At present, there are some methods for wind power pre-
diction. The prediction method based on the physical model
needs to establish thermodynamic and kinetic equations
describing the atmosphere layer evolution. Considering the
boundary conditions and the actual topography, the trend
of wind speed and wind power is predicted. The prediction
model constructed by this method is complex with huge
computation complexity, and it is very sensitive to false initial
information [11]–[13].

The wind power prediction models based on machine
learning are to establish the calculation procedure for solving
forecasting problem by means of bio-intelligence [14]–[18].
These methods include the fuzzy logic algorithm for simulat-
ing fuzzy concept in the human brain [19]–[22], the long-term
and short-term memory network (LSTM) , the expert experi-
ence method [23]–[26] ,etc. These models can be applied to
the problem with unclear intrinsic mechanism and the non-
linear relationship between input variable and output variable
is established. However, the robustness of the algorithm needs
further proof, and a lot of data and computation are needed for
model training and parameter estimation.

The prediction method based on the Weather Research and
Forecasting ensembles has been developed in order to over-
come the disadvantage of the single NWP prediction [27].
The recent initial condition and the high-resolution model
do not always contribute to the performance enhancement.
The novel fuzzy method has been adopted to measure the
effectiveness of the each prediction and select the best three
members to establish the final prediction result. The cuckoo
research method is applied to optimize the model.

The hybridization of the numerical weather prediction and
machine learning algorithm has been presented for wind
speed forecasting [28]–[31]. The diversity of the data is pro-
duced by the system model with the different initial parame-
ters. The final forecasting output of the model is processed by
means of the intelligent no-linear method in order to exploit
the diversity of the system.

Machine learning approach is increasingly adopted to
extract the inner patterns from the data, which is published in
the latest journal Nature in 2019 [32]. Physical model (the-
ory driven) and machine learning model (data driven) have
different paradigms. But the two methods can complement
each other. The former has strong extrapolation ability. The
latter is more flexible, and new laws can be found. The com-
bination of these two methods can improve parameterization
and replace the physical sub-model with machine learning
approach [33].

The grey prediction model is suitable for the uncertain sys-
tem with only known partial information. The model needs
less historical data and computation, and can adapt to the
dynamic changes of data. Therefore, it is widely used in

agriculture, electricity, finance and other fields [34]–[36].
However, the traditional single grey model has the disadvan-
tage of low prediction accuracy.

The contributions of the prediction model proposed in this
paper are summarized as follows.

(1) Compared with the single grey prediction model, an
improved grey model based on background value optimiza-
tion is proposed. In order to better reveal the inherent law of
wind speed and wind power series, the fractional order grey
models with different orders are designed, and the comple-
mentary characteristic of each model is analyzed.

(2) In order to integrate single prediction model well, a
combination prediction model based on multi-hidden layers
neural network is established. The NWP output is applied
to the combination model to reduce the uncertainty of the
system. In order to evaluate the prediction performance of
the proposed model, the ARIMA prediction model is also
constructed as the baseline method.

(3) According to the actual wind speed-wind power oper-
ation data, a wind speed-power curve-fitting model is con-
structed by support vector regression, and the parameters of
the model are optimized by particle swarm algorithm.

II. PREDICTION METHOD
A. PSO-SVR FITTING ALGORITHM
Support vector machine method maps input space to high-
dimensional feature space using kernel function, and obtains
the non-linear relationship between input and output vari-
ables. By minimizing the structure risk, the generalization
ability of the model can be improved, so as to obtain good sta-
tistical law in the case of fewer input samples. Support vector
regression has advantage in solving non-linear problem and
can obtain the global optimal solution [37]–[39].

Support vector machine adopts ε-insensitivity function,
which assumes that all training data are fitted under accuracy
ε as follows:

yi − f (xi) ≤ ε + ξi
f (xi)− yi ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0

i = 1, 2, . . . , n (1)

In the formula (1), ξi, ξ∗i are the relaxation factors. The
problem is to minimize the objective function:

R(ω, ξ, ξ∗) =
1
2
ω · ω + C

n∑
i=1

(ξi + ξ∗i ) (2)

The constant C represents the penalty degree for the sam-
ples exceeding the accuracy range. The dual form of Lagrange
function is to maximize the following function:

W (α, α∗) = −
1
2

n∑
i=1,j=1

(αi − α∗i )(αj − α
∗
j ) · K (x · xi)

+

n∑
i=1

(αi − α∗i )yi −
n∑
i=1

(αi + α∗i )ε (3)
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The constraints are as follows:
n∑
i=1

(αi − α∗i ) = 0

0 ≤ αi, α∗i ≤ C
(4)

The radial basis kernel function is as follows:

K (x, y) = exp

(
−
‖x − y‖2

2σ 2

)
(5)

The expression of the obtained non-linear fitting function
is as follows:

f (x) = ω · φ(x)+ b =
n∑
i=1

(αi − α∗i )K (x, xi)+ b (6)

Thus, the key problem of support vector regression algo-
rithm is how to solve parameters αi, α∗i . These parameters
αi, α

∗
i are determined by the sequential minimal optimization

method.
However, the performance of the support vector regression

model is greatly influenced by the hyper-parameters, such
as penalty factor C, accuracy ε and kernel function variance
σ . How to scientifically and effectively identify these hyper-
parameters is a issue to be tackled. Therefore, it is necessary
to introduce optimization algorithm into hyper-parameters
search process.

Particle swarm optimization algorithm is a parallel global
search strategy based on population. It has faster convergence
speed. The optimal particle is found in each iteration, and
the rest of the particles can follow it. Particles are updated
according to two extremums: one is its own extremum, which
represents the cognitive level of the particle itself in finding
the best position; the other is the global extremum, which
represents the ability of all particles to find the best solution
at present [40].

The particle swarm optimization uses the velocity-position
search model. The iteration formula adjusting the position
and speed of the particle is as follows:

Vi(k + 1) = w ∗ Vi(k)+ c1 ∗ r1 ∗ (pibest − Xi(k))

+c2 ∗ r2 ∗ (gbest − Xi(k)) (7)

c1 is a cognitive learning factor that regulates the step size
of the particle to its best position. c2 is a social learning factor,
which is used to adjust the step size of the particle to the
global best position. w is the weight factor. The value auto-
matically decreases with the iteration, which is defined as:

w = wmin + (Nmax − n) ∗ (wmax − wmin)/Nmax (8)

Thus w decreases linearly from 0.9 to 0.4 with the iteration .
The SVR fitting process optimized by particle swarm algo-

rithm is shown in figure 1.

B. GREY SYSTEM PREDICTION MODEL
Grey system theory extends the viewpoints and methods of
information theory, system theory and cybernetics. The grey
system theory is applicable to the study of systems with small

FIGURE 1. PSO-SVR method flow.

samples and poor information. By means of the development
and analysis of partial information, useful information can be
extracted, and the behavior and evolution of the system can
be predicted [41].

1) GM(1,1)
The original wind speed series is as follows: V (0)(i)
i = 1, · · · , n. In order to weaken the inherent randomness of
the original series and enhance its regularity, the one-order
accumulated generation series are calculated as follows:

V (1)(k) =
k∑
i=1

V (0)(i) ∀k = 1, · · · , n (9)

The background value is constructed according to the
trapezoid method as follows:

Z (1)(k) = 0.5V (1)(k)+ 0.5V (1)(k − 1) (10)

The difference equation of GM (1,1) is described by the
following formula.

V (0)(k)+ aZ (1)(k) = b (k = 2, · · · , n) (11)

where a is the development coefficient, b is the grey action
coefficient.

136256 VOLUME 7, 2019



Y. Zhang et al.: Wind Power Prediction Based on PSO-SVR and Grey Combination Model

The whitening equation of GM (1,1) is established as
follows:

dV (1)

dt
+ aV (1)

= b (12)

The parameters a and b are calculated by the least square
method . (

a
b

)
=

(
γ T γ

)−1
γ TY (13)

where

γ =


−Z (1)(2) 1
−Z (1)(3) 1

...
...

−Z (1)(n) 1

Y =


V (0)(2)
V (0)(3)
...

V (0)(n)

 (14)

Assuming the initial conditionV (1)∧ (1) = V (1)(1), the grey
prediction V (1)∧ (k) for the one-order accumulated generation
series V (1)(k) is established as follows:

V (1)∧ (k) =
(
V (1)(1)−

b
a

)
e−a(k−1) +

b
a

k = 1, 2, · · ·

(15)

Prediction value of original series is obtained by the inverse
accumulated generation operation.

V (0)∧ (k) = V (1)∧ (k)− V (1)∧ (k − 1) (16)

Considering that the new data can reflect the change law
of the series better than the old data, a rolling mechanism is
proposed, which replaces the old data with the new data.

2) DISCRETE GREY MODEL
The discrete grey model , i.e. DGM (1,1), is represented as
follows:

V (1)(k + 1) = α1V (1)(k)+ α2 (17)

These parameters α1 and α2 are solved by the least square
method as follows:(

α1
α2

)
=

(
γ T γ

)−1
γ TY (18)

where

γ =


V (1)(1) 1
V (1)(2) 1
...

...

V (1)(n− 1) 1

Y =


V (1)(2)
V (1)(3)
...

V (1)(n)

 (19)

Assuming the initial condition V (1)∧ (1) = V (1)(1), the pre-
diction value of the discrete grey model is calculated as
follows:

V (1)∧ (k) = αk−11 V (0)(1)+
1−αk−11

1− α1
α2 k = 1, 2, · · · (20)

3) FRACTIONAL ORDER GREY MODEL
Fractional order model implies an ‘‘in-between’’ idea, which
decreases the perturbation bound of grey prediction model.
Definition 1: p

q (0 <
p
q < 1)-order accumulation operator

is expressed as follows:

v(
p
q )(k) =

k∑
i=1

Ck−i
k−i+ p

q−1
v(0)(i) (21)

where C0
p
q−1
= 1 , Ck

k−1 = 0, k = 1, 2, · · · , n ,

Ck−i
k−i+ p

q−1
=

(k − i+ p
q − 1)(k − i+ p

q − 2) · · · ( pq + 1) pq
(k − i)!

(22)

Definition 2: p
q (0 <

p
q < 1)-order inverse accumulation

operator is expressed as follows:

ς (1)v(1−
p
q )(k) = v(1−

p
q )(k)− v(1−

p
q )(k − 1) (23)

Definition 3: p
q (0 <

p
q < 1)-order accumulation discrete

grey model ,i.e. DGM ( pq ) (1, 1), is established as follows:

v(
p
q )(k + 1) = α1v

( pq )(k)+ α2, k = 1, 2, · · · , n− 1 (24)

α1 and α2 are solved by the least square method as follows:(
α1
α2

)
=

(
γ T γ

)−1
γ TY

where

γ =


V ( pq )(1) 1

V ( pq )(2) 1
...

...

V ( pq )(n− 1) 1

Y =


V ( pq )(2)

V ( pq )(3)
...

V ( pq )(n)

 (25)

The modeling procedure of DGM ( pq ) (1, 1) is described as
follows:

Step 1: p
q (0 <

p
q < 1)-order accumulation series is

calculated as follows: V ( pq ) = (v(
p
q )(1), v(

p
q )(2), · · · ,

v(
p
q )(n)).

Step 2: α1 and α2 are solved according to the formula (25).
Step 3: The prediction value of p

q (0 <
p
q < 1)-order accu-

mulation series is obtained.

V ( pq )
∧

(k) =
(
V (0)(1)−

α2

1− α1

)
αk−11

+
α2

1− α1
k = 1, 2, · · ·

Step 4: p
q (0 <

p
q < 1)-order inverse accumulation operation

of V ( pq )
∧

(k) is carried out to obtain the predic-

tion value of the raw data series, i.e.
∧

V (0)(k) =

ς

(
p
q

)
V ( pq )

∧

(k).
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FIGURE 2. Neural network structure.

C. NEURAL NETWORK COMBINATION MODEL
Neural network has the advantages of distributed storage and
processing, self-adaptation and self-learning. It is especially
suitable for dealing with grey information system and can
sufficiently fit complex non-linear relation [42]–[44].

The structure of the neural network with multi-hidden lay-
ers is shown in Figure 2.The back-propagation algorithm can
be described in two steps as follows: (1) The input signal is
transmitted from the input layer to the output layer. (2) Error
signal is propagated from the output layer to the input layer.

The corresponding updating expression can be derived as
follows.

1wPJpj (n) = −η
∂E(n)

∂wPJpj (n)
= ηδPp (n)v

J
j (n) (26)

1wJIji (n) = −η
∂E(n)

∂wJIji (n)
= ηδJj (n)v

I
i (n) (27)

1wIMim (n) = −η
∂E(n)

∂wIMim (n)
= ηδIi (n)xkm(n) (28)

where

δP(n) = 2 ∗ (dk − Yk ). ∗ Yk . ∗ (1− Yk ) (29)

δJ (n) = vJ (n). ∗ (1− vJ (n)). ∗ {(δP(n)T ∗WPJ (n)}T (30)

δI (n) = vI (n). ∗ (1− vI (n)). ∗ {(δJ (n)T ∗W JI (n)}T (31)

The learning rate η of neural network is set between zero
and one. In order to speed up the learning convergence pro-
cess, the additional momentum method is adopted.

III. MATERIAL AND SCHEME
A. WIND SPEED AND WIND POWER DATA
Wind speed and wind turbine power data are derived from
the actual operation system of some wind farm in China.
The sampling interval is ten minutes. The variation of wind
speed with time is shown in figure 3, which shows obvious
randomness and uncertainty. The range of wind speed is wide.
The maximum wind speed can reach 25.93 m/s, and the
minimumwind speed is 0 m/s, i.e. no-wind period.Within ten
minutes interval, the maximum change rate of wind speed is
10.38 m/s, when the wind speed violently fluctuates. In some

FIGURE 3. Wind speed series.

FIGURE 4. Wind turbine power series.

period, the wind speed is stable, and the change rate of wind
speed is nearly zero.

The variation of wind turbine power with time is shown
in figure 4. When the wind speed is higher than the rated
wind speed of wind turbine, the wind turbine power reaches
1.5 MW, i.e. the rated power. Therefore, compared with the
wind speed series in figure 3, the power output is obviously
limited. When the wind speed is lower than the cut-in wind
speed, the power is close to 0 W. Thus, the period of power
approaching zero is obviously increased. When the actual
wind speed is between the cut-in and the rated wind speed,
the wind turbine power is increased with the enhancement of
the wind speed, and vice versa.

B. PREDICTION MODEL DEVELOPMENT
The wind power prediction model is shown in figure 5.
Firstly, the grey system model is suitable for uncertain
system with partly known information. The random fluc-
tuation of wind speed shows inherent uncertainty. So the
grey model is selected to predict wind speed. However, the
prediction accuracy of the traditional grey model is low,
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FIGURE 5. Wind power prediction model.

and part of the intrinsic information in the original time
series is lost. Therefore, the improved grey model, dis-
crete grey model and fractional order grey model are also
designed. Secondly, in order to effectively integrate each
single prediction model, a combined optimization model
of wind speed prediction is constructed by means of neu-
ral network with multi-hidden layers. The original intrinsic
information of wind speed series is fully utilized and the
prediction accuracy and universality are improved. Finally,
a support vector regression model based on particle swarm
optimization is established. According to the actual wind
speed-power scatter data, the wind speed-power relationship
curve is fitted, and then the wind power prediction value is
obtained.

IV. RESULTS AND ANALYSIS
A. WIND SPEED-WIND POWER FITTED CURVE
The power characteristic curve of wind turbine can reflect
the power generation performance under different wind speed
conditions. At present, there are two kinds of power charac-
teristic curves: theoretical power curve and actual operation
curve. The theoretical wind speed-power characteristic can
be expressed as P= 1

2CpAρv
3, where P is wind turbine output

power, Cp is wind energy utilization coefficient, A = πR2

is the area swept by the wind turbine, R is hub radius, ρ is
air density, v is wind speed. The power curve is obtained by
simulation under ideal condition. However, the wind turbine
power is often affected by turbulence intensity, wind shear
and other factors in the environment.

The measured power curve is obtained from wind speed-
power data recorded in SCADA. However, in practical appli-
cation, the part of the measured scatter points are disorderly
and highly dispersed.

FIGURE 6. Scatter points and fitted curve of wind speed-power.

These abnormal data has a great impact on the power
characteristic analysis. Therefore, the scatter data need to be
preprocessed and optimally fitted in order to eliminate the
impact of these outlier data.

The support vector regression model optimized by particle
swarm algorithm is used to fit the wind speed-power curve
as shown in figure 6. The optimized parameters of the model
are as follows: penalty factor C = 32, precision ε = 0.1 and
variance σ = 2 of RBF kernel function.
The blue scatter points in figure 6 reflect the actual oper-

ation status of wind turbine, and the green curve is the fitted
result of the proposed model. The following conclusion can
be obtained: the cut-in wind speed of wind turbine is 3 m/s,
the rated wind speed is 12.5 m/s and the cut-out wind speed
is 25 m/s. The fitted curve can perfectly represent the wind
speed-power operation characteristic.
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FIGURE 7. Wind speed prediction result of GM(1,1) with various sample
number.

B. WIND SPEED PREDICTION BASED ON GREY MODEL
The evaluation indexes of model prediction performance are
as follows: mean absolute error(MAE):

MAE =
1
n

(
n∑
i=1

(∣∣∣P(0)(i)− P(0)∧ (i)∣∣∣)) (32)

mean absolute percentage error(MAPE):

MAPE =
1
n

(
n∑
i=1

(∣∣∣∣∣P(0)(i)− P(0)
∧

(i)
P(0)(i)

∣∣∣∣∣
))

(33)

root mean square error(RMSE):

RMSE =

√√√√1
n

(
n∑
i=1

(
P(0)(i)− P(0)∧ (i)

)2) (34)

The prediction result of GM (1,1) is shown in figure 7.
When the number of points used to construct the grey model
is equal to 4, the prediction error is obvious. The prediction
overshoot occurs at the violent fluctuation of the original data.
The prediction performance is remarkably improved when
the number of data points is set as six.

The prediction error percentage of GM (1,1) is shown in
figure 8. When the value of n is 6, the situation of large
prediction error is obviously reduced compared with the case
where n equals 4. However, the prediction accuracy of grey
system model is not high, and large error still occurs at some
prediction points.

GM (1,1) is suitable for small samples and poor informa-
tion. The less data is required to build the model, usually no
less than four data points. Experiments show that different
sample number has an impact on the prediction performance.
When n is set from 4 to 8, the prediction error is presented in
table 1. The GM(1,1) with n as 6 is optimal due to 17.5% for
the MAPE, 1.27m/s for the MAE and 1.69m/s for the RMSE.

FIGURE 8. Wind speed prediction error of GM(1,1) with various sample
number.

TABLE 1. wind speed prediction error of GM(1,1) with various sample
number.

FIGURE 9. Wind speed prediction result of DGM.

C. WIND SPEED PREDICTION BASED ON DGM
The prediction result of DGM is shown in figure 9. It can be
concluded from the prediction curve that the prediction value
of this model is very close to that of GM (1,1), with 17.2%
for the MAPE.

The prediction results of DGM and GM (1,1) are basically
consistent, because the two models are equivalent under the
condition of small development coefficient.

From formulas (10) and (11), the expression can be
obtained as follows:

V (1)(k) =
1− 0.5a
1+ 0.5a

V (1)(k − 1)+
b

1+ 0.5a
k = 2, · · ·, n

(35)
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Considering DGM expression (17), it can be concluded
that:

α1 =
1− 0.5a
1+ 0.5a

α2 =
b

1+ 0.5a
b
a
=

α2

1− α1
(36)

The prediction expression of GM (1,1) is transformed as
follows:

V (1)∧ (k) = V (1)(1)e−a(k−1)+
b
a

(
1−e−a(k−1)

)
k=1, 2, · · ·

(37)

Considering formula (20), e−a and α1 =
1−0.5a
1+0.5a are

expanded by power series:

e−a = 1− a+
a2

2!
−
a3

3!
+ · · · + (−1)n

an

n!

α1 =
1−0.5a
1+0.5a

= 1− a+
a2

2
−
a3

22
+ · · · + (−1)n+1

an+1

2n
(38)

If only the first three items are retained, the expression is
established as follows: e−a = α1. When the value of a is very
small, the following expression is established: e−a ≈ α1. In
this case, the DGM is equivalent to the GM (1,1).

D. WIND SPEED PREDICTION BASED ON IMPROVED
GREY MODEL
1) EFFECT OF INITIAL CONDITION ON GREY MODEL
It is necessary to determine an initial condition for grey
system model. The initial condition is generally assumed as:
V (1)∧ (1) = V (1)(1). Thus, the fitted curve passes through
the first data point. However, according to the principle of
least square method, the fitted curve does not necessarily pass
through the first data point.

Considering that the first data point is the oldest data, it is
not closely related to the future change. It is not generated by
accumulation operation, and its regularity is not high. If the
newer data point is used as initial condition to solve the prob-
lem, i.e. V (1)∧ (m) = V (1)(m) (m = 2, 3, · · · , n) , prediction
expression of GM (1,1) is changed as follows:

V (1)∧ (k) =
(
V (1)(m)−

b
a

)
e−a(k−m) +

b
a

k = 1, 2, · · ·

(39)

For some specific applications, GM (1,1) is very sen-
sitive to the selection of initial condition. Different initial
conditions have a great impact on the prediction result and
accuracy. The reason is that the original data sequence is very
close to the exponential growth. The values of data points
vary greatly, which can reach two orders of magnitude.

However, due to the randomness and uncertainty of wind
speed, the original data is not an ideal exponential growth
sequence. Therefore, this experiment demonstrates that with
the change of initial condition, the prediction results of GM
(1,1) are basically the same. In the case of predicting the wind
speed, the GM (1,1) is not sensitive to the initial condition,
and the initial condition has very weak influence on the
prediction result.

2) GREY MODEL WITH BACKGROUND VALUE
OPTIMIZATION
The development coefficient a and grey action b are important
parameters of GM (1,1). Background value is needed to solve
these parameters by least square method. Optimizing the con-
struction method of background value is an important means
to improve the accuracy and applicability of grey model.

The definite integral of the expression (12) in [k-1,k] inter-
val is as follows:

k∫
k−1

dV (1)

dt
dt + a

k∫
k−1

V (1)dt = b

V (1)(k)− V (1)(k − 1)+ a

k∫
k−1

V (1)dt = b

V (0)(k)+ a

k∫
k−1

V (1)dt = b (40)

The background value obtained by comparing expression
(11) with (40) is essentially as follows:

Z (1)(k) =

k∫
k−1

V (1)dt (41)

The expression (10) for background value is actually con-
structed according to formula (41) by means of trapezoidal
method. The general expression for constructing background
value is as follows:

Z (1)(k)=αV (1)(k)+(1−α)V (1)(k−1) (0≤α≤1) (42)

Thus, five methods for constructing background value are
proposed as follows:

Z (1)(k) =



V (1)(k − 1);

3
4
V (1)(k − 1)+

1
4
V (1)(k);

1
2
V (1)(k − 1)+

1
2
V (1)(k);

1
4
V (1)(k − 1)+

3
4
V (1)(k);

V (1)(k)


(43)

According to the above expressions, the constructed mod-
els are labeled as GM(1,1)a, GM(1,1)b, GM(1,1)c, GM(1,1)d,
GM(1,1)e, respectively. The corresponding prediction results
are shown in figure 10.

From figure 10, GM(1,1)e shows the best prediction effect
and accuracy among the five models. Correspondingly, the
prediction error percentage is shown in figure 11. The number
of large prediction error for GM(1,1)e model is significantly
reduced.

The background value of GM(1,1)e is set as the right
endpoint value, i.e. Z (1)(k) = V (1)(k), which is introduced
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FIGURE 10. Wind speed prediction result of GM(1,1) with various
background values.

FIGURE 11. Wind speed prediction error of GM(1,1) with various
background values.

into formula (11):

V (1)(k) =
1

1+ a
V (1)(k − 1)+

b
1+ a

k = 2, · · ·, n (44)

Considering the formulas (17) and (44), the following
expression is obtained:

α1 =
1

1+ a
α2 =

b
1+ a

(45)

α1 can be expanded by power series:

α1 =
1

1+ a
= 1− a+ a2 − a3 + a4 + · · · (46)

Comparing it with formula (38), it is concluded that the
prediction result greatly varies with the different methods for
constructing background value.

The prediction performance ofmodel based on background
value optimization is shown in Table 2. GM(1,1)a (taking
oldest value as background value) shows the worst perfor-
mance, while GM(1,1)e (taking newest value as background
value) shows the best performance. Compared with GM(1,1)c

, i.e. the traditional grey model, the prediction performance

TABLE 2. Wind speed prediction error of GM(1,1) with various
background values.

FIGURE 12. Wind speed prediction result of fractional order DGM.

of GM(1,1)e is improved by 7.4% (from 17.5% to 16.2%)for
MAPE.

E. WIND SPEED PREDICTION BASED ON FRACTIONAL
ORDER GREY MODEL
The wind speed has strong fluctuation and inherent uncer-
tainty. In order to extract the inherent law and information of
wind speed change, the fractional order grey models with dif-
ferent orders are established to improve the model adaptabil-
ity and reduce the prediction disturbance bound. The result
of fractional order grey model for wind speed prediction is
shown in figure 12. The rule and trend of wind speed change
can be reflected by these different models. However, for
some prediction points, these models present complementary
characteristic.

The error of fractional order model for wind speed predic-
tion is shown in figure 13. The overall performance of the
three fractional order models is basically the same, but the
error distribution is not uniform. For some local prediction
points, the single fractional order model shows higher predic-
tion accuracy and smaller prediction error. However, for other
local prediction points, the model presents lower prediction
accuracy and larger prediction error.

F. WIND SPEED AND POWER PREDICTION BASED ON
COMBINATION MODEL
When different grey models work independently, the opti-
mal prediction ratio of each model is shown in figure 14.
Obviously, no model has a great advantage in prediction
performance. These models are very close to each other in
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FIGURE 13. Wind speed prediction error of fractional order DGM.

FIGURE 14. Ratio of optimal prediction points for different models.

terms of the optimal prediction points. The single grey model
is not comprehensive in revealing the intrinsic characteristic
of wind speed change. Therefore, in order to effectively
integrate these models, the combined optimization prediction
model based on neural network is constructed. The combi-
nation model can improve the prediction performance, and
fully exploit the advantages of each model [45]–[47]. In addi-
tion, the NWP outputs are introduced into the combination
model in order to further reduce the prediction fuzziness.
The resolution of ECMWF(European Centre for Medium-
Range Weather Forecasts) mode is 15km. The resolution of
GRAPES-Meso(mesoscale of the Global and Regional of
Assimilation and Prediction System ) mode is 10km.

The structure of the neural network is determined as three
hidden layers by trial and error method. The numbers of
neurons in the hidden layers are respectively (6, 9, 7).

In order to objectively show the prediction performance
of the proposed model, ARIMA(Auto-regressive Integrated
Moving Average) model is also constructed as a baseline
method. ARIMA model is composed of auto-regressive
model and moving average model. It is a typical method

FIGURE 15. Wind speed prediction result of combination model.

FIGURE 16. Wind speed prediction error of combination model.

in time series analysis. The time-varying data sequence is
regarded as a random sequence, which is represented by a
certain mathematical model. The model can predict future
values from past and present values of time series [48]–[51].

The order and parameters of ARIMA model are deter-
mined by partial auto-correlation function method and
long auto-regression method. The identified model, i.e.
ARIMA(3,1,2), is described as follows:

∧

v(t) = 0.436v(t − 1)+ 0.636v(t − 2)− 0.203v(t − 3)

+0.0631ε(t − 1)− 0.412ε(t − 2)

The result of the grey combination model for wind speed
prediction is shown in figure 15. The prediction value can
well track the change of wind speed. When the wind speed
dramatically changes, compared with ARIMAmodel, there is
no serious prediction overshoot by means of the combination
model. In terms of tracking ability, the combination model is
superior to ARIMA.

The error of the grey combination model for wind speed
prediction is shown in figure 16. Compared with the ARIMA
model, the prediction error of the combination model is sig-
nificantly reduced. The proportion of relative error less than
10% is significantly increased, and the proportion of relative
error over 20% is greatly reduced.
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FIGURE 17. Error distribution histogram for wind speed prediction.

The error distribution characteristic of the combination
model and ARIMA for wind speed prediction is shown in
the figure 17. The prediction error of the combination model
is mostly concentrated in the low error interval, and the
corresponding ratio of the low error is higher than that of the
ARIMA. The error distribution of ARIMA is relatively wide,
and there are still some prediction points with the error higher
than 30%.

The error of different models for wind speed prediction is
shown in table 3. The combinationmodel presents the optimal
prediction performance. Compared with the grey model opti-
mized by background value, the combination model results in
the improvement by 53.1% for MAPE (from 16.2% to 7.6%).
The prediction performance of ARIMA is better than that
of any single grey model. However, the combination model
is superior to ARIMA, with the improvement by 37.2% for
MAPE (from 12.1% to 7.6%).

The result of the grey combination model for wind power
prediction is shown in figure 18. Compared with the ARIMA
model, the proposed combination model can well present the
law and trend of actual power fluctuation without prediction
overshoot. ARIMA model cannot well reflect the fluctuation
of power in different intervals of wind speed.

The error of grey combination model for wind power pre-
diction is shown in figure 19.

Compared with the ARIMA model, the prediction error
of the combination model is significantly reduced. Relative
prediction errors are mostly within 10%. However, ARIMA
presents the large prediction error, and the error of some
points is higher than 30%.

The error distribution characteristic of the combination
model and ARIMA for power prediction is shown in the
figure 20. The prediction error of the combination model
is mostly concentrated in the low error interval, and the
corresponding ratio of the low error is higher than that of the

FIGURE 18. Wind power prediction result of combination model.

FIGURE 19. Wind power prediction error of combination model.

FIGURE 20. Error distribution histogram for power prediction.

ARIMA. The error distribution of ARIMA is relatively wide,
and the ratio of high error is slightly higher than that of the
low error. There are still some prediction points with the error
approaching 40%.

TABLE 3. Wind speed prediction error of different models.
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TABLE 4. Wind power prediction error of different models.

The power prediction error of different models is shown
in table 4. The combination model shows the best predic-
tion performance. Compared with the grey model optimized
by background value, the combination model results in the
improvement by 38.2% for MAPE (from 15.7% to 9.7%).
The prediction performance of ARIMA is better than that
of any single grey model. However, the combination model
is superior to ARIMA, with the improvement by 34.9% for
MAPE (from 14.9% to 9.7%).

V. FURTHER DISCUSSIONS
In order to understand how the proposed method reduces
model uncertainty and prediction error, the following section
will further discuss the advantage of the combination model
and how the prediction model is effectively integrated.

Although the traditional grey model is suitable for small
sample and poor information system, it is discovered that the
number of data points adopted in the modeling process has an
impact on the model performance. The intuitive idea is that
using the more data points could lead to the better predic-
tion performance. However, the experiment results show that
along with the increasing number of selected data points, the
prediction error decreases at the beginning, and then changes
little with the slight increase. The reason may be that the
prediction performance is improved by the increase of known
information. The change of wind speed is sometimes strong
and sudden, which causes the decrease of the correlation
among the large sample data. Meanwhile, the construction
method of background value has great influence on the grey
model. Compared with the traditional construction method,
the model using the latest data as background value shows
better performance. This is because the latest data in time
series can more accurately reflect the law and trend of system
change. But the same idea does not apply to the selection
of initial condition. The performance of the grey model is
insensitive to the initial condition, including the latest data
as initial condition. In fact, this just illustrates the uncertainty
and fuzziness of the wind speed series. The sequence gen-
erated by one order accumulation is not ideally close to the
exponential law.

The prediction performance indexes of different fractional
order models are generally close to each other. However,
by observing and comparing these prediction sequences,
it is revealed that there is complementary characteristic in
terms of abrupt change points and prediction delay. A sin-
gle model can not comprehensively indicate inherent law of
the sequence. The combination model can well solve this
problem. The number of hidden layers and neurons of the
neural network demonstrates the representation ability of the

system. But too many layers and neurons may lead to over-
fitting. These parameters need to be determined by experi-
ments.

The wind speed-power curve shows obvious non-linear
characteristic and greatly varies in different range of wind
speed. Support vector regression (SVR) model adopts the
kernel function mapping mechanism, and the allowable error
limit and penalty term are all adjustable. Therefore the SVR
model can well identify the power characteristic in the whole
range of wind speed and eliminate the abnormal data points.
How to select these parameters directly affects the accuracy of
curve fitting. Hence, it is necessary to introduce optimization
algorithm for parameter search andmodel correction. Particle
swarm optimization (PSO) can search the global optimal
value in parallel and quickly converge with simple computa-
tion. Thus, the output result is furthermodified, alongwith the
enhancement of the model applicability, by integrating PSO
into the SVR model.

VI. CONCLUSION
The stochastic fluctuation of wind speed and wind power
is inherently uncertain. The traditional grey model has the
disadvantage of large prediction error. The experiment result
shows that the number of points used to construct the grey
model directly affects the prediction performance. When the
number, i.e. n, equals 6, the GM (1,1) is optimal. GM (1,1)
is not sensitive to the selection of initial condition, but the
construction method of background value has a significant
impact on the prediction result. Compared with the traditional
method of selecting midpoint value as background value, the
improved GM (1,1) with right endpoint value as background
value has significantly enhanced the wind speed prediction
performance. For MAE, MAPE and RMSE, the prediction
performance is increased by 8.7%, 7.4% and 9.5% ,respec-
tively.

The prediction performance of discrete grey model and
GM (1,1) is basically same. In order to reveal the inherent
law and change trend of wind speed more comprehensively,
the fractional order grey models with different orders are
designed for wind speed prediction. The prediction accuracy
of each fractional order model is similar, but the prediction
result presents obvious complementary characteristic among
these models.

The support vector regression model is constructed to fit
the actual scatter points of wind speed and wind power. Par-
ticle swarm algorithm is used to optimize the model param-
eters, such as penalty factor C, precision ε and variance σ
of kernel function. The fitted curve can perfectly reveal the
relationship between wind speed and power.
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In order to overcome the shortcoming of single prediction
model, the combination prediction model based on neural
network is established. For further reducing uncertainty, the
NWP outputs of ECMWF and GRAPES-MESO are intro-
duced into the combination prediction model. The struc-
ture parameters of the neural network are optimized by trial
and error method. Compared with the single grey system
model with the lowest prediction error, the prediction per-
formance of proposed combination model is significantly
improved. For MAE, MAPE and RMSE, the wind speed pre-
diction performance is increased by 56.0%, 53.1% and 58.2%
respectively, and the wind power prediction performance is
increased by 43.6%, 38.2% and 50.5% respectively.

In order to fairly compare the performance of the proposed
model , ARIMA(3,1,2) prediction model is established as a
baseline method. Compared with the ARIMA(3,1,2) method,
the MAE, MAPE and RMSE of the proposed model for
wind speed prediction are improved by 32.9%, 37.2% and
29.7% respectively, and the MAE, MAPE and RMSE of the
proposed model for wind power prediction are improved by
37.7%, 34.9% and 34.4% respectively.
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